HITs in cubical sets

Spheres, syntactical presentation

We define the circle S^1 by the rules

$$\frac{\Gamma \vdash}{\Gamma \vdash S^1} \qquad \frac{\Gamma \vdash}{\Gamma \vdash \mathsf{base}: S^1} \qquad \frac{\Gamma \vdash r: \mathbb{I}}{\Gamma \vdash \mathsf{loop} \ r: S^1}$$

with the equalities loop 0 = loop 1 = base.

Since we want to represent the *free* type with one base point and a loop, we add composition as a *constructor* operation hcomp^i (which bounds i in u)

$$\frac{\Gamma, \varphi, i: \mathbb{I} \vdash u: S^1}{\Gamma \vdash \mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0: S^1[\varphi \mapsto u(i0)]}$$

Given a dependent type $x : S^1 \vdash A$ and a : A(x/base) and $l : \mathsf{Path}^i A(x/\mathsf{loop}\ i) \ a \ a$ we can define a function $g : \Pi(x : S^1)A$ by the equations¹

$$g$$
 base = a g (loop r) = $l r$

This definition is non ambiguous since $l \ 0 = l \ 1 = a$ and we get *judgemental* computation rules. Finally

$$g (\mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0) = \mathsf{comp}^i \ A(x/v) \ [\varphi \mapsto g \ u] \ (g \ u_0)$$

where $v = \operatorname{fill}^i S^1 [\varphi \mapsto u] u_0 = \operatorname{hcomp}^j [\varphi \mapsto u(i/i \wedge j), (i = 0) \mapsto u_0] u_0.$

We have a similar definition for S^n taking as constructors base and loop $r_1 \ldots r_n$.

Spheres, semantical presentation

We suppose to have a fresh name function on the set of names, with $\mathsf{fresh}(I)$ being a name not in I, and we write $I^+ = I$, $\mathsf{fresh}(I)$. We can define in a functorial way $f^+ : J^+ \to I^+$ extending $f : J \to I$ by sending $\mathsf{fresh}(I)$ to $\mathsf{fresh}(J)$. We also have for natural transformations the projection $p: I^+ \to I$ and the map $0: I \to I^+$ (resp. $1: I \to I^+$) sending $\mathsf{fresh}(I)$ to 0 (resp. 1).

A cubical set X is defined to be a family of sets X(I) with restriction maps $X(I) \to X(J)$, $u \mapsto uf$ for $f: J \to I$ such that $u1_I = u$ and (uf)g = u(fg) if $g: K \to J$.

We define first a cubical set X(I) which is an "upper approximation" of the circle. An element of X(I) is of the form base or loop r with $r \neq 0, 1$ in $\mathbb{I}(I)$ or of the form hcomp $[\psi \mapsto u] u_0$ with $\psi \neq 1$ in $\mathbb{F}(I)$ and u_0 in X(I) and u a family of elements u_f in $X(J^+)$ for $f: J \to I$ such that $\psi f = 1$. In this way an element of X(I) can be seen as a well-founded tree. We can define uf in X(J) for $f: J \to I$ by induction on u. We take base f = base and (loop r)f = loop (rf) if $rf \neq 0, 1$ and (loop r)f = base if rf is 0 or 1. Finally (hcomp $[\psi \mapsto u] u_0)f$ if $u_f 1$ if $\psi f = 1$ and hcomp $[\psi f \mapsto uf^+] (u_0 f)$ if $\psi f \neq 1$ where uf^+ is the family $(uf^+)_g = u_{fg}$ for $g: K \to J$. This defines a cubical set. We then define the subset $S^1(I) \subseteq X(I)$ by taking the elements base and loop r and hcomp $[\psi \mapsto u] u_0$

We then define the subset $S^1(I) \subseteq X(I)$ by taking the elements base and loop r and hcomp $[\psi \mapsto u] u_0$ such that u_0 in $S^1(I)$ and each u_f in $S^1(J^+)$ and $u_0 f = u_f 0$ and $u_f g^+ = u_{fg}$ for $f: J \to I$ and $g: K \to J$. This defines the sub-cubical set S^1 of X.

¹For the equation g (loop r) = l r, it may be that l and r are dependent on the same name i, and this could not work without a diagonal operation on names.

Propositional truncation, syntactical presentation

We define the propositional truncation ||A|| of a type A by the rules:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \|A\|} \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash \operatorname{inc} a : \|A\|} \qquad \frac{\Gamma \vdash u_0 : \|A\| \quad \Gamma \vdash u_1 : \|A\| \quad \Gamma \vdash r : \mathbb{I}}{\Gamma \vdash \operatorname{squash} u_0 \ u_1 \ r : \|A\|}$$

with the equalities squash $u_0 \ u_1 \ 0 = u_0$ and squash $u_0 \ u_1 \ 1 = u_1$.

As before, we add composition as a constructor, but only in the form²

$$\frac{\Gamma \vdash A \qquad \Gamma, \varphi, i: \mathbb{I} \vdash u: \|A\| \qquad \Gamma \vdash u_0: \|A\| \left[\varphi \mapsto u(i0)\right]}{\Gamma \vdash \mathsf{hcomp}^i \left[\varphi \mapsto u\right] u_0: \|A\| \left[\varphi \mapsto u(i1)\right]}$$

This provides only a definition of $\operatorname{comp}^i ||A|| [\varphi \mapsto u] u_0$ in the case where A is independent of i, and we have to explain how to define the general case.

Given $x : ||A|| \vdash B$ and $q : \Pi(x_0 : ||A||)(y_0 : B(x_0))(x_1 : ||A||)(y_1 : B(x_1))$ Path^{*i*} B(squash $x_0 x_1 i) y_0 y_1$ and $f : \Pi(x : A)B(\text{inc } x)$ we define $g : \Pi(x : ||A||)B$ by the equations

where $v = \mathsf{hcomp}^j \ [\varphi \mapsto u(i/i \wedge j), (i = 0) \mapsto u_0] \ u_0.$

Flattening an open box

We still have to define the general composition operation. We define first

$$\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma \vdash r: \mathbb{I} \quad \Gamma \vdash u: \|A(i/r)\|}{\Gamma \vdash \text{ forward } r \ u: \|A(i/1)\| \ [(r=1) \mapsto u]}$$

by the equations

Using this operation, we can define a general composition operation³

$$\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, \varphi, i: \mathbb{I} \vdash u: \|A\| \quad \Gamma \vdash u_0: \|A(i0)\| [\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{comp}^i \ \|A\| \ [\varphi \mapsto u] \ u_0: \|A(i1)\| [\varphi \mapsto u(i1)]}$$

by $\Gamma \vdash \mathsf{comp}^i \ \|A\| \ [\varphi \mapsto u] \ u_0 = \mathsf{hcomp}^i \ [\varphi \mapsto \mathsf{forward} \ i \ u] \ (\mathsf{forward} \ 0 \ u_0) : \|A(i/1)\|.$

Propositional truncation, semantical presentation

Given $\Gamma \vdash A$ we define $\Gamma \vdash ||A||$. For this, we define first an "upper approximation" $\Gamma \vdash X$. An element of $X(I, \rho)$ is of the form inc *a* with *a* in $A(I, \rho)$ or squash $u_0 u_1 r$ with $r \neq 0, 1$ in $\mathbb{I}(I)$ and u_0 in $X(I, \rho)$ and u_1 in $X(I, \rho)$ or of the form hcomp $[\psi \mapsto u] u_0$ with $\psi \neq 1$ in $\mathbb{F}(I)$ and u_0 in $X(I, \rho)$ and *u* a family of elements u_f in $X(J^+, \rho fp)$ for $f: J \to I$ such that $\psi f = 1$. Each element in $X(I, \rho)$ can be seen as a well-founded tree.

We can then define uf in $X(J, \rho f)$ for u in $X(I, \rho)$ and $f: J \to I$ by induction on u in such a way that (uf)g = u(fg) and $u1_I = u$.

We define then ||A|| to be the subpresheaf of X by taking $||A|| (I, \rho)$ to be the subset of elements inc a or squash $u_0 u_1 r$ with u_0 and u_1 in $||A|| (I, \rho)$ and hcomp $[\psi \mapsto u] u_0$ with u_0 in $||A|| (I, \rho)$ and $u_f 0 = u_0 f$ and each u_f in $||A|| (J^+, \rho f p)$ and $u_f g^+ = u_{fg}$ for $g: J \to K$.

It is then possible to define a composition structure for $\Gamma \vdash ||A||$ if we have a composition structure for $\Gamma \vdash A$ exactly as it is done syntactically.

 $^{^{2}}$ This restriction on the constructor is essential for the justification of the elimination rule, as explained in the Comments at the end.

³The open box is given by $\varphi \mapsto u$ and u_0 and it is flattened in the ||A(i/1)|| type by the forward operation.

Universes

To any Grothendieck universe \mathcal{U} , we can associate a corresponding universe U by taking U(I) to be the set of all \mathcal{U} -small dependent types $I \vdash A$ with a composition structure. This defines an univalent universe.

Having defined an operation $I \vdash ||A||$ for $I \vdash A$, we can use the same operation to define a function $U \to U$, $A \mapsto ||A||$, since $I \vdash ||A||$ is \mathcal{U} -small if $I \vdash A$ is. This means that we have defined an univalent universe which is stable by proposition truncation.

We expect that the same method of defining a composition by "flattening an open box" can be used to define other higher inductive types (suspension, push-out, ...). It avoids coherence issues, and an application is that the addition of higher inductive types and univalence to type theory does not raise its proof-theoretic power. Indeed, all we do can be modelled in Aczel's system $\text{CZFu}_{<\omega}$, which is interpretable in type theory with universes.

Comments

Flattening open boxes

One key step is the restriction of the constructor to the form

$$\frac{\Gamma \vdash T \qquad \Gamma, \varphi, i: \mathbb{I} \vdash u: \|T\| \qquad \Gamma \vdash u_0: \|T\| \left[\varphi \mapsto u(i0)\right]}{\Gamma \vdash \mathsf{hcomp}^i \left[\varphi \mapsto u\right] u_0: \|T\| \left[\varphi \mapsto u(i1)\right]}$$

instead of representing directly composition as a constructor (which is what we tried first to implement)

$$\frac{\Gamma, i: \mathbb{I} \vdash T \qquad \Gamma, \varphi, i: \mathbb{I} \vdash u: \|T\| \qquad \Gamma \vdash u_0: \|T(i/0)\| \left[\varphi \mapsto u(i0)\right]}{\Gamma \vdash \mathsf{hcomp}^i \left[\varphi \mapsto u\right] u_0: \|T(i/1)\| \left[\varphi \mapsto u(i1)\right]}$$

Indeed, with this later choice, it does not seem possible to define even a non dependent function $g : ||A|| \to B$ given $f : A \to B$ and $q : \Pi(x \ y : B)B$. We can define g (inc $a) = f \ a$ and g (squash $u_0 \ u_1 \ r) = q \ (g \ u_0) \ (g \ u_1) \ r$ but it is not clear how to define g (hcompⁱ $[\varphi \mapsto u] \ u_0$) since we only know at this point that we have some path $i : \mathbb{I} \vdash T$ such that A = T(i/1) and $u_0 : T(i/0)$ and there is no way to apply an induction for defining g (hcompⁱ $[\varphi \mapsto u] \ u_0$).

Inductive definition

We have used a generalized inductive definition in the definition of $S^1(I)$. Actually, it is possible to see each element of $S^1(I)$ as a finite object, since a partial element u of extent ψ , which is a family u_f in $S^1(J)$ for each $f: J \to I$ such that $\psi f = 1$, is actually completely determined by the finite set of elements u_f where f is a face map (J is a subset of I and f(i) can only take the value i or 0 or 1).

Suspension

Note that suspension is actually "simpler" than propositional truncation. We define susp A by the rules:

$\Gamma \vdash A$			$\Gamma \vdash a : A \Gamma \vdash r : \mathbb{I}$
$\overline{\Gamma \vdash susp\ A}$	$\overline{\Gamma \vdash north : susp \ A}$	$\overline{\Gamma \vdash south : susp\ A}$	$\overline{\Gamma \vdash merid \ a \ r} : susp \ A$

with the equalities merid u = north and merid u = south.

$$\frac{\Gamma \vdash A \qquad \Gamma, \varphi, i: \mathbb{I} \vdash u: \mathsf{susp} \ A \qquad \Gamma \vdash u_0: \mathsf{susp} \ A[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{hcomp}^i \ [\varphi \mapsto u] \ u_0: \mathsf{susp} \ A[\varphi \mapsto u(i1)]}$$

Given $x : \operatorname{susp} A \vdash B$ and y_N in $B(\operatorname{north})$ and y_S in $B(\operatorname{south})$ and $q : \Pi(x : A)\operatorname{Path}^i B(\operatorname{merid} x i) y_N y_S$, we define $g : \Pi(x : \operatorname{susp} A)B$ by the equations

where $v = \mathsf{hcomp}^j \ [\varphi \mapsto u(i/i \wedge j), (i = 0) \mapsto u_0] \ u_0$. For defining the general composition operation, we define first

$$\frac{\Gamma, i: \mathbb{I} \vdash A \qquad \Gamma \vdash r: \mathbb{I} \qquad \Gamma \vdash u: \mathsf{susp} \ A(i/r)}{\Gamma \vdash \mathsf{forward} \ r \ u: \mathsf{susp} \ A(i/1)[(r=1) \mapsto u]}$$

by the equations

forward r north	=	north
forward r south	=	south
forward r (merid $a \ s$)	=	merid (comp ⁱ $A(i \lor r)$ [$(r = 1) \mapsto a$] a) s
forward r (hcomp ⁱ [$\varphi \mapsto u$] u_0)	=	$hcomp^i \ [\varphi \mapsto forward \ r \ u] \ (forward \ r \ u_0)$

Using this operation, we can define a general composition operation $\!\!\!\!^4$

$$\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, \varphi, i: \mathbb{I} \vdash u: \mathsf{susp} \ A \quad \Gamma \vdash u_0: \mathsf{susp} \ A(i0)[\varphi \mapsto u(i0)]}{\Gamma \vdash \mathsf{comp}^i \ (\mathsf{susp} \ A) \ [\varphi \mapsto u] \ u_0: \mathsf{susp} \ A(i1)[\varphi \mapsto u(i1)]}$$

 $\text{by } \Gamma \vdash \mathsf{comp}^i \text{ (susp } A) \ [\varphi \mapsto u] \ u_0 = \mathsf{hcomp}^i \ [\varphi \mapsto \mathsf{forward} \ i \ u] \ (\mathsf{forward} \ 0 \ u_0) : \mathsf{susp} \ A(i/1).$

⁴The open box is given by $\varphi \mapsto u$ and u_0 and it is flattened in the susp A(i/1) type by the forward operation.