
Some examples of inductive-recursive definitions

Introduction

The goal of this note is to present how we can model some higher inductive types in a constructive set
theory. For the circle for instance, we have to define inductively at the same time a family of sets S1(I)
and restriction functions S1(I)→ S1(J) for each map J → I in the base category. This is an example of
an indexed inductive-recursive definition. In order to give a semnatics of this in set theory, we follow an
idea of Stuart Allen (that he designed for giving a semantics of universes in type theory) which consists
in defining inductively relations, and prove by induction that these relations are functional relations and
hence graphs of functions on their domains.

All the arguments can be represented in the system CZF+REA. We need REA in general since we
use generalized inductive definitions.

1 Base category, fibrations and cofibrations

We write I, J,K, . . . the objects of a given small category C.
We write A,B, . . . ,X, Y, , . . . for presheaves over C. (A presheaf A is given by a collection of sets

A(I) with restriction maps A(I)→ A(J) sending u to uf for f : J → I.) We use the same notation for
an object I and the presheaf it represents.

We assume given a special presheaf I which has a structure of distributive lattice with an involution
(a.k.a. de Morgan algebra). We write A+ = A × I, and this induces a functor on presheaves. We have
two maps e0, e1 : A→ A+ that are sections of the projection p : A+ → A.

From the lattice structure of I, we get a conjunction map m : A++ → A+ such that me1 = me+1 = 1
and me0 = me+0 = e0p.

We also assume given a subobject F of the subobject classifier which is a sub-lattice. Any map
ψ : A → F defines a subpresheaf A|ψ ⊆ A where (A|ψ)(I) is the subset of element ρ in Γ(I) such that
ψρ = 1 in F(I). We call a sieve on a presheaf A a set of maps S of codomain A of the form f : I → A
such that fg is in S whenever g : J → I. If σ : B → A we define a sieve Sσ on B as the set of maps
f : I → B such that σf is in S.

It will be convenient to assume a lattice map ε1 : I→ F which classifies the global element 1 of I. By
involution we get ε0 : I→ F. By composition of the projection A+ → I with ε0 we get a map δ0 : A+ → F
which classifies e0 : A→ A+. Similarly we have δ1 : A+ → F which classifies e1. Using that ε1 is a lattice
map we get δ1m = δ1 ∧ δ1p and δ0m = δ0 ∨ δ0p.

If we have σ : A → B and ψ : B → F then σ induces a map A|ψσ → B|ψ, that sends u in (A|ψ)(I)
to σu. We may write simply σ : A|ψσ → B|ψ for this induced map.

We say that a map is a cofibration if, and only if, it is classified by F.
If ψ : A → F we define b(ψ) = δ0 ∨ ψp : A+ → F. A (generalised) open box b(A,ψ) ⊆ A × I is the

subpresheaf determined by b(ψ) : A × I → F for some ψ : A → F. If ψ : A → F we define the open box
sieve on A+ determined by ψ to be the sieve S(ψ) defined by b(ψ). Notice that

b(ψ)m = (δ0 ∨ ψp)m = δ0m ∨ ψpm = δ0 ∨ δ0p ∨ ψpp = b(b(ψ))

If u is a family of elements indexed by a sieve S over A and σ : B → A, we define uσ to be the family
(uσ)g = uσg indexed by the sieve Sσ over B.

A fibration is a map that has the right lifting property w.r.t. any open box. A trivial fibration is a
map which has the right lifting property w.r.t. any cofibration. Finally a trivial cofibration is a map that
has the left lifting property w.r.t. any fibration.
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Cisinski calls 〈〈naive 〉〉 fibrations what we call simply fibrations. The justification of our terminology
is that, with some extra assumptions on the base category described below, we do get, as shown by
Christian Sattler, a model structure on the presheaf category with these notions of fibrations, trivial
fibrations, cofibrations and trivial cofibrations.

In order to have constructive arguments, we need to assume that ψ = 1 is decidable in each F(I),
and that r = 0 (and hence also r = 1) is decidable in each I(I).

We could avoid the involution on I, but then we have to consider not only the box ψp∨δ0 but also the
box ψp∨ δ1. All the arguments are then valid with this modification. In this way, we can cover the case
of simplicial sets, but also, we think, the case where the base category is the category of all finite posets
and monotone maps. In both cases, each object is a finite set and the generalized inductive definition
can be replaced by an induction on the cardinality of the object (so that we can work simply in CZF).

In order to get a fibrant univalent universe, and a model structure, we need further assumptions on
the base category: that J+ = J × I is always representable (and that we have a choice function on
objects that selects an object which represents J+), that cofibrations are closed by compositions, and
finally that the map F→ FI which corresponds to the first projection F× I→ F has a right adjoint. We
don’t need however these extra assumptions for what we present in this note.

We recall the following results (valid constructively without using choice).

Theorem 1.1 A map α : X → Y is a fibration if, and only if, we have an operation which takes a
commutative diagram

b(I, ψ)
u - X

I+
?

∩

v - Y

α

?

and produces a diagonal filler c̃(I, v, ψ, u) : I → X such that c̃(I, v, ψ, u)f+ = c̃(J, vf+, ψf, uf+) if
f : J → I and ψf 6= 1.

Corollary 1.2 A map α : X → Y is a fibration if, and only if, we have an operation which takes a
commutative diagram

b(I, ψ)
u - X

I+
?

∩

v - Y

α

?

and produces an element c(I, v, ψ, u) : I → X such that αc(I, v, ψ, u) = ve1 and c(I, v, ψ, u) extends
ue1 : I|ψ → X and furthermore satisfies the equations c(I, v, ψ, u)f = c(J, vf+, ψf, uf+) if f : J → I
and ψf 6= 1.

Proof. If we have such an operation, c̃(I, v, ψ, u) = c(I+, vm, b(ψ), um) is a diagonal filler satisfying the
uniformity equations.

2 The circle

As a motivating example, we describe the circle S1 generated by a point and a loop. The main idea is
to define inductively the graphs of all restriction functions S1(I) → S1(J). So we define inductively a
ternary relation R(f, x, y) with f : J → I.

The elements for the domain of these relations R(f, x, y) are well-founded tree, that are of the form
base, loop r for r 6= 0, 1 in some I(I) and c(ψ, u) with ψ 6= 1 in some F(I) and u is a family of elements
uf indexed by the open box sieve determined by ψ.
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The definition is as follows. First we have R(f, base, base) for all f , and R(f, loop r, loop (rf)) if
r 6= 0, 1 and rf 6= 0, 1 and R(f, loop r, base) if r 6= 0, 1 and rf = 0 or 1, for r in I(I).

Next, if we have ψ 6= 1 in F(I) and we have u, family of elements indexed by S(ψ), and we have
R(g, uf , ufg) for all g : K → J , then we add the relations R(f, c(ψ, u), c(ψf, uf+)) if ψf 6= 1 and
R(f, c(ψ, u), ue1f ) if ψf = 1.

We can then prove by induction.

Lemma 2.1 If R(f, x, y) then R(1I , x, x) and R(1J , y, y). If R(f, x, y) and R(g, y, z) with f : J → I and
g : K → J then R(fg, x, z). If R(f, x, y) and R(f, x, y′) then y = y′. If R(1I , x, x) and f : J → I there
exists a unique y such that R(f, x, y).

It follows that if we define S1(I) as being the set of all elements x such that R(1I , x, x) then the
relation R(f, x, y) is the graph of a function S1(I) → S1(J) that we write u 7−→ uf . We have u1I = u
and (uf)g = u(fg) if u in S1(I) and f : J → I and g : K → J . Thus we have defined a presheaf S1.

The element base is in all sets S1(I) and we have basef = base for f : J → I.
We have loop r in S1(I) if r 6= 0, 1 is in I(I) and we have (loop r)f = loop (rf) if f : J → I and

rf 6= 0, 1 in I(J), and (loop r)f = base if rf = 0 or 1.
If ψ 6= 1 is in F(I) and u : b(I, ψ) → S1, we can see u as a family of elements indexed by S(ψ)

defined by ug = ug if g is in S(ψ), and we have c(ψ, u) : I → S1. Furthermore, c(ψ, u)f = c(ψf, uf+) if
f : J → I and ψf 6= 1 and c(ψ, u)f = ue1f if ψf = 1.

Using b(ψ)m = b(b(ψ)) we can define a filling operation c̃(ψ, u) = c(b(ψ), um). We then have
c̃(ψ, u)f = ume1f = ume1f = uf if b(ψ)f = 1.

This implies that we have the following extension property, in a uniform way

b(I, ψ)
u - S1

I+
?

∩

....
....

....
....

....
....

....
...

c̃(
ψ
,u
)

-

and it follows that, for any X and ψ : X → F we have the following extension property

b(X,ψ) - S1

X+
?

∩

....
....

....
....

....
....

....
...

α

-

which is defined by α(ρ, r) = αρ+(1, r) = c̃(ψρ, uρ+)(1, r).

Hence we have defined a fibrant presheaf (i.e. the map S1 → 1 is a fibration).

We can now state and prove by induction the universal property of the circle.

Theorem 2.2 If α : E → S1 is a fibration and we have aI in E(I) and lI r in E(I) for r 6= 0, 1 in I(I)
such that aIf = aJ and lI r = lJ (rf) if rf 6= 0, 1 and lI r = aJ if rf = 0 or 1 for f : J → I and
α aI = base and α (lI r) = loop r then there exists a section β : S1 → E of α such that βI base = aI
and1 βI (loop r) = l r.

Proof. We define by inductively a relation T (I, u, w) with w in E(I), which will be the graph of this
section. We first have T (I, base, aI) and T (I, loop r, lI r). Next, if we have w : b(I, ψ) → E and
T (J, uf , wf ) for all f : J → I+ in S(ψ), we add T (c(ψ, u), cα(I, c̃(ψ, u), ψ, w)). We then prove by
induction that each T (I, u, w) is the graph of a function S1(I) → E(I) and that T (I, u, w) implies
αw = u.

1This means that the semantics interprets both computation rules on points and paths as judgemental equalities.
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3 Trivial cofibration-fibration factorization

Given σ : A→ B we define inductively two relations E(f, x, y) for f : J → I and q(I, x, y):

1. We first have E(f, i a, i (af)) whenever a in A(I) and f : J → I and q(I, i a, σ a)

2. If we have v in B(I+) and a family of element u indexed by S(ψ) such that E(g, uf , ufg) if g : J → K
and q(J, uf , ve1f) for all f and g then we add q(I, c(I, v, ψ, u), ve1) and if ψf 6= 1, we also add
E(f, c(I, v, ψ, u), c(J, vf+, ψf, uf)) and, if ψf = 1, we add E(f, c(I, v, ψ, u), ue1f ).

We can then prove by induction the following result.

Lemma 3.1 If E(f, x, y) then E(1I , x, x) and E(1J , y, y). If E(f, x, y) and E(f, x, y′) then y = y′.
If E(1I , x, x) there exists a (unique) y such that E(f, x, y). If q(I, x, y) then E(1I , x, x) and y is an
element of B(I). If E(1I , x, x) there exists a unique y such that q(I, x, y). If q(I, x, z) and R(f, x, y) then
q(J, y, zf). If R(f, x, y) and R(g, y, z) for f : J → I and g : K → J we have R(fg, x, z).

From this Lemma, we deduce that if we define a set E(I) as the set of elements x such that E(1I , x, x)
then the relation E(f, x, y) is the graph of a function E(I)→ E(J) that we write u 7−→ uf . It satisfies
u1I = u and (uf)g = u(fg). The relation q(I, x, y) is the graph of a function E(I)→ B(I) that defines a
natural transformation q : E → B. We also have a natural transformation i : A→ E and a factorization
σ = qi. By construction, if v : I+ → B and ψ : I → F, ψ 6= 1 and u : b(I, ψ) → A such that σu = v we
have c(I, v, ψ, u) in B(I) such that q c(I, v, ψ, u) = ve1. Furthermore, c(I, v, ψ, u)f = v(J, vf+, ψf, uf+)
if f : J → I and ψf 6= 1 and c(I, v, ψ, u)f = ue1f if ψf = 1. So the map q : E → B is a fibration.

Lemma 3.2 A map X → Y is a trivial cofibration if any commutative diagram

X - F

Y
?

= Y
?

where F → Y is a fibration, has a diagonal filler.

Proof. This follows from the fact that a pull-back of a fibration is a fibration.

Theorem 3.3 The map i : A→ E is a trivial cofibration.

Proof. Using the Lemma, we have to build a diagonal filler of any commutative diagram

A
α - F

E

i

?

∩

= E

β

?

where β : F → E is a fibration. We define a relation T (u,w) with u in E(I) and w in F (I) by induction,
in such a way that T (u,w) implies βw = u. First we have T (i a, α a) for a in A(I). If we have ψ 6= 1
in F(I) and w : b(I, ψ) → F and T (uf , wf ) for some family u indexed by f : J → I+ in S(ψ), and
R(g, uf , yfg), we add T (c(I, v, ψ, u), cβ(I, c̃(I, v, ψ, u), ψ, v). If we have βwf = uf for all f then we get
β cβ(I, c̃(I, v, ψ, u), ψ, w) = c̃(I, v, ψ, u)e1 = c(I, v, ψ, u) as desired. The relation T (u,w) is then the
graph of a natural transformation γ : E → F such that γi = α and βγ = 1.
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4 Cofibration-trivial fibration factorization

This factorization is much simpler, and does not require an inductive definition, provided we assume
that F is contractible (i.e. the map F → 1 is a trivial fibration), which is equivalent to assuming that
cofibrations are closed by compositions.

Theorem 4.1 A map σ : A → B has a factorization in a cofibration j : A → E and a trivial fibration
q : E → B.

Proof. We define E(I) to be the set of elements v, ψ, u where ψ : I → F and v : I → B and u : I|ψ → A
such that v extends σu. We then define j a to be the element σa, 1, a for a in A(I) and q(v, ψ, u) to be
v.

Corollary 4.2 A map is a cofibration if, and only if, it has the left lifting property w.r.t. any fibration.
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