
HOW TO MEASURE BOREL SETS

THIERRY COQUAND

Abstra
t. The goal of this note is to des
ribe Borel's de�nition of measure [2℄. This

de�nition is not faithfully des
ribed in most of the histori
al a

ount of measure theory.

With this de�nition the uni
ity of measure is no problem, while the existen
e 
an be ex-

pressed as a 
oheren
e problem. This was 
learly re
ognised by Lusin [6℄, who formulated

this problem as \Borel measure's problem". Lebesgue's de�nition of measure solves in-

dire
tly this problem, but it may be interesting, as suggested by Lusin, to sear
h for a

dire
t solution. We give an example of su
h a solution.

1. Borel's measure fun
tion

This de�nition appears in \Le�
ons sur la Th�eorie des Fon
tions", 1898. It is an early

example of a generalised indu
tive de�nition and of a generalised re
ursive de�nition. We


onsider only subsets of (0; 1). The starting point is the measure of open subsets. It was

known then that any open 
an be written as a 
ountable union of disjoint open intervals

(
onne
ted 
omponents). It is 
lear that the measure �(r; s) of an open interval should

be s � r. We take then in a natural way the measure of an open set to be the sum of

the measure of all its 
onne
ted 
omponents. It was the �rst satisfa
tory de�nition of

measure of arbitrary open subsets. Starting from this idea, Borel de�nes �rst when a

subset is measurable (
alled well-de�ned) and se
ond what is its measure. The de�nition

is as follows.

(1) (r; s) is well-de�ned and �(r; s) is s� r

(2) If A

n

disjoint family of well-de�ned sets A =

S

A

n

is well-de�ned, and �A = ��A

n

:

(3) If A � B are well-de�ned, B � A is well-de�ned, and �(B � A) = �B � �A:

For instan
e, the measure of a singleton is 0. Indeed, if x 2 (0; 1) we have �(0; x) = x and

�(x; 1) = 1�x and hen
e �(0; x)[(x; 1) = x+1�x = 1. Sin
e fxg is (0; 1)�((0; x)[(x; 1)

it follows that �fxg = 1 � 1 = 0. It follows that the measure of any 
ountable subset is

also 0. We have

�(0; 1=2℄ = 1=2; �(1=2; 3=4℄ = 1=4;

�(3=4; 7=8℄ = 1=8; �(7=8; 15=16℄ = 1=16; : : :

and hen
e

�((0; 1=2℄ [ (1=2; 3=4℄ [ (3=4; 7=8℄ [ : : : )) = 1

This de�nition 
ontains as a spe
ial 
ase the measure of an open set

�((0; 1=2) [ (1=2; 3=4) [ (3=4; 7=8) [ : : : )) = 1
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Noti
e the 
ru
ial di�eren
e with the usual de�nition of Borel subsets: the union has

to be disjoint. In this way, we get a 
learly motivated de�nition With the usual de�nition

(any 
ountable union), this 
lear motivation is lost.

Of 
ourse, it is then not diÆ
ult to show the equivalen
e with the usual de�nition (with

arbitrary 
ountable union) by a simple indu
tion. The usual de�nition may read as follow

(1) (r; s) is a Borel set

(2) If A

n

family of Borel sets A =

S

A

n

is a Borel set

(3) If A is a Borel set so is (0; 1)� A

It is 
lear that any well-de�ned set is Borel. Conversely, it is possible to show by

indu
tion that if A and B are well-de�ned then so is A \ B. If follows that an arbitrary

union A

1

[ A

2

[ A

3

: : : 
an be written as a disjoint union A

1

[ (A

2

� (A

1

\ A

2

)) [ : : : of

well-de�ned sets.

We see then that it is misleading to say the Borel did not prove the uni
ity of the

measure, though it is stated in some a

ount of early measure theory that a problem with

Borel's de�nition is that he did not prove uni
ity nor existen
e of his notion of measure.

With Borel's approa
h the uni
ity is dire
t: the 
lauses (1), (2) and (3) in the de�nition of

well-de�ned sets spe
i�es in a unique way the measure fun
tion.

This is 
losely 
onne
ted to the fa
t that usual presentation of Borel's de�nition does not

stress the point that Borel was using only disjoint unions in his de�nition. If we start from

the se
ond de�nition of Borel sets, it is indeed not at all 
lear how to de�ne the measure

and why it may be unique. This makes the dis
overy of Borel less 
lear and less beautiful

than it was.

It is interesting to 
ompare with Jordan-Peano's de�nition of measure. This de�nition

started �rst with the measure of �nite union of intervals, and then de�ned the outer and

inner measure, but with �nite union: the outer measure �

�

A is the g.l.b. of all measure of

�nite union of intervals that 
ontain A. The inner measure is then de�ned as

�

�

A = 1� �

�

((0; 1)� A)

and a set A is measurable i� �

�

A = �

�

A. A problem with this de�nition is that the set R

of rationals in (0; 1) is not measurable: indeed we have �

�

R = 1 but �

�

R = 0, be
ause the

outer measure of a dense subset has to be 1 and both R and its 
omplement are dense. This

problem is solved in a satisfa
tory and elegant way by Borel. As Bourbaki said, Borel's

de�nition \opens a new era in Analysis".

2. Coheren
e problem

There is however an important problem with Borel's approa
h. Lusin [6℄ listed three

problems

(1) Does the sum ��A

n


onverge in the 
lause (2) of Borel's de�nition

(2) Can �B � �A be negative in the 
lause (3) of Borel's de�nition

(3) Is the de�nition 
oherent

To give a simple example of the 
oheren
e problem we have

(0; 1=2℄ [ (1=2; 3=4℄ [ (3=4; 7=8℄ [ � � � = (0; 1)
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and there are a priori two ways of 
omputing the measure of the set (0; 1). As an open

interval it has the measure 1 � 0 = 1. As a disjoint union, we expe
t also it to have the

measure

1=2� 0 + 3=4� 1=2 + � � � = 1=2 + 1=4 + : : :

Fortunately, in this 
ase, these two ways are 
ompatible and give the same answer 1. But

are we sure that this will always be the 
ase? This is a typi
al 
oheren
e problem.

This problem was re
ognized 
learly by Borel. A
tually it is part of the general philos-

ophy behind this de�nition, whi
h originates from Dra
h. We write \axiomati
ally" the

essential properties that the measure should have This de�nes a theory of a new obje
t In

order to justify the introdu
tion of this new obje
t, it has to be shown that this theory is

not in
onsistent. Borel 
ites Dra
h's exposition of Galois theory as a motivation of su
h an

approa
h and the importan
e of the point of view is stressed by Borel . This is remarkably

similar (but in 1898!) to Hilbert's notion of ideal elements in proof theory. We shall later

on analyse what logi
al prin
iple is needed to ensure the 
onsisten
y of this de�nition.

Did Borel solve this 
oheren
e problem? Not quite. He limits himself to a proof of Heine-

Borel 
overing theorem and said later that a 
omplete proof of 
oheren
e would have been

\long and tedious".

3. Lebesgue solution

The 
oheren
e problem was solved indire
tly by Lebesgue 1902. The solution is similar

to Jordan-Cantor's de�nition, but uses in a 
ru
ial way the 
orre
t de�nition of measure of

open set that we have seen above. The outer measure is now the g.l.b. of open supersets,

�

�

A =

^

U open; A�U

�(U)

while the inner measure 
an be de�ned as

�

�

A = 1� �

�

((0; 1)� A)

Lebesgue says then that A is measurable i� �

�

(A) = �

�

(A) and then the measure of A is

the 
ommon value

�A = �

�

A = �

�

A

In this approa
h, by de�nition, if A is measurable

�A =

^

U open; A�U

�(U)

Su
h a measure is 
alled regular. All 
urrent approa
h to measure theory, starting from

Young (1911), Daniell, Stone, Bourbaki are based on this fundamental idea. One repla
es

open subsets by lower semi-
ontinuous fun
tions, but the essential idea stays the same.

The extension theorem attributed to Caratheodory [4℄ is also based on the idea of using

outer measure with 
ountable union of basi
 sets.

It is quite interesting thus that it has been observed by J.D.M. Wright [?℄ that in some


ases of ve
tor-valued measure, the measure is not regular. We shall give su
h an example

below over Cantor spa
e. The measure still has the weaker property that a measure of an
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open is the supremum of the measure of its 
ompa
t subsets, but there is a subset whi
h is

measurable of measure 0 and dense, and so of outer measure 0. This indi
ates a weakness

of the outer measure approa
h, whi
h 
annot thus be used in the 
ase of ve
tor-valued

measure. The indu
tive de�nition of measure that we present below, following Borel, does

not have this problem.

Lebesgue showed that these notions have the required properties of the axiomati
 def-

inition of Borel. In parti
ular, this solves the 
oheren
e problem of Borel. Furthermore,

it 
an be shown that if A is measurable then one 
an �nd well-de�ned subsets B

1

and B

2

su
h that

B

1

� A � B

2

and then �A = �B

1

= �B

2

. Lebesgue 
hanged then the \measurable" of Borel to \B

measurable" and Borel 
hanged later on the B-measurable to \well-de�ned". This stresses

the fa
t that, a

ording to the intuition of Borel, the 
olle
tion of all Lebesgue measurable

sets is a little vague. This intuition was 
on�rmed by work on set theory: it is independent

of the usual axiom of set theory whether or not all proje
tive sets (a 
lass of subsets of

(0; 1) that may seem quite reasonable) are Lebesgue measurable or not.

4. Borel's measure problem

Lusin [6℄ noti
ed that there is a di�eren
e between Borel's purely indu
tive de�nition,

and Lebesgue's solution. Cannot we have a dire
t indu
tive justi�
ation of an indu
tive

de�nition of measure of Borel sets?? This is Borel's measure problem

We present a solution whi
h is indu
tive and use only 
onstru
tive logi
.

5. A possible indu
tive solution

First we reformulate slightly the problem. Instead of working with (0; 1) we shall work

with Cantor spa
e 
, the spa
e of all in�nite sequen
e of 0 and 1, spa
e whi
h is important

in probability theory. The basi
 open sets (
losed and open subsets) play the role of open

intervals. They are �nite disjoint union of simple subsets of the form U

�

whi
h is the

set of all sequen
es extending a given �nite sequen
e �. For instan
e U

00

is the set of all

sequen
es starting by 00. We take the measure of U

�

to be 2

�n

where n is the length of �

and this de�nes uniquely the measure of all basi
 open sets. Furthermore the measure of


 is 1.

It may be interesting to note that this spa
e 
 
an be des
ribed in purely synta
ti
al

term. The 
olle
tion of basi
 open sets form a Boolean algebra B that 
an be des
ribed

purely synta
ti
ally without referen
es to in�nite sequen
es. The measure � is then a fun
-

tion B ! [0; 1℄ satisfying the fundamental equality, whi
h expresses that � is a valuation

�(A \ B) + �(A [ B) = �A+ �B

The Boolean algebra B is the Lindenbaum-Tarski algebra of propositional logi
.

We 
an now de�ne in a formal/synta
ti
al way Borel subsets of 
: it is a symboli


in�nitary expression built from simple sets by repeated formal union and interse
tion
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In
lusion 
an be de�ned via an in�nitary sequent 
al
ulus following Novikov,Lorenzen,S
hutte.

What we get is the Lindenbaum-Tarski algebra of propositional !-logi
 (S
ott-Tarski). This

is the approa
h taken in Martin-L�of \Notes on Constru
tive Mathemati
s" for de�ning

Borel sets.

To take an example, we 
onsider the set of normal sequen
es, whi
h is a Borel subset of


. De�ne r

i

(!) = 2!

i

� 1 and s

n

= �

i�n

r

i

and then

b

n;k

= f! 2 
 j j

s

n

(!)

n

j �

1

k

g

whi
h is a simple set b

n;k

2 B The Borel subset

N =

^

k

_

m

^

n�m

b

n;k

is the set of normal sequen
es. We see that it is de�ned, not as a set of sequen
es, but as

a in�nitary symboli
 expression. This approa
h �ts with the terminlogy of \well-de�ned"

set, used by Borel.

If k

n

is stri
tly in
reasing sequen
e of integers, then

N

0

�

_

n�m

b

0

n;k

n

^

n�m

b

n;k

n

� N

An essential property of the 
olle
tion of Borel sets is the following initiality property.

This property is known in logi
 as Rasiowa-Sikorski lemma, or 
ompletness of propositional

!-logi
. Let B

1

be the �-algebra of Borel subsets of 


Theorem: B

1

is the free �-algebra on B

B

?

B

1

-

A

f

i

�

�

�

�

�

�

�

�

��

9!

�

f

We 
an de�ne de�ne the algebra of Borel sets as the free �-algebra on B. This de�nition

has the following suggestive interpretation: we introdu
e in�nitary symboli
 expressions

and use freely the law of �-
omplete Boolean algebras.

We have to show that this does not introdu
e in
onsisten
y. In \Notes on Constru
tive

Mathemati
s" this is justi�ed via a 
ut-elimination theorem, similar to Gentzen's 
ut-

elimination theorem.

This expresses well Borel's intuition. Futhermore it points out towards a way to solve

the 
oheren
e problem: we should try to de�ne the measure of Borel sets following the
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initiality property. This would solve the 
oheren
e problem in an elegant way. Before

showing how to do this, we shall express the initiality property in another way, looking at

the 
olle
tion of bounded Baire fun
tions over Cantor spa
e 
 instead of the 
olle
tion of

Borel subsets. These subsets 
an be re
overed as the bounded Baire fun
tions taking only

values 0 or 1.

6. Measures on Boolean algebras

Already Tarski (1929) showed that it is 
onvenient to \linearize" the problem of measure

We repla
e the Boolean algebra of basi
 event by the spa
e of basi
 random variables

V (B)

The elements of V (B) 
an be seen as �nite formal sums �q

i

b

i

B ! V (B) is the universal valuation!

The measure � on B 
an be seen as a positive linear fun
tional E : V (B) ! Q (expe
-

tation)

Riesz spa
e

V (B) is an example of a Riesz spa
e

C(X) is another example

Ordered ve
tor spa
e

Any two elements have a sup

One 
an 
onsider also 
ommutative ordered monoid that are latti
es

7. Riesz spa
e

Very basi
 stru
ture, due to Frederik Riesz (1928)

Ri
h properties: for instan
e, any Riesz spa
e is a distributive latti
e

Cover very di�erent 
lass of examples: monoid of natural numbers for multipli
ation

and divibility as ordering, and C(X)

The basi
 property

x _ y + x ^ y = x + y

naturally 
onne
ts with the de�nition of measure on Boolean algebras

�(x _ y) + �(x ^ y) = �(x) + �(y)

On a monoid, we de�ne x ? y i� x ^ y = 0

Eu
lides' lemma: if x � y + z and x ? z then x � y

This holds for numbers and for 
ontinuous fun
tions!

8. Bounded Baire fun
tions

Strong unit: element 1 su
h that for any x

�n � 1 � x � n � 1

for some n

Dedekind �-
omplete: any bounded in
reasing sequen
e has a sup

Theorem: the spa
e B(
) of bounded Baire fun
tions on 
 is the �-
ompletion of V (B).
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Baire fun
tions: �rst 
ontinuous fun
tions, then we 
lose by (bounded) pointwise limits

The theorem is quite 
lose to Rasiowa-Sikorski lemma; also very 
lose to 
ompletness of

propositional !-logi
, and 
lose to Loomis-Sikorski representation of �-
omplete algebras

9. How to define measure indu
tively

We let M

I

be the spa
e of fun
tionals l on V (B)

�nI(f) � l(f) � nI(f)

for f � 0

We de�ne I

f

2 M

I

I

f

(g) = I(fg)

Main remark: I

f

1

_f

2

is I

f

1

_ I

f

2

By initiality f 7�! I

f

extends to B(
)

So if f Baire fun
tions and g 2 B(V ) we 
an 
onsider I

f

(g)

In parti
ular I

f

(1) is the integral of f

Noti
e that the initiality states exa
tly the monotone 
onvergen
e theorem!

10. Constru
tive Probability Theory

b

n;k

= f! 2 
 j j

s

n

(!)

n

j �

1

k

g

N =

^

k

_

m

^

n�m

b

n;k

If k

n

stri
tly in
reasing

N

0

�

_

n�m

b

0

n;k

n

Lemma: We 
an �nd k

n

su
h that ��(b

0

n;k

n

) 
onverges

Theorem: (Borel) �

1

(N) = 1
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