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Looking at examples of prenex formulae that are classically valid. it
seems natural to try to extend this analogy between proofs and winning
strategy in the case of classical logic by allowing the proof. when it has to
make a move. to answer 1o any previous move of its opponent. or to play
a new initial move., Oune can then hope to identily classical proofs with
winning strategy for such games. This was suggested by Lorenz [2].

Another idea. that comes from concurrency theory [3]. is to interpret a
strategy as an interactive programs and modus ponens as internal commu-
nication: given a winning strategy for A = B and a winning strategy for
AL one hopes to get a winuning strategy for the game corresponding to I hy
letting the strategy for 1 = 1 play against the strategy for A whenever its
play concerns A, One expects then that the result of cut-elimination will he
replaced by a prool showing that “internal chatters™ end eventually,

When trving to put these jdeas together, the difficulty is in the exact
definition of what it means 1o “let two strategies play against each other™.
Trving 1o precise this leads to the notion of imteraction sequence. whicl is a
purely combinatorial notion.

One surprise is the that the main concepts about proofs. like the one of
normal proofs. can be Tifted at the level of interaction seguence. Basic facts

about proofs. like cut-elimination. can also bhe expressed and proved a1 the

level of interaction ST,

We first present 1he notion of jnteraction SR, andl some of its basic
propertics, These are divectly applied to a definition of classical provability

for infinitary propositional formulae [3]. for which madus ponens can be

interpreted by internal cammmmnication.

2 Interaction Sequences

An interaction sequence is a pair (U S} soel that V{0)is copty, Vi) =
{0}, fU1) = 00 the function [ s defined on aninitial segment [LN] and for
n< N

Vin+ 1)y={u}ul(fln)). fin+eVin+1)
(V) is defined for all positive integers, and Tor all N (V. f) s an
interaction sequence on [ N]. we sav that (V. f)is an infinite interaction
sequence.

Notice that i (VL f)is an interaction sequence. we alwavs have f(n) < n
and fau).on ave of dis

We let y = 7 mean that ¢ € f(V(y]). By a direct induction on y. y < &
i there oxists a sequence gyo.... g such that gy = fly=Th yesr = flywe=1)
and y, = . lence < s transitive,

Lemma 1 [f y < 2. thew V{r) is a strief initial seqment of Vigl.
Proof: By the alternative definition of < . |

Wo shall need a slight generalisation of the notion of int-raction se-
quence. 1f A = {mg.....o). with ng < ... < ng and fis a function defined
at loast on (... }owe sav that [ defines an interactionon iff there
K] sueh then flag) =t

exists an intoraction sequence (1 g) defined o

forp=to....k .
If po= glido g = gl we write 4 < p (0 Tor the fact that § <4

relatively 1o the injer: i sequenee g

It e e seen diveetly that the §llowing algorithm ehecks whether or

pot a funetion [ defines ao interaetic oo fre. .o ).

[ ¥ ¥ 1
o 16k = 0. then f does define an wteraction on .

o 11 k> 0. chieck recnrsively whetaer or not [ defines an Interaction on

the sot w____:....._____.u;_ E

Vil oh i, ).

— il mot then [ does not del e int

— i ves, we know that flag s of the form w, . with p < b= 1.
I furthermore flag) = n, . then [ defines an interaction on
(oo ooy} Othorwise, [ ooelines an jnteraction on {haeovooni}
HE flote) & Amge ooy boand £ odefines an interaction sequenee

on the set {hge oo
Lemma 2 [f [ defioo an anbevaction an fuooooonch flng) = and 1,
i not in the sl f{{r gprecon Y0 thon [odefines an b vaction on the et
T TR TR PR o) ¥

Proof: By induction o 1 — g using the previons algorithin O

I Vs an infinite abset oy foand fisa nction defined at least
on A, wesav that [ defines an interaction on AT [ defines an interaction

on each {u,....om *
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Let us define depth( £.0) = 0. depth(f.n) = depth( f. fin})+ 1 forn > 0.
The integer depth( f, 1) is called the depth of u for f. We say that {(Vof)is
of bounded depth iff there exists N such that depth( f.n) < N for all n.

The following definitions will not he needed in the next two sections,
but are needed for the definition of classical provability. We say that an
interaction sequence [ is cut-free iff f{2p) = 2p =1 whenever 2p is in the
domain of f.

We dofine inductively index( f.a) for 1 in the domain of fin

o index([.u)=n il f{n)=10.

o othe

i~ index{ f. ) = index( f. f{u}).

3 Main Proposition
I this seetion. we suppose given an infinite interaction sequence (V3
Lemma 3 if fior) > 0. then o = f(fla]))

Proof: We have f{a) € V{r] henee Jifta)y € fivie)) O
If 4 C NS () denotes AN il

Aninfinite subset 4= ) is called good 31T L1 S Aamd Syinal =

L JU S (flug).
Notice that 1 = N ois good.  Alsoo il s good. then [ delines an

interaction on L,

Lemma 4 If .1 = {m ]} s qood, cither. for all g there cxistsr >4 suel that
ny = fing boor than crislsa goond subsel {rm) and posuch that w, = m, for
P el iy, = Hy

Proc I s gooed wy nat o L) il ny = flug) et Qo) Do defined Ty

my, =, Tor o< poamlb g, = 0ggie I im elear tlin (ing) 1= strictly inereasing,
Let 1= {o ] Lenoui 2 <liows tat f(11) € B, Purthermore

......C_:..I Y= b uS i) = firgonge JuStfin.-1h

and henee

Sl b= {tnp b U Sl fim 0 ))

1 follenws that H s good
Notier abse that ny, < g Tecanse g € Vg ga) ]

Proposition 1 Giren an infinite intcraction scquence (V. f). there exists
an infinite sequenee wy < uy < uy. .. such that flu, - 1) =1 Sor all p.

not well-founded. Were <

Proof: This can be reformulated by saying that <
well-founded. we could find a good subset {ny) such that neyy is <-minimal for
good subsets starting with ng.....ng By lemma 4, we have that for all p. there

exists q > posuch that n, = f(n,). and we get a contradiction hy lemma 3. O

In the important special case of hounded depth sequences. we can build
effectively a sequence {u,) such that u.yy < u,. The algorithm is built by
induction on a bound N of the depth 17 depth( f. 1} is always < V. we apply
the induction hypothesis. Otherwise. lemma 2 shows that two segments of
the form [f{n).n] with depth([.u) = N are such that they are disjoint or
one is strictly ineluded into another. We progressively remove all these
segments that are maximal, D this way. either we are left with an infinite
subser, which is a good subset {n,} where all depth( foa,) are < N, and we
apply the induction hypothesis. or we are left witloa finite subset. and the
left extremity of the segments form i sequence () suel that g, <, for
all p

4 Cut-elimination

A infinite interaction sequence (V. 1 is said to be winning il < is well-
founded over odd integers. 110 N isinfinite. we define ina corresponding
way when [ defines a win

12 interacihon on i

Lemma 5 If (V. [} is au witeraction sequence on [1ong] and {ny.. coang}
ixa sl X osuch that flu,) € N for j = 1.k and flu) € {ny.oom}
fplics w € X, thew [ defines an intevaction scquenec on Xoo

Proof: By induction on k

Wk = 1, then we e flag) = ng oand lenee fodefines an interaction on
{rg.m )

1M1 < koand the le hehids for all o< ko bt (V) amd N satislviag the
fivpothesis of the lewma By mduetion hypothesis, © defines an mteraction ou
{mg. . rie vl

I fine) = me_y ther fodefines an inte vetiom on {0 o)

Otherwise, we bave F{e) # oy for @ e bieepong]o amd ience, by leama 2.4t

we et e, B Sl e we have flog) < mp I hypothesis of lemima 3 apply then
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to the set {n ... npopona) and henee fodefines an interaction on this set. Tlis

implies that f defines an mteraction on {ny. e} O

We suppose given an interaction sequence (. f)

Let 1 C N be the set of integors i such that f(1) = 0. 117 € [. let A, he
the set of integers n such that index( f.n) = i. The set A, satisfies the two
conditions of lemma 5. and so [ defines an interaction sequence on A,

Lemma 6 Ifi € [. and n is cven. thenn € A, iff i as the Jeasd clement of
Vin). If n isodd and n € A, then n+ 1€ A,

Proof: First. it is clear that 7 1= odd, and that i+ 1 € 4, Let wo> 0 be even,
The least integer b suel that fH(n) = s even: Let 7= fE=Yn) = mdex(f.n) By
lerama 1 and Temma 3. UG~ (0)) = {i) = an initial seguent of V(o). and hener
i is the least element of Vo), 10 a3 s adiland n € A then fin) € A, and fin)

iseven, i€ Vifin)) Hener P € Vint Damd n+ e 4, O

Corollary 1 Ifi1 € /. v wois cven =< and w € A thonm € AL and
m<u(f. )

If 7 C 1 and Xy denates the complement of the union of all sets A, for
e then Xy satisfies the two conditions of Temma 5. and so f defines an
interaction sequence on Xy,

Proposition 2 {cut-elimination) Lt J €0 b sneh that fde fines a win-
ning infe vaetion sequenes on cach finie A, for o€, IOV ) s o winning

interaction scqaenec thow [ defines aeinning b raction on Xy,

Proof: Proposition 1 the corollary of lemmia fi show that Ny is infinane, hecanse
atlerwise, < will he well-founded Both on odd and even imtegers

If f does now amteraction an X then there exists 1we wnfinite
i es (g )l () Ay such than fla) = rpoand gy s the
X

]

pext element conng alter my

wetion on 1€k that f o defines an interaction on
e we hane fUp) # e for p € Yiand oy < g
ateraction ot ¥, Tor £ < & then i defines an

For each k. we show In
Yro= 0 s \Walriarmeo] !
Henee, by Jenma 2000 f defines a

interaction on Yy

It follows that [ defines an mteraction on Y = [0 fuUlme 2enl Sinee
Sl ) = o for all koowe Jave that no< (V) implies o< I follows tha
< (L) is well-founded on odd imtegers, Sinee Ny Ay s finite the corallary of
Temmna G shows that < (0] b= also well-fomded on even integers Woe et then a

contradiction from proposition | O

5 Games

We use capital letters . f3.5.... for denoting finite sequences (or words).
We denote by Sz the concatenation of § and z, and <> denotes the empty
sequence. 11§ = x, ..., then nisthe length of §. We say that a sequence
T extends the sequence 5 iff T is of the form Sa,...z,.

All the objects we consider here, games and strategies, are considered
given intuitionistically. In particular, they are computable objects.

5.1 Games and Strategies

A game (7 is a set of sequences whicl is sueli that <>€ (Fand 5 € @
whenever §u € (¢, The elements of ¢ are called game history. If § € G\
the set MqtS) = {r | 52 € (7} is called the set of possible moves from
8 &

A strategy is a lunction o defined on some elements of (7 ol even length. -
and sueh that o 8) € MA8) whenever ol 8) is defined. The strategy is
exactly defined on elements of €7 of even length that follow the strategy
o, where 5y ... s, follows the strategy o 1l of sy o oosm ) is defined and is saeyy
for all & such that 2k < n,

Cliven a strategy @ we sav that an infinite sequence sps, . follows the
strategy o il &, ...x, follow the strategy o for all .

5.2 Debate associated to a game

Lot f be an interaction on [1.a] and S a sequence ry...r, of length n. we
define for eacli b < o a sequence [{f.5 k) of length depth( f. k) by

o [([.50)=<>.

o J{f. 5005 the concatemation 0S5 fik) e 1T m > 0.

Given a game (O we et (7 be the set of sequences L) s ) i) sy )
such than

o [ i an interaction ou (1. :_ anl

e forall k< onowe have I fos) s, k) € G
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It is direct that this defines a game, called the debate associated 1o
the game G

We say that a stratepy for G is winning ifl for any infinite sequence
(fU1)as ) f(2)082) 0 that follows this strategy, the infiaite interaction se-
quence [ is winning.

It may help the intuition of the reader to think about what happens
during a real debate on a given topic between tWo persons. Both defend
arguments, can change for a while their position. but also, at any point, can
resume the debate at a point it was left before. This is what the game G*
d 1o reprosent the =topic” of the debate,

represents. where (v can he

5.3 Cut-Free Strategy

If ¢ is a game. an element (filhsiho o fin)s) €6 is cut-free iff [ is
cut-frec.

A cut-free strategy for a game G* is a funclion @ defined on some
elements of & of even length that are cut-free.  Such a stralegy © is
defined exactly on sequences that follow the strategy o and the se-
quence (fU1)sho o Uffn)os) follows the strategy o iff [ is cut-free and
(f{p+ 1)ospgr) is equal 1o Ol (1) s ) o () s )] Tor all even p < n.

It is clear that any strategy Tor 07 defines a cnt-Tree strategy by restric-
tion.

Intuitively, a cut-free strategy ells how 1o behave in o debate a

an opponent that never changes i i

We recall that, if £ is an interaction sequence on [3.n]). we have written
Vin + 1) the set inductively defined {n} U V(f(n)). The following is the
motivation hehind the introduction of the set Vin).

S = (fil)hs)e A fln)s) €070 of even length, we define induc-
tively a cut-free sequence C(8) = {g(h).0). gty 1) € G of even length
and a strictly increasing function FLS) [1.0] = [1. 0] such that spespy, = 1)
FISHN = n, Vo + 1} is exacthy the image FESH{EL3.... 0= 1)) and
JoF(5)=F(Sioy:

o ((<>)=<>. and ] (<>)is the identity on the cmpty set,

o othorwise, we have f(n) = p where p < n is odd. We let T be
(FE1)sy) oo (f(p = Dhespoy ) and CCTY he (gi1)ty)..-(gtl) 1) We

know by induction hypothesis that f(p) is of the form F(T }{g¢) for
an odd ¢ € [1.1]. We define then C'(5) to be C(T ) (g . )1+ 1.5, ). and
let F{S) be the extension of Fil') defined by F(S)/ 4+ 1) = p and
FISuli+2)=n.

Let o he a cut-free strategy. We define a sirategy Fie) for G° by com-
puting T__,, ) = @ C(S5)) and letting Flo)5) be (F(S)(¢).+) for § of even
length. The strategy Fio) is called the extension of the cut-free strategy
Q. ,

A cut-feee stra

Cisosabd to be winning ilf the relation of extension is
woll-founded an sequences that follow this strategy.

Lemma 7 | winnjuy strategy Jor €0 e fivee s o aemning ewd-free strategy by
restrictian. Convevsely, the crfension of a winning ewt-fice stratogy 15 a

winning stralegy.

Proof: Direct from the definition. O

6 Classical provability

6.1 Classical Formulae

I'he formmlae are defined inductively by the u

e rules
e il ). i Lisa family of formulac, then A = (A, 0 € T) is a formula.

Intuitively., | is a generalised Scheffer connective, and o1 says that the
formulac -, are incompatible. i.e. A holds ifl at least oue A, does not hold.

In particular. the formula 0 = |(AA,.1 € D). is false under this interpre-
tation. We write |4 for |(.1) where () is a family with one formula A It
represents the wegation of (L Thus the formula 1 = {0 is true under this
interpretation.,

= leh.r € 1) is a formula, and A is a subset of 1. we let AN be
ula |{.1L.7 € K}

This language i< directly seen to he equivalent to infinitary propositional

calenlus as doseribed i | Ax shown in Tait's paper [5]. this caleulus
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6.2 Classical Games

Each formula can be scen as a tree. To each formula A. we associate the
game (7, where. intuitively, cach plaver chooses alternatively a subtree of
the tree already chosen by the opposite player. Formally.if A = [(A,.7€ 1)
then G4 is the set with the empty sequence and the sequences of the form
iS.withieland 5 € Gy,

We definc a proof of A to he a winning strategy for the game G We
say that A is provable iff it liax a proofl.

Notice that the formula 0 is nat provable with this defi ion. There
is only one strategy for (7 i 1= 1. and i is s winning strategy, so that
1 = [0 is provable.

A winning cut-free strategy of (77 can directly be seen as a norial proof
of A in the sense of Tait in [3] where rules of or-introduction and rules of

and-introduction are foreed 1o alten

6.3 Principal Properties

Let 4 = {0 € T)and K hea apheet ol 1105 & €07 is the sequenee
(fU0 o b CfLi)osy b we say that a move {(f(p).=,) plays in ALK
index( . p) € K. Lot (fUn)esp dooUf(p)osy,) be the subsequence of § of
elements (fUr). s, ) that play i AL By Temma 5. there oxists an interaction
sequence g on (L] suel that fip) = pon for i = Lo o Welet pr(S) €
wenee (g hosp, b Ay

Tk e the s

115 is the sequence (f(1)osg). - Uftn)s0) wd k< onis sueh that fik) =
0. et (O s SO )esp, b U= he th o subsequence of § of elemoents
(f{p). s, ) such that index( [.p) = k. Iy lenini !
sequence g on [LA] suel that f{p) = pan for i = L..... 0 Welet pl5) €

2 be the sequence [gli1). ...__._._.‘.T.::_,...__ ).

there exists an interaction

Proposition 3 (modus ponens) /f
o A= |tdni € 1) i provablc,
o [ =JUN isa porlidion af 1.
o A, is provable for j € ).

then the formula AR )= [0 KD is pravable.

il
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Proof: Let o be a winning strategy for A, and o, be a winning strategy for A,.
for j € J. We say that a sequence S € G following o is corvect wrt (o) Tt
is such that pe{S) follows o,, whenever f(k) =0 and s¢ € J.

Proposition 2 shows that the following extension G(5) of 5. for 5 sequence
of even leugth (f(1).5:) . (f(n).s,) following o and correct w.rt. (o, ). is well
defined:

o if o(8) = (fin + 1) s01) and index(f. f(n + 1)) = k is such that s, € K.
then G(S) = S0+ 1) 8000 ),

otherwise, index(f. fin+1)) = kissuch that sg J Let (s )(S{p). p,) - U pr)osp )
e the subsequence of S{m + osugg) of elements (f{).ap) such that
index(f.p) = & and g such that f{p) = py for 1= 1 ok Since pelS)
follows o, the elem

ﬁ..:;_ﬁ_.w__.:: s il = cnlogU ) oap 1o atl)e sy 00 = (ea)

1= well oo

We let GLS) e GO+ 1) st M 5 1)

Notice that €05 i of ailld Jengthe extends S amd its fast move plays i I

W ean e dbefine altanenusly by i fuction a strategy o for AGK ), and for
we S Tollowing oo v FL ) such that FUS) Tollows @, s correct
wort (o sl prtl (S))p= N 1= is of ever dengthe et (pos) be the Tast element of
GUFES) T weogp el that pp (GEFIS)) = Slg2) a d we Jet
CUSY b o) el FESCLs ) e GEEESHE 0 s of oddd Tength, and S(pe.s) € G
we tike F(Gn ) 16 e H(S)ges O

Al s

Xists then an

Proposition 4 feonsestiney) Porang il e feast one Jornada 4o
| At nol provable.

Proof: Beo
O

e Ui mar provable This follows also diveetly from proposition 1

I is eloar that il 4 = |{ 4.0 € T)and K C 1 Gs such that 3R is
provable, then s provahle, hee
winning strategy lor 1

S winming strategy for AR} is also a

Proposition 5 If | = [(.1,.i & [} 1 provable. N C 1 and thore s awconto
map i d — K osuely that A= A Jorallo € Dand pli) =1 Jor i € . then
AR is provable .

Proof: 115 € €75 s the sequence (f(EL s ) (Fin) s ) den G be the sequenes
:.‘:_u._: :._._.;;__w where &) = pls,) i fliy =W and s, = a0l f{i) # 0 1as
elear thar GV E T




Itaneous mduction a stral-

Let ¢ waw g strategy of A Wed 5
egy v for A(K) and for any sequence 5 following v, a sequence F{Y) such that
F(5) follovs o and G(F(S)) =5

If S is of even length. we compute of F(S)) = (p.s). W p = 0. we let v S) be
{(p.pls)) ard F(S(p.s)) be FIS)ps). ITp # 0, we et v(S) be (p.s) aml F(Sip.s))
be F(S)p ).

I §if of odd lengt

Cand Sy s) € Gany, we let F(S(p.s)) be F(S)(p.s). O

From proposition 3 and proposition 5 follows casily the equivalence of our
n of classical provability

notion of provable for
{as defined in [3]).

6.4 Example

A wi 1 and prapositic
interp

of such a st

g alrategy can he seen as a

interial commmuication - Here is an example

1 formulae

Given a i oty

Ay =3y z a2 e Sl € (2]

and

ALS) holds anly classic

We will now ¢
ent-froe strategy Q for Bf). By le
for AL f)

<y oy A [flunn €Sl )< flag]

o strategy can he seen as o progrs COmpuiing wy. . 1y

d flug) < ‘...

Rather tl strategy, we will explain

them |
ol as follows:

fi

Jr Ny > o322 ol fly) > f(2))VI3S.

twao
of [ are piv
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o P answers y = a,

o the apponent gives a value for = =« If fla) < flay). " has won.

o If flu) > flay). P’ changes its mind and plays y = a, instead,

o the opponent gives a value for = = ay. Il flay) € flay). P has won.
o If fla,) > flaz), P changes its mind and plays y = u2 .

Since N is well-founded. P is going to win eventually.

Here is a doscription of @ seen as a cut-free strategy for t

wglliny < e < uahflug) € flua) < flug)].

This is deseri informally:

e () chooses & = w..

o the opponent chiooses a v

o () changes its mid and plays o =y + 1.
° ol o] Wy = g such that a2 0y + 1
o if floy) > flosh @ resumes the game with its initial v 0 for r.

wos=aw I fla) € flow). @ change its mind ani

o the opponent chooses aalue y = ay. such that ay 2 ay + 1.

o if fluy) > fla.i. @
[ ¢ 2=y Ctherwise, flog) < fla

Iy =t

uties the game with the value a; 41 for 2. and
< [lag) and @ wins

ction hetween these
case where the valnes

We are going now to show an example of a

alogies).

SU0) =10, f(1)=5. ft2) =3, [ =7 fteh =4 f(3) =11 f(6)=29,...

Ier

moves, as they are given by prope

1. @ plays . = 0.
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2. Pplays y=0.
3. Q changes its mind. plays 7 = 3
4, Pplaysy=1,

5. f(0) > f(1), hence Q plavs = = 1,
m.m._v_m.,_mm__uf

7. Q plays r =1,

> -l

8, Poplayvs y=2

=

. J01) > f(2) hewee ) plays == 2.

10. P plays y =12

1. Q plays » =3

12. P plays g =3
13. f(3) = f[12). hewee ¢ plays = 4.
14, P plays y= 1
15. f(4) < f{3). henee plavs 2 = 1.

16, P plavs y =1

17, fi4) 2 f12). henee () plays r =D

v

18, P plays y =

19. f15) 2 SO ). henee @ plays ug =20 we = 1oy = 5.
The inferaction sequence g associated 10 1his interaction is given by

gl1)= 0. gi2) = Logt) =0 gl = 3. g(5) = 2. gl6) = L.

g7y =0, g(8) =7, 99} = G, gl10)=1. g(11) = 0. gl12) =11,

g(13) = 0. g(14) = 13. g(15) = 12, g(16) = 11.g(17) = 0. g(1R) = 1

The computation of (. . i) consgists in an exchange of values hetween
P oand Q. until a value (i ue wy) = (20.0) is found w Q.

11
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Conclusion

Onr treatment scems to oxtend directly to the case of non necessarily well-
founded formulac. We can even consider partial strategy. and prove for
instance proposition 5 by a bissimulation argnment.

The approach followed in this paper leads to a (may be new) proof of
cut-elimination in a strietly deterministic framework. We think that it can
be extended by allowing each player to play simultaneously a finite set of
Moves.
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