
A variation of Reynolds-Hurkens Paradox

Thierry Coquand, University of Gothenburg, Sweden

Introduction

We present a variation of Hurkens paradox [8], itself being a variation of Reynolds “paradox” [10], as
used in [4]. We first explain a related paradox in higher order logic, which can be seen as a variation of
Russell’s paradox. We then show how this paradox can be formulated in system λU−. We finally argue
that an analysis of the computational behavior of this paradox requires to extend existing type systems
with a first class notion of definitions and head linear reductions, as advocated by N.G. de Bruijn [6].

1 Some paradoxes in minimal Higher-Order logic

We first present some paradoxes in some extensions of the system λHOL, minimal Higher-Order logic,
described in [7]. This system can be seen as a minimal logic version of higher-order logic introduced by
A. Church [1]. With the notation of [7], it has sorts ∗,�,∆ with ∗ : � and � : ∆ and the rules

(∗, ∗), (�,�), (�, ∗)

We denote by X,Y, . . . types of this system.
We can define Pow : �→ � by Pow X = X → ∗ and T : �→ � by T X = Pow (Pow X).
Note that T defines a judgmental functor: if f : X → Y we can define T f : T X → T Y by

T f F q = F (λx:Xq (f x))

and we also have if furthermore g : Y → Z the judgemental equality (here β-conversion [7]) T (g ◦ f) =
(T g) ◦ (T f) defining g ◦ f as λx:Xg (f x).

We assume in this section to have a type A : � together with two maps intro : T A → A and
match : A→ T A.

We explain now how to derive simple paradoxes assuming some convertibility properties of these
maps.

1.1 A variation of Russell’s paradox

The first version is obtained by assuming that we have match (intro u) convertible to u, i.e. T A is a
judgemental retract of A.

Intuitively, we expect Pow A to be a retract of T A, and this would imply that Pow A is a retract of
A and we should be able to deduce a contradition by Russell’s paradox. One issue with this argument
is that it holds only using some form of extensional equalities, and we work in an intensional setting.
One way to solve this issue is to work with Partial Equivalence Relations; this is what was done in [4].
The work [8], suggests that there should be a more direct way to express this idea, and this is what we
present here.

The contradiction is obtained as follows. We first define a relation C : Pow A→ Pow A

C p x = p x→ ¬(match x p)

where, as usual, we define ⊥: ∗ by ⊥= ∀p:∗p and ¬ : ∗ → ∗ by ¬ p = p →⊥. We can then define
p0 : Pow A

p0 x = ∀p:Pow AC p x

1



We can also define X0 : T A
X0 p = ∀x:AC p x

and x0 : A as x0 = intro X0. We can then build l1 : X0 p0 = match x0 p0

l1 x h = h p0 h

and l2 : p0 x0 by
l2 p h h1 = h1 x0 h h1

But this is a contradiction since match x0 = match (intro X0) = X0 by hypothesis, and hence l2 p0 l2 l1
is of type ⊥.

We can summarize this discussion as follows.

Theorem 1.1 In λHOL, we cannot have a type A such that Pow (Pow A) is a judgemental retract of A.

This can be seen as a variation of Russell/Cantor’s paradox, which states that Pow A cannot be a
retract of A. Here we state that T A cannot be a retract of A.

1.2 A refinement

We define δ : A→ A by δ = intro ◦match and assume the judgemental equality

match ◦ intro = T δ (1)

which implies match (δ x) p = match x (p ◦ δ).
We now (re)define p0 : Pow A

p0 x = ∀p:Pow A p (δ x)→ ¬(match x p)

and X0 : T A as before
X0 p = ∀x:A p x→ ¬(match x p)

and x0 : A as x0 = intro X0. Using the judgemental equality (1), it is possible to build

s1 : ∀x p0 x→ p0 (δ x) s2 : ∀p X0 p→ X0 (p ◦ δ)

by s1 x h p = h (p ◦ δ) and s2 p h x = h (δ x).
We can now define and l0 : ∀p:Pow A p x0 → ¬(X0 p) by

l0 p h h0 = h0 x0 h (s2 p h0)

using (1) and l1 : X0 p0 by
l1 x h = h p0 (s1 x h)

and l2 : p0 x0 by l2 p = l0 (p ◦ δ).
For this, we use the judgemental equality match (δ x) p = match x (p ◦ δ), consequence of (1).
We can then form the term l0 p0 l2 l1 which is of type ⊥.
We thus get the following result, using T X = Pow (Pow X).

Theorem 1.2 In λHOL, we cannot have a type A with two maps intro : T A→ A and match : A→ T A
with match ◦ intro convertible to T (intro ◦match).

2



2 An encoding in λU−

2.1 Weak representation of data type

Using the notations of [7] the system λU− has also sorts ∗,�,∆ with ∗ : � and � : ∆ and the rules

(∗, ∗), (�,�), (�, ∗), (∆,�)

We explain in this section why the refined paradox has a direct encoding in the system λU−.
As before, T defines a judgemental functor: if f : X → Y we can define T f : T X → T Y by

T f F q = F (λx:Xq (f x))

and we also have if furthermore g : Y → Z the judgemental equality T (g ◦ f) = (T g) ◦ (T f) defining
g ◦ f as λx:Xg (f x).

A T -algebra is a type X : � together with a map f : T X → X.
Following Reynolds [10, 11], we represent A : � by

A = ΠX:�(T X → X)→ X

It can be seen as a weak representation of a data type. If we have X : � and f : T X → X we can
define ι f : A→ X by ι f a = a X f . We can then define intro : T A→ A by intro u X f = f (T (ι f) u),
and we have the conversion

(ι f) ◦ intro = f ◦ (T (ι f)) (2)

This expresses that the following diagram commutes strictly

T A T X

A X

intro

T (ι f)

f

(ι f)

So A, intro represents a weak initial T -algebra.
We define next match : A→ T A by match = ι (T intro). Using the conversion (2), we have

match ◦ intro = (T intro) ◦ (T match) = T (intro ◦match)

This is the required conversion (1) and we get in this way an encoding of Theorem 1.2.

2.2 Some variations

In [8], Hurkens uses instead
B = ΠX:�(T X → X)→ T X (3)

He then develops a short paradox using this type B, but with a different intuition, which comes from
Burali-Forti paradox. The variation we present in this note starts instead from the remark that T A
cannot be a retract of A. In [4], we also use this idea, but with a more complex use of partial equivalence
relations, in order to build a strong initial T -algebra from a weak initial T -algebra. This was following
Reynolds’ informal argument in [10],

The same argument from Theorem 1.2 can use the encoding (3) instead. We define then

ι : ΠX:�(T X → X)→ B → X

by
ι X f b = f (b X f)

and intro : T B → B by
intro v X f = T (ι f) v

3



We then have the choice for defining match : B → T B. We can use

match = ι (T B) intro

as before. Maybe surprisingly, we also can use

match b = b B intro

In both cases, we get the judgemental equality match ◦ intro = T (intro ◦match) required for the use of
Theorem 1.2.

3 Computational behavior

For the paradox corresponding to Theorem 1.1, we have the following looping behavior with a term
reducing to itself (in two steps) by head linear reduction

l2 p0 l2 l1 → l1 x0 l2 l1
→ l2 p0 l2 l1
→ . . .

3.1 Family of looping combinators

The paradox corresponding to Theorem 1.2 does not produce a term that reduces to itself

l0 p0 l2 l1 → l1 x0 l2 (s2 p0 l1)
→ l2 p0 (s1 x0 l2) (s2 p0 l1)
→ l0 (p0 ◦ δ) (s1 x0 l2) (s2 p0 l1)
→ s2 p0 l1 x0 (s1 x0 l2) (s2 (p0 ◦ δ) (s2 p0 l1))
→ l1 (δ x0) (s1 x0 l2) (s2 (p0 ◦ δ) (s2 p0 l1))
→ . . .

Like for Hurkens’ paradox however, we obtain a term that reduces to itself if we forget types in
abstraction [8].

In [2], I analysed another paradox, closer to Girard’s original formulation (as was found out later
by H. Herbelin and A. Miquel, a slight variation of this paradox can be expressed in System λU−.) At
about the same time, A. Meyer and M. Reinholdt [9], suggested a clever use of Girard’s paradox for
expressing a fixed-point combinator. While implementating this paradox [2], it was possible to check
that, contrary to what [9] was hinting, the term representing this paradox was not reducing to itself1. A.
Meyer found out then that it was however possible to use this paradox and produce a family of looping
combinators instead, i.e. a term which has the same Böhm tree as one of a fixed-point combinator. A
corollary, following [9], is that type-checking is undecidable for type : type.

3.2 Definitions and Head linear Reduction

As discussed in [8], using the notion of definition is essential, even for “small” terms, for representing
these paradoxes in an undertandable way. As was discovered in Automath [6], in a type system with
dependent types, one cannot reduce definitions to abstractions and applications like in simply typed
lambda calculus. Indeed, the representation of

let x : A = e0 in e1

by (λx:Ae1) e0 can be incorrect, since the definition x : A = e0 can be used in the type-checking of e1.
Furthermore, in order to understand the computational behavior of the paradox, the use of head linear

reduction, which plays an important role in [6], is convenient. This is what was done when presenting
above the computational behavior of various paradoxes, with a periodic behavior for the first example
and a non periodic behavior for the paradox in λU−. This use may also be relevant for understanding
large proofs.

1It would be interesting to go back to this paradox and check if it reduces to itself when removing types in abstractions.

4



Conclusion

In this note, we presented a variation of Hurkens’ paradox [8] and a paradox inspired by Reynolds [4].
This paradox can be seen as a refinement of the simple paradox presented in Theorem 1.1. The problem
is that in the encoding in λU−, we don’t get that T A is a judgmental retract of A2. It is possible however
to still use a weaker judgemental equality and derive a relatively simple paradox3.

References

[1] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68,
1940.

[2] Th. Coquand. An Analysis of Girard’s Paradox. In Proceedings of the Symposium on Logic in
Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, 1986, pages 227–236.
IEEE Computer Society, 1986.

[3] Th. Coquand. The Paradox of Trees in Type Theory. BIT, 32(1):10–14, 1992.

[4] Th. Coquand. A new paradox in type theory. In Logic, methodology and philosophy of science
IX. Proceedings of the ninth international congress of logic, methodology and philosophy of science,
Uppsala, Sweden, August 7-14, 1991, pages 555–570. Amsterdam: North-Holland, 1994.

[5] Th. Coquand and Ch. Paulin. Inductively defined types. In Per Martin-Löf and Grigori Mints,
editors, COLOG-88, International Conference on Computer Logic, Tallinn, USSR, December 1988,
Proceedings, volume 417 of Lecture Notes in Computer Science, pages 50–66. Springer, 1988.

[6] N. G. de Bruijn. Generalizing Automath by means of a lambda-typed lambda calculus. Mathematical
logic and theoretical computer science, Lect. Notes Pure Appl. Math. 106, 71-92 (1987)., 1987.

[7] Herman Geuvers. (In)consistency of extensions of higher order logic and type theory. In Types for
proofs and programs. International workshop, TYPES 2006, Nottingham, UK, April 18–21, 2006.
Revised selected papers., pages 140–159. Berlin: Springer, 2007.

[8] A. J. C. Hurkens. A simplification of Girard’s paradox. In Mariangiola Dezani-Ciancaglini and
Gordon Plotkin, editors, Typed Lambda Calculi and Applications, pages 266–278, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[9] A. R. Meyer and M. B. Reinhold. ”Type” Is Not A Type. In Conference Record of the Thirteenth
Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida,
USA, January 1986, pages 287–295. ACM Press, 1986.

[10] John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B. MacQueen, and
Gordon D. Plotkin, editors, Semantics of Data Types, International Symposium, Sophia-Antipolis,
France, June 27-29, 1984, Proceedings, volume 173 of Lecture Notes in Computer Science, pages
145–156. Springer, 1984.

[11] John C. Reynolds and Gordon D. Plotkin. On functors expressible in the polymorphic typed lambda
calculus. Inf. Comput., 105(1):1–29, 1993.

2This problem was presented in [5] as one main motivation for the primitive introduction of inductive definitions.
3We were not able however to refine in a similar way the paradox of trees [3], to obtain a new paradox in λU−.

5


