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Type Theory and Constructive Mathematics

This talk

Design of a formal system for representing constructive mathematics

We discuss: existence, equality, unique choice, functions

Motivated by Voevodsky Univalent Foundation project
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Strong Existence

Represented in type theory as (Σx : A)B

The elements are pair (a, b)

If w : (Σx : A)B we have access to w.1 : A and w.2 : B[w.1]

(a, b).1 = a : A (a, b).2 = b : B[a]

We get stronger laws than the usual law for existential quantification

“Strong” existence vs “weak” existence (Howard, 1969)
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Strong Existence

Seems to be what “existence” means in constructive mathematics

E.g. Bishop’s statement

“A choice function exists in constructive mathematics because a choice is
implied by the very meaning of existence”

Using only this notion of existence raises however some problem

3



Type Theory and Constructive Mathematics

Strong Existence

(Kreisel, A. Bauer, M. Escardo)

We formulate the continuity principle for functions on Baire space (Brouwer)

CP = (ΠF : (N → N)→ N)(Πf : N → N)(Σn : N)MC(F, f, n)

where the modulus relation is defined as

MC(F, f, n) =
(Πg : N → N) ((∀k 6 n) f k =N g k) → F f =N F g

We can prove ¬CP in type theory
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Strong Existence

Reminiscent of the situation with Church’s Thesis

We can prove the negation of Church’s Thesis given function extensionality
(which is implied by the equality reflection rule)

One motivation (among others) for not having the equality reflection rule

But here we can prove ¬CP without using function extensionality
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Strong Existence

A serious problem for representing mathematics in type theory?

Arguable whether Brouwer’s continuity principle should be provable or not

But it does not seem suitable to have a formal system for constructive
mathematics where we can show the negation of Brouwer’s continuity principle

What was the notion of existence Brouwer was using when formulating this
principle?

The root of the problem seems to be the use of strong existence to express
the existence of the modulus of continuity
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Existence and Equality

This suggests that a formal system for constructive mathematics should
contain a notion of “weak” existence (∃x : A)B as well

We present one way to formulate this notion

This will also be a constructive notion of existence, but in a more subtle way

Essential use of the identity type IdA a0 a1 introduced by P. Martin-Löf 1973
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Propositions

Propositions are types that have at most one element

We define “A is a proposition” to mean

prop(A) = (Πx0 x1 : A)IdA x0 x1

For instance the unit type N1 and the empty type N0 are propositions

For N0 we use N0 elimination

Any “singleton” type (Σx : A)IdA a x is a proposition
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Modality

We add a new modality operation

inh(A) is a proposition stating that A is inhabited

The laws are prop(inh(A)) and

inh(A)→ B

as soon as we have A→ B and prop(B).
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Weak existence

We define (∃x : A)B to mean

inh((Σx : A)B)

We can now formulate without problem

CP = (ΠF : (N → N)→ N)(Πf : N → N)(∃n : N)MC(F, f, n)
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Weak existence

One key point is that we have

(∃x : A)B → (Σx : A)B

as soon as (Σx : A)B is a proposition

Indeed we have inh(P )→ P if P is a proposition
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Weak existence

For having

(∃x : A)B → (Σx : A)B

it is enough that B(x), x : A is a family of propositions and

B(x0) ∧B(x1)→ IdA x0 x1

In particular we have

(∃!x : A)B → (Σx : A)B
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Weak existence

The implication

(∃!x : A)B → (Σx : A)B

does not hold in other previous attempt to introduce a weak existence
statement in type theory

E.g. Aczel-Gambino logic-enriched type theory

Intuitively in these previous attempt, a proof of a type which is a proposition
had no “computational content”

The notion of proposition is a defined notion

A proof of a proposition may have a computational content
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Unique Choice

We also have the principle of unique choice

∀x.∃!y.ψ(x, y)→ ∃f.∀x.ψ(x, f(x))

Without this principle, we would have two notions of functions

Function as term or as functional relation

Compare with Maietti-Sambin approach, where this principle is not present

I believe that having this principle is necessary for mathematics

14



Type Theory and Constructive Mathematics

Stratification of Types

“A is a set” means

(Πx0 x1 : A)prop(IdA(x0, x1))

“A is a groupoid” means

(Πx0 x1 : A)set(IdA(x0, x1))
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Constructive matematics

If B is a type and P (y) a family of propositions over B then the first projection

(Σy : B)P (y) → B

is injective

(Σy : B)P (y) represents the subset of elements of B satisfying P
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Subsets

If B is a set, a subset of B is defined to be a set A with an injective map

f : A→ B

IdB (f a0) (f a1)→ IdA a0 a1

Bishop’s definition
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Constructive matematics

If f : A→ B we can define the image of f

Pf(y) = (∃x : A)IdB (f x) y

and Pf(y) is a proposition

If A, f is a subset of B, we can define an isomorphism between

(Σy : B)Pf(y) and A

using unique choice
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Constructive matematics

Thus we have a good correspondance between

subsets

and

properties

which is essential for the development of mathematics
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Some example in algebra

A ring R will be represented as a set with the usual structure

a divides b will be defined as there exists x such that ax = b

If a is regular i.e. au = 0→ u = 0 then this x is uniquely determined and we
have an explicit division operation
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Some example in algebra

An exact sequence 0 −−→ E
f−−→ F

g−−→ G

f is injective and the image of f is equal to the kernel of g

We can show that E is isomorphic to the kernel of g
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Some example in algebra

An ideal of R will be represented by a subset I of R

I finitely generated means that there exists a finite list of elements of R
generating R

a1, . . . , an generates I means that for all x in I there exists u1, . . . , un such
that x = a1u1 + · · ·+ anun

We can use a finite list of generators of I but only for building objects in a
canonical way
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Some example in algebra

For instance we can define Gr(I) > 2 to mean that if a1, . . . , an is a system
of generators and b1, . . . , bn is proportional to a1, . . . , an there exists a unique x
such that bi = xai

This is because one can show that this property does not depend on the
system of generators and hence that this is a well defined notion

(For this we need that two equivalent propositions are equal)
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Some example in algebra

More generally, if we define an element t(x1, . . . , xn) in a set A

and we furthermore have

IdA t(x1, . . . , xn) t(y1, . . . , ym) : A

whenever x1, . . . , xn and y1, . . . , ym generate the same ideal

Then we can define t(I) : A given a finitely generated ideal I using that there
exists a unique element u : A such that

u = t(x1, . . . , xn) : A

for some generating system x1, . . . , xn of I
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This approach

In constructive mathematics one works with a given presentation of a
mathematical object

In this approach the typing system ensures that we only can define other
objects in a way which is independent of the chosen presentation
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Formal system

What did we need?

-Dependent type theory

-Identity types, with the usual laws

-Modality inh(A)

Theorem: This formal system has a constructive (realizability) model

This gives in particular a constructive explanation of the description operator

This model also validates function extensionality (and Voevodsky’s Axiom of
Univalence)
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New directions for the analysis of paradoxes

In order to avoid paradoxes (Girard) Martin-Löf introduced a hierarchy of
universes

U0 : U1 : U2 : . . .

Tempting to introduce the new principle that if A is a proposition then

A : U0

And also that (ΣA : U0)prop(A) is in U0
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New directions for the analysis of paradoxes

This however is in conflict with the notion of “size”

It is a consequence of the laws of identity in type theory that any type
(Σx : A)IdA a x is a proposition

So for instance a type like (ΣX : U2)IdU2 U1 X should be in U0 though it
should be in U3 if we look at its “size”

This appears to be as a very strong form of impredicativity

Is it possible to show that this is contradictory?

Or to prove (impredicatively) normalization of our realizability model?

28



Type Theory and Constructive Mathematics

Some references

S. Awodey and M. Warren Homotopy theoretic model of identity types, 2009

M. Hofmann and Th. Streicher A groupoid model of type theory, 1993

M.E. Maietti and G. Sambin A minimalist two-level foundations for
constructive mathematics

V. Voevodsky Univalent foundation, home page

HoTT book, 2013

M. Escardo, home page

M. Bezem, Th. C., S Huber
A cubical set model of type theory, preprint, 2013

29


