
UITP 2005 Preliminary Version

An Emacs-Interface for Type-Directed Support
for Constructing Proofs and Programs.

Catarina Coquand 1

Department of Computer Science
Chalmers University of Technology and University of Göteborg

Sweden

Dan Synek 2

Institute for Computing and Information Sciences
Radboud University Nijmegen

The Netherlands

Makoto Takeyama 3,4

Research Center for Verification and Semantics
National Institute of Advanced Industrial Science and Technology

Japan

Abstract

This paper presents an emacs interface for an interactive editor for proofs and
programs. The interface allows for editing proofs in the same way as we write
programs, but in addition offers commands that help term construction. It differs
from most other proof editors for its support for direct construction of terms rather
than tactics for building them.

Key words: User interface, interactive proof editor, type theory,
emacs

1 Introduction.

Agda is an interactive system for incrementally constructing proofs and pro-
grams in Martin-Löf’s type theory extended with records and modules. The

1 Email:catarina@cs.chalmers.se
2 Email:synek@cs.ru.nl
3 Email:makoto.takeyama@aist.go.jp
4 This author thanks CREST/JST (Japan Science and Technology Agency) for support.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Guest
Rectangle

Guest
Rectangle

Coquand, Synek and Takeyama

system is built for direct manipulation of proof-objects and not based on tac-
tics as most other proof-assistants. It builds on the long-standing development
of the family of proof-assistants that includes ALF[10], which pioneered ad-
vanced graphical interactions for proof construction. Agda has two interfaces:
the graphical, Alfa[9], supports structural editing driven by mouse and short-
cut keys, guiding menus showing all possible choices, alternative display styles
such as a natural deduction style, use of symbol fonts, systematic hiding of
details, etc. The other is the text-based emacsagda this paper presents.

The text interface was built to meet the need for an interface that is close
to the way we write programs. We wanted an interface where we can edit
the code in the usual way but with a help in constructing terms just when
it is asked for. One reason is that, for advanced users, a structural editing
(graphical or not) can be something of a straight-jacket compared to a familiar
advanced text-editors like emacs. When they know what they want, it is often
quicker to type it in than to construct it stepwise. When they revise a large
proof, they utilize global edit-commands cutting across structure boundaries.
Advanced users seems to appreciate such raw but liberal editing even if they
forgo nicer guidances and presentations. Examples of big developments done
using the emacs-interface can be seen in [7,8,6,5,4]

The interface we present supports incremental constructions of proofs and
programs via what we call communication points (also called meta-variables).
These stands for holes in an incomplete proof or program that need to be
filled to make it complete. Communication points are a legitimate part of the
syntax extended for incomplete terms, which have correspondingly extended
typing rules.

Users construct terms by filling those communication points. It can be
done directly, or it can be incremental, in that users can fill a communication
point with another incomplete term with new communication points. This
is refining the goal of filling in the original to new subgoals. Such an proof-
editing operation is immediately type-checked, and accepted only when it is
well-typed.

Beside editing, users can ask for information helpful for construction at a
communication point: its type, its context (identifiers in scope with types),
the value of an expression in the context, etc.

Users can freely edit at any communication point regardless of when it is
created or where in a proof it occurs, even if the proof is split across multiple
files. This is unlike most command-line interfaces that force a default order to
work on subgoals, requiring an explicit user commands to change the order.

The interface also provides the usual conveniences of a programmers’ edi-
tor: keyword highlighting for increased readability, automatic indentation for
layout-sensitive syntax, etc.

The interface we present is agda-mode, the emacs-mode for Agda. It is
written in only about 850 lines of emacs lisp. The protocol between it and the
proof engine is a simple string-based one. agda-mode sends command strings

2

Coquand, Synek and Takeyama

to the engine, and the engine answers with strings telling agda-mode how
communication points should be managed and displayed. There is basically
nothing specific about the syntax or semantics of the Agda language in this.
So it requires little to no changes to re-target this to another proof language,
so long as its proof-engine has a command-line interface similar to that of
Agda.

To understand how the system works we will present a simplification of
Agda that we think captures much of the features of the system and how
one interacts with it. We present a simply typed lambda-calculus with com-
munication points and presents a possible implementation of a system for
interactively constructing λ-terms. This language only serves to introduce the
ideas of the system and has no theoretical status. The implementation that we
propose has not been actually implemented, again it only serves as illustration
of the full system.

Related to this work we have the Epigram system[11] developed by Conor
McBride. Epigram is also inspired by Alf and supports direct manipulation
of proof terms. It has an advanced syntax-directed emacs-interface with 2-
dimensional layout. The main difference is that in Epigram the proof engine
captures every key stroke from the user, instead of only exchanging informa-
tion on buffers and communication points. This makes it possible for the
proof engine to completely control the behavior of the system but stops the
user from using standard features of emacs. Other related interfaces to type-
theory proof-engines that support tactics-based interaction includes [1,2,12,3]

The emacs-interface was originally developed by Dan Synek and was later
improved upon and rewritten by Makoto Takeyama. A modification of the
interface to XEmacs has been done by Anton Setzer. The first version of Agda
was developed by Thierry Coquand in Gofer. He has also been involved in all
later developments. A second version of Agda, written in C, was developed
by Dan Synek. The current version is written in Haskell and is implemented
by Catarina Coquand and later improved upon by Makoto Takeyama.

2 Using the System.

For a user, Agda proof-assistant appears as emacs buffers using the major
mode agda-mode for editing agda code. In part it is similar to other program-
ming language modes, but what makes it a proof-assistant is that it supports,
but not impose, the refinement-style code-development as explained below.

Buffers in agda-mode can be in either Text-state or Interaction-state.
Initially the buffer is in Text-state. In Text-state the text can be freely edited
and the interaction is just the usual emacs editing. In Interaction-state, com-
munication points appear in the buffer and type-correct editing operations at
the communication points become available. It is also possible to edit the
text in Interaction-state, except that the communication points can not be
removed. At first we had the restriction that no text editing were allowed in

3

Coquand, Synek and Takeyama

Interaction-state other than the type-correct ones. However users found this
to be inconvenient: for example, if they want to add a comment, it should
not be necessary to re-typecheck the buffer. Of course, this means that the
buffer, although it interacts with the proof-engine, need not be well-typed. If
the user wants to avoid this situation s/he could toggle to Text-state before
doing any changes. In any case typing error will be detected when the user
re-typechecks the buffer.

2.1 General Commands

There is one major menu that is available in both states. This menu contains
general commands that are not connected to any particular communication
point: type checking the whole buffer, toggling between the two states, print-
ing the type of all communication points, the undo-command, jumping around
communication points, jumping to last reported error.

Example 2.1 Example of Text-state and the major menu. We can also see
that the commands has short-cut-key bindings so that the user is not forced
to use the mouse.

The text in the buffer is typically a list of definitions, c = e :: α; Both
the expression e and the type α may contain communication points. These are
written as ? or {! some text !}. In Text-state, they have nothing to do with
the proof-engine. To let the proof-engine know about them and get access to
these communication points, the user Loads the buffer to the engine. This
typechecks the buffer and if the buffer is well-typed, the buffer changes into
Interaction-state. The communication points are now displayed highlighted
and indexed. We can also see the type of all communication points in another
buffer. It is possible to typecheck several buffers all of which might contain
communication points.

Example 2.2 Here we can see how the text buffer above now is in Interaction-
state and the communication points are highlighted.

4

Coquand, Synek and Takeyama

The undo-command will in Text-state behave just as the undo of emacs, i.e.
it goes back in the editing history. If the last action in Interaction-state was a
editing command, then the undo-command will undo that typing. If instead
the last command did an update of a communication point, that update will
be undone and the communication point is recreated.

2.2 Commands on Communication Points

Right clicking in a communication points pops up a new menu for commands
acting on that particular communication point. We can now interact with
the system to get help filling in the remaining parts of the proofs/terms and
statements/types.

Example 2.3 This shows the menu for commands acting on communication
points.

Examples of commands that can be performed at a communication point
?i whose type is α are:

• give. A term e, which may contain communication points, is given by the
user. The proof engine checks if e : α (see Section 3), and if so ?i is updated
to e. The communication points in e now becomes highlighted and indexed.

• refine. A term e is given by the user. The proof-engine repeatedly tries

5

Coquand, Synek and Takeyama

give with terms e, e ?, e ? ?, · · · with increasingly many communi-
cation points until it succeeds or reaches a preset limit. Using the example
2.2, and a communication point with type X → Y , then performing the
command refine on K will update the communication point with the term
K ? ? ?.

• abstract Given a list, x1 x2 ... xn the command does give with the
term \(x1::?) -> ... -> \(xn::?) -> ?.

• type, context. The type-command prints the type of the communication
point α and the context-command prints the type of bound variables and
the defined identifiers that are in scope.

• infer type. This command infers and prints the type of an expression
given by the user in a communication point. The communication point is
not affected by this commands.

Example 2.4 Below we see the effect of the command give in example 2.3.

3 The Proof Engine

As the emacs-interface is basically only taking care of sending strings between
the user and the proof-engine, we think it’s important to understand how
the proof-engine is working to understand how the whole system with the
emacs-interface and the engine is interacting. The existing proof engine is an
implementation in Haskell of a dependently typed functional language with
data-types, records and modules. For the presentation of the engine we restrict
ourselves to a simply typed λ-calculus with meta-variables (communication
points). The main technical problems we avoid by this simplification is that
we do not need to talk about evaluation of terms while type-checking and also
constraint-solving is significantly simpler.

6

Coquand, Synek and Takeyama

The simply typed λ-calculus with meta-variables has the following (incom-
plete) concrete syntax:

Types, denoted by A, B: o | A -> B | ?
Expressions, denoted by t,tn: (t) | x | \(x::A) -> t |

f t1 ... tn | ? | {! some text !}
Definitions, denoted by d : f :: A = t

Where x, f are identifiers. Lists of definitions are separated by semi-colon.

The proof engine consists of a state and operations on this state. What is
in the state and the operations will be indicated below. The implementation
has one module that defines the interface to the proof-engine. The graphical
interface and the emacs-interface, both uses this interface.

The engine also keeps a list of old states, which is used to undo operations
on the state. This is implemented as an ordinary list in Haskell, which might
seem very space consuming, but we get sharing of common data structures
thanks to Haskell being a functional language. We have not seen any problems
with this solution in practice.

3.1 Internal Representation of Terms and Typechecking

We define a simply typed λ-calculus with meta-variables, which can be seen as
communication points. Meta-variables are written as ?k. A meta-variable ?k

can only occur at one place in an expression. This restriction is not essential
for this simply typed case, but makes the dependently typed calculus simpler.
Types, expressions and definitions are defined as:

α, β, γ ::= o | α → β | ?k

e ::= λ(x : α).e | x | e e | ?k

d ::= f = e : α

where x and f are unique identifiers. The definitions are not recursive, they
are just abbreviations.

The forms of judgements are

• Γ ` f = e : α correct definition

• IsType α correct type expression

• Γ ` e : α type checking

• Γ ` e ⇒ α type inference

• α = β type equality

where Γ is a context [x1 : α1, . . . , xn : αn], are:

IsType α Γ ` e : α

Γ ` f = e : α ` IsType o

IsType α IsType β

IsType α → β

7

Coquand, Synek and Takeyama

Γ ` e ⇒ β α = β

Γ ` e : α

x : α ∈ Γ

Γ ` x ⇒ α

IsType α Γ, x : α ` e ⇒ β

Γ ` λ(x : α).e ⇒ α → β

Γ ` e1 ⇒ α → β Γ ` e2 : α

Γ ` e1 e2 ⇒ β

o = o

α = α′ β = β′

α → β = α′ → β′

These syntax-directed rules defines a typechecking algorithm for expressions
without meta-variables. Now we add the clauses for the new forms of the
derivation leaves:

Γ `?k : α ` IsType ?k ?k = α α =?k

These leaves are called constraints, since they put constraint on the possible
solutions to the meta-variables. In these cases the constraints will be saved in
the proof-state. Observe that we do not have type-inference of meta-variables.
This would be possible by letting the type of the meta-variable being a fresh
meta-variable, but this complicates the presentation.

A list of definitions f0 : α0 = e0, . . . , fn, : αn = en is correct if
[] ` e0 : α0, [f0 : α0] ` e1 : α1, . . . , [f0 : α0, . . . , fn−1 : αn−1] ` en : αn.

Example 3.1 We show how the state will be updated with constraints when
the following list of definitions is typechecked:

f : ?0 →?1 =?2, g : o →?5 → o = f, h : o → o = λ(x :?3).g ?4 x

Typechecking the definition of f adds the constraints:

[] `?2 :?0 →?1, IsType ?0, IsType ?1

to the state. Then typechecking g will add the constraints

?0 = o, ?1 =?5 → o

and for the last definition we will add

IsType ?3, [x : ?3, g : o →?5 → o, f : ?0 →?1] `?4 : o, ?3 = o, ?3 =?5

3.2 The Proof State and its Operations

The proof state consists of the following parts

• A list of definitions that has been typechecked.

• Constraints as described above 3.1

• A map from meta-variables to their local symbol table and precedences.
In this simplified language the precedence simply tells if the meta-variable
occurs in an application or in the left hand side of the arrow type.

8

Coquand, Synek and Takeyama

There are two basic commands for updating the state, substituting a con-
crete expression for a meta-variable and adding a definition. For substituting
an expression, t for a meta-variable, ?k, we perform the following steps:

(i) Lookup the symbol table of ?k and translate the concrete term t, to an
internal expression e. All identifiers in t are translated to their unique
representation. The translation also adds fresh index to all meta-variables
in t and save the symbol tables of the meta-variables in the expression.

(ii) Lookup the typing constraint for ?k (there can only be one since meta-
variables can only occur once.) If the constraint is Γ `?k : α, then we
typecheck Γ ` e : α. It is however not enough that the expression is
type correct, we must also verify that the equality constraints are not
violated. If we have a constraint ?k = e′, then we check that e = e′,
which in turn can give rise to new equality constraints. If the type-
checking and the equality checks succeeds, we perform the substitution.
(In the actual implementation the substitutions aren’t performed, they
are simply recorded.) The case when the constraint is IsType ?k is similar.

(iii) The result of this operation will be the indexes that were given to these
new meta-variables in t, these indexes are used for the synchronization
between the engine and the interface as will be described in 4

The second basic command is the addition of a definition f :: A = t .
The definition will be translated into the internal representation, f ′ = e : α
using the global symbol table of the state. The meta-variables in the types
and the expression (if any) will get fresh indexes. We then check that that
Γ ` f = e : α where Γ is the context we obtain from the list of global
definitions in the state. The result is the indexing of the meta-variables in the
order they occur in f :: A = t .

Given these commands we can derive commands like typechecking a buffer
(list of definitions), give, refine, and abstract. We show how these com-
mands work with two examples:

Example 3.2 Now we perform the command give 0 o in example 3.1, i.e.
we want to substitute ?3 with the type o. We look up the typing constraint
of ?3 which is IsType ?3, which holds since IsType o. What remains is to check
the equalities, ?3 = o which is true when substituting o for ?3 and then we
check ?3 =?5 which will update the state with o =?5. Now we can substitute
o for ?3 in the definitions. If we also perform give 0 o and give 1 o -> o

we obtain the following list of definitions

f : o → o → o =?2, g : o →?5 → o = f, h : o → o = λ(x : o).g ?4 x

and the constraints

[] `?2 : o → o → o, ?5 = o, [x : o, g : o →?5 → o, f : o → o → o] `?4 : o

Example 3.3 Given the previous example we now perform the command
refine 4 f. We look up the type of ?4 in the constraints, which is o and then

9

Coquand, Synek and Takeyama

the type of f which is o → o → o. We create two new meta-variables, ?6 and
?7, and we try to substitute f ?6 ?7 for ?4. Typechecking

[x : o, g : o →?5 → o, f : o → o → o] ` f ?6 ?7 : o

will give the new typing constraints

[x : o, g : o →?5 → o, f : o → o → o] `?6 : o

and

[x : o, g : o →?5 → o, f : o → o → o] `?7 : o

but no new equality constraints.

The result of this command should be the string that communication point
4 should be replaced with, in this case (f ? ?). The term is printed with
parenthesis since we know by the precedence of ?4 that they are needed. Beside
the string the command will also report the indexes of the meta-variables in
the term, 6 and 7 (see 4 for a discussion on these indexes.)

Beside these commands regarding construction of terms we also have com-
mand undo command that given a index, i returns to the state i which is the
state in position i in the list of former states.

It would also be possible to use constraint solving to automatically find out
how to fill in certain communication points. We will not give the algorithm for
that in this presentation, we just point out that this is done in the implemented
system.

4 Emacs Interface Protocol

The protocol between the interface and the proof engine is a simple command
language based on message passing of strings. The interface and the proof
engine are synchronized in two ways, by the indexing of the communication
points and the states.

We have chosen to synchronize the states explicitly, the states are indexed
(the indexes are used for the undo) and every time a command change the
state of the proof-engine it will report back the index of the new state to the
interface. In this way the agda-mode does not need to know which commands
changes the state of the proof engine.

The other synchronization is done on the indexing of the communication
points. After a buffer is typechecked the proof engine will report back the in-
dexes of the communication points of that buffer in the order they occur in the
buffer. Observe that the users can not number the meta-variables themselves,
the indexing is done by the proof engine. Also when a communication point is
updated with a new term possibly containing meta-variables, the proof engine
reports back the indexes of these meta-variables.

10

Coquand, Synek and Takeyama

We will simply describe the protocol with a hopefully illustrating example.

Example 4.1 This example shows how the agda-mode and the proof engine
interact on the example 2.3 above.

First we see the command give that is sent to the proof engine. The first three
arguments represents the position of the communication point, then comes the
index of the communication point, 0, and the string that the user wants to
replace it with. The lines enclosed in --- and +++ following the command is
output from the proof engine to be interpreted by the agda-mode. The first line
gives the index of the new state. The second line says that the communication
point 0 should be updated with the string given by the user, that it does
not need parenthesis (the boolean False) and the indexing of the two new
communication points, ?2 and ?3. The third line says that communication
point 2 should be replaced with the string “X”. The last two lines will make
the agda-mode create two buffers, * Goals * and * Constraints *, containing
the texts in the given string.

5 The agda-mode

The agda-mode is a single emacs library file agda-mode.el containing 850 lines
of GNU emacs lisp. It uses a customized version of Lapalme’s Haskell-mode for
automatic indentation. The total time that has been spent on implementing
and modifying the implementation we estimate to about two months of work.
This being relatively small, we hope that it should be fairly easy to adapt it to
other proof systems based on similar ideas, though we have not experimented
yet with other systems.

The implementation consists of two parts. One part translates user ac-
tions in agda-code buffers (emacs buffers using agda-mode where agda-code
is edited) to textual command inputs to the proof-engine. The other part
processes outputs from the proof-engine and updates agda-code buffers ac-
cordingly.

11

Coquand, Synek and Takeyama

When agda-mode is enabled, it starts up the proof-engine as a sub-process
running in parallel, if it is not running already. The process is started in
a separate buffer *agda* that uses comint-mode (command-interpreter-in-a-
buffer) of Emacs, which is similar to the shell-mode. In a typical Agda session,
several agda-code buffers share a single *agda* process.

Most user commands in agda-mode construct and send textual commands
to the proof-engine, inserting them to the buffer *agda*. Doing so requires
contextual information, e.g. in which communication point a command is in-
voked. For this, agda-mode in Interaction-state maintains annotations for
communication points with ‘text-properties’ and ‘overlay’. These are the
emacs way of associating information with regions of text. A user command
can look up the text property at the current cursor position and obtain the
communication-point index-number in it. The annotation is also responsible
for popping-up the communication-point menu on a mouse-click, displaying
communication points in the highlight color and with index numbers, moving
the cursor to next / previous communication points, and protecting them from
deletion by non-agda-mode commands.

The annotation is created and maintained by the part of agda-mode that
processes outputs from the proof-engine. The process buffer *agda* is set up
with a hook function to be called whenever the proof-engine outputs some-
thing. The function examines the output and dispatches appropriate process-
ing functions.

A typical output would tell that the proof-engine successfully typechecked
a piece of code given in a communication point with index i, that the com-
munication point should be replaced by a new piece, and that indices j and k
are assigned to new communication points in the new piece. agda-mode then
deletes the text range of the communication point i, insert the new piece,
searches for the communication points j and k, and annotate them. The
search simply looks for the syntax of communication points (? or {!· · ·!});
this is the only syntax of the Agda language that agda-mode needs to know.

The undo operation in an agda-code buffer is somewhat complicated: the
proof-engine must be kept synchronized, several changes made by output pro-
cessing must be undone in one step if they resulted from a single user com-
mand, and these may span across several agda-code buffers other than the
current buffer. Normally, emacs automatically records any undoable changes
in an “undo list” for each buffer. Using this, agda-mode maintains its own
extended undo list for each buffer, in which it can tell whether a change is
made by output processing (or by the user), and if so, the state index of the
proof-engine at the time the change was made. The undo command looks at
the extended list of the current buffer. If the topmost change is for an out-
put processing at state n, it repeats undoing in every agda-code buffer until
all changes at state n are undone, and then sends to the proof-engine the
command to go back to the state before n.

12

Coquand, Synek and Takeyama

6 Conclusions and Future Work

We have presented a rather simple, but still powerful interface for incremen-
tally building λ-terms. Using emacs as the base for the interaction, makes it
simple for users to get started with the system, since emacs is a familiar tool
for many. We think that this tool can be rather easily modified to fit other sys-
tems using type-based editing of programs or proofs, since it basically knows
nothing about the underlying language.

There are however also some disadvantages with the system. One disad-
vantage is that it only offers help for constructing terms and not definitions.
This is not a problem for the toy language presented in the paper, but is
impractical in the full language. If we ,for example, want to write definitions
in a pattern matching style the interface offers no help for constructing the
patterns.

For future work we think that being able to interact with the proof engine
via the the buffers it creates and not only via the communication points would
be useful. One example is that today we can ask for suggestions for filling in a
communication point. This will result in a buffer where possible completions
are written, but we can not choose one of them. Instead we will have to
cut-and-paste the solution into the communication point.

Another possible extension is dynamic menus which will depend on the
type of the communication points or some other information. Having dynamic
menus also helps when connecting the system with plug-ins, which might add
new commands to the built-in ones.

References

[1] David Aspinall. Proof general - a generic tool for proof development. In
Proceedings of Tacas 2000, LNCS 1785, pages 38–. Springer-Verlag New York,
Inc., 2000.

[2] David Aspinall and Christoph Lüth. Proof general meets isawin: Combining
text-based and graphical user interfaces. Electronic Notes in Theoretical
Computer Science, 2004.

[3] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami
Hagiya and John C. Mitchell, editors, TACS, volume 789 of Lecture Notes in
Computer Science, pages 141–160. Springer, 1994.

[4] Ana Bove and Thierry Coquand. Formalising bitonic sort in type theory.
Submitted for publication, 2005.

[5] Jan Cederquist. An implementation of the heine-borel covering theorem in type
theory. In Eduardo Giménez and Christine Paulin-Mohring, editors, TYPES,
volume 1512 of Lecture Notes in Computer Science, pages 46–65. Springer, 1996.

13

Coquand, Synek and Takeyama

[6] Jan Cederquist and Sara Negri. A constructive proof of the heine-borel covering
theorem for formal reals. In Stefano Berardi and Mario Coppo, editors, TYPES,
volume 1158 of Lecture Notes in Computer Science, pages 62–75. Springer, 1995.

[7] Thierry Coquand and Henrik Persson. A proof-theoretical investigation of
zantema’s problem. In Mogens Nielsen and Wolfgang Thomas, editors, CSL,
volume 1414 of Lecture Notes in Computer Science, pages 177–188. Springer,
1997.

[8] Thierry Coquand and Henrik Persson. Gröbner bases in type theory. In
Thorsten Altenkirch, Wolfgang Naraschewski, and Bernhard Reus, editors,
TYPES, volume 1657 of Lecture Notes in Computer Science, pages 33–46.
Springer, 1998.

[9] Thomas Hallgren. Alfa, 2000. http://www.cs.chalmers.se/~hallgren/
Alfa/.

[10] Lena Magnusson and Bengt Nordström. The alf proof editor and its proof
engine. In TYPES ’93: Proceedings of the international workshop on Types for
proofs and programs, pages 213–237. Springer-Verlag New York, Inc., 1994.

[11] Conor McBride. Epigram, 2004. http://www.dur.ac.uk/CARG/epigram.

[12] Markus Wenzel. Isar - a generic interpretative approach to readable formal
proof documents. In Proceedings of TPHOL-99, LNCS 1690, pages 167–.
Springer-Verlag New York, Inc., 1999.

14

http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.dur.ac.uk/CARG/epigram

	Introduction.
	Using the System.
	General Commands
	Commands on Communication Points

	The Proof Engine
	Internal Representation of Terms and Typechecking
	The Proof State and its Operations

	Emacs Interface Protocol
	The agda-mode
	Conclusions and Future Work
	References

