
HITs in cubical sets

Spheres, syntactical presentation

We define the circle S1 by the rules

Γ `
Γ ` S1

Γ `
Γ ` base : S1

Γ ` r : I
Γ ` loop r : S1

with the equalities loop 0 = loop 1 = base.
Since we want to represent the free type with one base point and a loop, we add composition as a

constructor operation hcompi (which bounds i in u)

Γ, ϕ, i : I ` u : S1 Γ ` u0 : S1[ϕ 7→ u(i0)]

Γ ` hcompi [ϕ 7→ u] u0 : S1[ϕ 7→ u(i1)]

Given a dependent type x : S1 ` A and a : A(x/base) and l : Pathi A(x/loop i) a a we can define a
function g : Π(x : S1)A by the equations1

g base = a g (loop r) = l r

This definition is non ambiguous since l 0 = l 1 = a and we get judgemental computation rules. Finally

g (hcompi [ϕ 7→ u] u0) = compi A(x/v) [ϕ 7→ g u] (g u0)

where v = filli S1 [ϕ 7→ u] u0 = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.

We have a similar definition for Sn taking as constructors base and loop r1 . . . rn.

Spheres, semantical presentation

We suppose to have a fresh name function on the set of names, with fresh(I) being a name not in I, and
we write I+ = I, fresh(I). We can define in a functorial way f+ : J+ → I+ extending f : J → I by
sending fresh(I) to fresh(J). We also have for natural transformations the projection p : I+ → I and the
map 0 : I → I+ (resp. 1 : I → I+) sending fresh(I) to 0 (resp. 1).

A cubical set X is defined to be a family of sets X(I) with restriction maps X(I)→ X(J), u 7−→ uf
for f : J → I such that u1I = u and (uf)g = u(fg) if g : K → J .

We define first a cubical set X(I) which is an “upper approximation” of the circle. An element of
X(I) is of the form base or loop r with r 6= 0, 1 in I(I) or of the form hcomp [ψ 7→ u] u0 with ψ 6= 1 in
F(I) and u0 in X(I) and u a family of elements uf in X(J+) for f : J → I such that ψf = 1. In this
way an element of X(I) can be seen as a well-founded tree. We can define uf in X(J) for f : J → I by
induction on u. We take base f = base and (loop r)f = loop (rf) if rf 6= 0, 1 and (loop r)f = base if rf
is 0 or 1. Finally (hcomp [ψ 7→ u] u0)f if uf1 if ψf = 1 and hcomp [ψf 7→ uf+] (u0f) if ψf 6= 1 where
uf+ is the family (uf+)g = ufg for g : K → J . This defines a cubical set.

We then define the subset S1(I) ⊆ X(I) by taking the elements base and loop r and hcomp [ψ 7→ u] u0
such that u0 in S1(I) and each uf in S1(J+) and u0f = uf0 and ufg

+ = ufg for f : J → I and g : K → J .
This defines the sub-cubical set S1 of X.

1For the equation g (loop r) = l r, it may be that l and r are dependent on the same name i, and this could not work
without a diagonal operation on names.

1



Propositional truncation, syntactical presentation

We define the propositional truncation ‖A‖ of a type A by the rules:

Γ ` A
Γ ` ‖A‖

Γ ` a : A

Γ ` inc a : ‖A‖
Γ ` u0 : ‖A‖ Γ ` u1 : ‖A‖ Γ ` r : I

Γ ` squash u0 u1 r : ‖A‖
with the equalities squash u0 u1 0 = u0 and squash u0 u1 1 = u1.

As before, we add composition as a constructor, but only in the form2

Γ ` A Γ, ϕ, i : I ` u : ‖A‖ Γ ` u0 : ‖A‖ [ϕ 7→ u(i0)]

Γ ` hcompi [ϕ 7→ u] u0 : ‖A‖ [ϕ 7→ u(i1)]

This provides only a definition of compi ‖A‖ [ϕ 7→ u] u0 in the case where A is independent of i,
and we have to explain how to define the general case.

Given x : ‖A‖ ` B and q : Π(x0 : ‖A‖)(y0 : B(x0))(x1 : ‖A‖)(y1 : B(x1))Pathi B(squash x0 x1 i) y0 y1
and f : Π(x : A)B(inc x) we define g : Π(x : ‖A‖)B by the equations

g (inc a) = f a
g (squash u0 u1 r) = q u0 (g u0) u1 (g u1) r

g (hcompi [ϕ 7→ u] u0) = compi B(v) [ϕ 7→ g u] (g u0)

where v = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.

Flattening an open box

We still have to define the general composition operation. We define first

Γ, i : I ` A Γ ` r : I Γ ` u : ‖A(i/r)‖
Γ ` forward r u : ‖A(i/1)‖ [(r = 1) 7→ u]

by the equations

forward r (inc a) = inc (compi A(i ∨ r) [(r = 1) 7→ a] a)
forward r (squash u0 u1 s) = squash (forward r u0) (forward r u1) s

forward r (hcompi [ϕ 7→ u] u0) = hcompi [ϕ 7→ forward r u] (forward r u0)

Using this operation, we can define a general composition operation3

Γ, i : I ` A Γ, ϕ, i : I ` u : ‖A‖ Γ ` u0 : ‖A(i0)‖ [ϕ 7→ u(i0)]

Γ ` compi ‖A‖ [ϕ 7→ u] u0 : ‖A(i1)‖ [ϕ 7→ u(i1)]

by Γ ` compi ‖A‖ [ϕ 7→ u] u0 = hcompi [ϕ 7→ forward i u] (forward 0 u0) : ‖A(i/1)‖.

Propositional truncation, semantical presentation

Given Γ ` A we define Γ ` ‖A‖. For this, we define first an “upper approximation” Γ ` X. An element
of X(I, ρ) is of the form inc a with a in A(I, ρ) or squash u0 u1 r with r 6= 0, 1 in I(I) and u0 in X(I, ρ)
and u1 in X(I, ρ) or of the form hcomp [ψ 7→ u] u0 with ψ 6= 1 in F(I) and u0 in X(I, ρ) and u a family
of elements uf in X(J+, ρfp) for f : J → I such that ψf = 1. Each element in X(I, ρ) can be seen as a
well-founded tree.

We can then define uf in X(J, ρf) for u in X(I, ρ) and f : J → I by induction on u in such a way
that (uf)g = u(fg) and u1I = u.

We define then ‖A‖ to be the subpresheaf of X by taking ‖A‖ (I, ρ) to be the subset of elements
inc a or squash u0 u1 r with u0 and u1 in ‖A‖ (I, ρ) and hcomp [ψ 7→ u] u0 with u0 in ‖A‖ (I, ρ) and
uf0 = u0f and each uf in ‖A‖ (J+, ρfp) and ufg

+ = ufg for g : J → K.

It is then possible to define a composition structure for Γ ` ‖A‖ if we have a composition structure
for Γ ` A exactly as it is done syntactically.

2This restriction on the constructor is essential for the justification of the elimination rule, as explained in the Comments
at the end.

3The open box is given by ϕ 7→ u and u0 and it is flattened in the ‖A(i/1)‖ type by the forward operation.

2



Universes

To any Grothendieck universe U , we can associate a corresponding universe U by taking U(I) to be
the set of all U-small dependent types I ` A with a composition structure. This defines an univalent
universe.

Having defined an operation I ` ‖A‖ for I ` A, we can use the same operation to define a function
U → U, A 7→ ‖A‖, since I ` ‖A‖ is U-small if I ` A is. This means that we have defined an univalent
universe which is stable by proposition truncation.

We expect that the same method of defining a composition by “flattening an open box” can be
used to define other higher inductive types (suspension, push-out, . . . ). It avoids coherence issues, and
an application is that the addition of higher inductive types and univalence to type theory does not
raise its proof-theoretic power. Indeed, all we do can be modelled in Aczel’s system CZFu<ω, which is
interpretable in type theory with universes.

Comments

Flattening open boxes

One key step is the restriction of the constructor to the form

Γ ` T Γ, ϕ, i : I ` u : ‖T‖ Γ ` u0 : ‖T‖ [ϕ 7→ u(i0)]

Γ ` hcompi [ϕ 7→ u] u0 : ‖T‖ [ϕ 7→ u(i1)]

instead of representing directly composition as a constructor (which is what we tried first to implement)

Γ, i : I ` T Γ, ϕ, i : I ` u : ‖T‖ Γ ` u0 : ‖T (i/0)‖ [ϕ 7→ u(i0)]

Γ ` hcompi [ϕ 7→ u] u0 : ‖T (i/1)‖ [ϕ 7→ u(i1)]

Indeed, with this later choice, it does not seem possible to define even a non dependent function g :
‖A‖ → B given f : A→ B and q : Π(x y : B)B. We can define g (inc a) = f a and g (squash u0 u1 r) =
q (g u0) (g u1) r but it is not clear how to define g (hcompi [ϕ 7→ u] u0) since we only know at this point
that we have some path i : I ` T such that A = T (i/1) and u0 : T (i/0) and there is no way to apply an
induction for defining g (hcompi [ϕ 7→ u] u0).

Inductive definition

We have used a generalized inductive definition in the definition of S1(I). Actually, it is possible to
see each element of S1(I) as a finite object, since a partial element u of extent ψ, which is a family uf
in S1(J) for each f : J → I such that ψf = 1, is actually completely determined by the finite set of
elements uf where f is a face map (J is a subset of I and f(i) can only take the value i or 0 or 1).

Suspension

Note that suspension is actually “simpler” than propositional truncation. We define susp A by the rules:

Γ ` A
Γ ` susp A Γ ` north : susp A Γ ` south : susp A

Γ ` a : A Γ ` r : I
Γ ` merid a r : susp A

with the equalities merid u 0 = north and merid u 1 = south.
As before, we add composition as a constructor, but only in the form

Γ ` A Γ, ϕ, i : I ` u : susp A Γ ` u0 : susp A[ϕ 7→ u(i0)]

Γ ` hcompi [ϕ 7→ u] u0 : susp A[ϕ 7→ u(i1)]

Given x : susp A ` B and yN in B(north) and yS in B(south) and q : Π(x : A)Pathi B(merid x i) yN yS ,
we define g : Π(x : susp A)B by the equations

g north = yN
g south = yS
g (merid a r) = q a r

g (hcompi [ϕ 7→ u] u0) = compi B(v) [ϕ 7→ g u] (g u0)

3



where v = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.
For defining the general composition operation, we define first

Γ, i : I ` A Γ ` r : I Γ ` u : susp A(i/r)

Γ ` forward r u : susp A(i/1)[(r = 1) 7→ u]

by the equations

forward r north = north
forward r south = south
forward r (merid a s) = merid (compi A(i ∨ r) [(r = 1) 7→ a] a) s

forward r (hcompi [ϕ 7→ u] u0) = hcompi [ϕ 7→ forward r u] (forward r u0)

Using this operation, we can define a general composition operation4

Γ, i : I ` A Γ, ϕ, i : I ` u : susp A Γ ` u0 : susp A(i0)[ϕ 7→ u(i0)]

Γ ` compi (susp A) [ϕ 7→ u] u0 : susp A(i1)[ϕ 7→ u(i1)]

by Γ ` compi (susp A) [ϕ 7→ u] u0 = hcompi [ϕ 7→ forward i u] (forward 0 u0) : susp A(i/1).

4The open box is given by ϕ 7→ u and u0 and it is flattened in the susp A(i/1) type by the forward operation.

4


