
Stage de M1

École Normale Supérieure
Département d’Informatique

Modèles de la théorie des types dépendants et
de l’axiome d’univalence

Rapport de stage

David REBOULLET
david.reboullet@ens.fr

Février-Juillet 2018

Sous la direction de
Thierry Coquand
coquand@chalmers.se

Computer Science and Engineering Department
University of Gothenburg
SE-412 96 Göteborg - Sweden

CONTENTS i

Contents
Introduction 1

1 Semantic of an extensional type theory in presheaves 1
1.1 Syntax . 3
1.2 Interpretation of the syntax . 6
1.3 Derivation rules . 11
1.4 Discussion . 12

2 Extension structure and the boolean stack model 13
2.1 Extension structure in dependent type theory 13
2.2 Extension structure in cubical type theory 15
2.3 The boolean stack model . 16

Conclusion 19

References 19

A Proofs from section 1 21
A.1 Semantic weakening . 21
A.2 Semantic substitution . 23
A.3 Derivation rules . 24

B Proofs from section 2 29
B.1 Extension structure in dependent type theory 29
B.2 Extension structure in cubical type theory 30

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 1

Introduction
The five months internship of the second year of computer science at the ENS was for
me an opportunity to get a taste of the research in logic and computer science. To that
extent I contacted Thierry Coquand at the computer science and engineering department
of the University of Gothenburg and got a chance to face modern issues in the field of
homotopy type theory and univalent foundations.

Univalent foundations [Voe10] are based on a new axiom, the Univalence Axiom,
formulated by Vladimir Voevodsky inside Martin-Löf Type Theory, or MLTT, [ML79]
in order to close the gap between classical pure mathematics and computer verification.
Nevertheless this axioms at first lacks computational contents, which prevents in general
one to get a value out of a proof using it. This issue has led to the creation of the
cubical type theory, or CTT, [CCHM16] which is a constructive extension of MLTT in
which the univalence axiom is provable. The proof of coherence of this theory comes
from the study of the presheaves on a category called the cube category, but it was
shown in [OP17] that we can generalize the construction of suitable models of CTT by
working internally in a category satisfying some axioms. Thanks to this generalization
one could study models of CTT that satisfy additional properties. For instance, we will
be interested in this report by the compatibility of CTT with intuitionistic principles. We
see this idea of using an internal language to make models of CTT as a huge improvement
from other approaches as for instance the proof of the fibrancy of Π-types fits in a single
page in [OP17] compared to the 20 pages and highly technical proof found in [GS17].
Nevertheless [OP17] lacks a formal definition and justification of the language they use,
and this could cast legitimate doubts on the validity of their developments. As far as
we know, the formal construction of internal dependent type theories as only been done
for intensional languages inside toposes [Str91] and for extensional languages inside set
theories [Acz98, Bar10], extensional being more general than intensional and toposes
being more general than sets. The issue with [OP17] is then that it uses an extensional
language to study toposes, but the semantics of such theory has not been studied yet.

The objective of this internship is to prove the mutual coherence of the univalence
axiom and Brouwer’s fan theorem. The latter despite being true in a classical setting
does not always hold in constructive mathematics. This result would allow one to do
point-wise topology in a univalent type theory. To that extend we reduce thanks to
[OP17] the semantic of our theory where both univalence and the fan theorem hold to
the semantic of an extensional type theory with added axioms. We give such semantics
in the first part of this report. Then in the second part we build a model of these two
axioms.

1 Semantic of an extensional type theory in presheaves
The issue that prevents us from relying on [Str91] to provide a justification of the internal
language used in [OP17] is that it crucially relies on the strong normalization of the
calculus under scrutiny. Indeed to obtain a well defined interpretation of terms Streicher

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 2

adds annotations to his calculus and then prove thanks to strong normalization that such
annotations always exist for well-typed terms and are unique. As we want to formalize
the use of an extensional type theory we cannot assume strong normalization. As an
extensional type theory is a type theory where the equality type implies the definitional
equality, that is to say that a variable of equality type in scope adds the corresponding
equivalence during type checking, it is easy to see that such theories cannot have strong
normalization. For instance the following term reduces to itself :

λ (_ : N ≡U (N→ N)) (λ (x : N) x x) (λ (x : N) x x)

On the other hand Aczel manages to give in [Acz98] a semantic of an extensional type
theory in sets. His methodology is to first define the interpretation of a term with no
respects to its typability or derivation rules. Then he translates statements of the theory
into (meta-theoretic) statements about the interpretation of terms. Proving the rules of
the type theory is then to prove some semantic statements one by one in isolation. The
big advantage of such semantics is that we never need to deal with the whole picture.
Nevertheless Aczel relies on usual encodings to get his semantic and extending it to
presheaf models, the usual models of HOTT and CTT, seems too technical. Instead, we
keep the idea of building the full semantic step-by-step but we would like to gather the
conditions under which the interpretation of a term is defined while we define it in order
to keep the definitions manageable. The issue here is that the conditions for one term may
depend on the interpretation of other terms, hence the definition of the conditions and
the interpretations are mutual. Such simultaneous definitions are not always well defined
themselves, but in our case it falls into the pattern of simultaneous inductive-recursive
definitions proven correct in [Dyb00].

A category C is a collection Ob (C), which is usually just denoted by C, and for each
x, y ∈ C a collection of “ morphisms ” C (x, y) such that for f ∈ C (x, y) and g ∈ C (y, z)
we have a composition operation g ◦ f ∈ C (x, z) which is associative and which has a
left and right neutral idx for each x ∈ C. A presheaf P on C is the data of a set P (x)
for each x ∈ C and a function P (f) : P (y) → P (x) for each element f ∈ C (y, x) such
that the composition in C in sent by P to the composition of set theoretic functions, and
that preserves neutrals. Note the reversal of the arrows. We often call an element of the
image of a function P (f) a restriction along f and denote it ρ · f in ρ ∈ dom (P (f)). A
morphism N : P → Q of presheaves is for each x ∈ C a function N (x) : P (x) → P (y)
such that for each morphism f : y → x in C we have N (y) ◦ P (f) = Q (f) ◦ N (x).
This makes the presheaves over C a category which we denote by Ĉ. Presheaves can
be thought as a generalization of indexed sets. Moreover, by taking C to be a category
to be a singleton with no non neutral morphisms we see that sets are a special case of
presheaves. In fact they also provide models of at least intuitionistic logic, see [MM94].

A type theory is a formal system for deriving statements of the form Γ ` J where
Γ is a context that maps variable names to their type (in the usual computer scientific
sens) and J is the statement body. For instance J may state that a term has some
type or that two terms are equal. Equality is there to be understood as an undirected
reducibility relation.

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 3

Until the end of this section we will give ourself a small category C. Our aim will be to
interpret an extensional MLTT with a universe of strict propositions and propositional
resizing inside Ĉ. As a side condition, the interpretation of a type under the empty
context should be an object of Ĉ with the usual categorical properties we would expect
from the type. For instance the interpretation of a Π-type should be an exponential. A
term of a type should be a global element of the corresponding presheaf.

The set theoretic encoding of numbers as ordinals will be used without warnings. We
will assume that our set meta-theory has a hierarchy of ω+1 Grothendieck universes that
we will denote Vn, n ∈ ω + 1. Each Grothendieck universe is a set which is by definition
big enough to be stable by each set theoretic operation, hence we can only postulate
them. We will only consider presheaves with codomain Vω.

We will denote the projections using the letter π. We will take the unusual convention
of having the projections numbered from 0 and starting from the last element of a tuple.
This will avoid unnecessary arithmetics when dealing with De Bruijn indexes. If P is a
proposition on indexes will denote by πP the projection along the indexes satisfying P .
We will also denote by π̂X the complementary projection to πX whether X is an index or
a proposition. Also, the (unusual and personal) notation f \ g will be used to name the
arrow from f ◦ g to f entailed by g in the slice category of C which is over the codomain
of f .

The work in this section is personal, if we omit all the discussions and suggestions I
had from my supervisor.

1.1 Syntax

We will start by defining the syntax of the type theory we consider. We will denote
variables by DeBruijn indexes to avoid issues related with renaming, hence a term vari
will denote the i-th inner variable binding. Thanks to this notation we no longer need
to specify the name of a variable in a quantifier and their first parameter will always
be the type abstracted over. For instance the lambda abstraction λ (x : A)B becomes
λ A B. Moreover as DeBruijn terms represent equivalent classes of “ regular ” terms
modulo renaming this change of syntax is valid to interpret the usual notation.

termn := vari i < n
| Π termn termn+1

| λ termn termn+1

| termn termn

| Σ termn termn+1

| termn, termn

| termn.1
| termn.2
| Ul l ∈ N
| Ω
| ∗

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 4

| termn ≡termn termn

| ‖termn‖
| |termn|
| 〈termn〉

As usual we will denote function types by Π, function abstraction by λ and application
with the functional notation. Pair types will be denoted by Σ, with M,N as constructor
and P.1 and P.2 being the projections. Ul, l ∈ N will be a hierarchy of impredicative
universes (ie. types of types). Ω will the impredicative universe of propositions, with ∗
being the unique inhabitant of a true proposition. M ≡A N is the proposition stating
that two terms M and N of type A are equal. For A a type ‖A‖ is the proposition
stating that A is inhabited (ie. the propositional truncation of A). We also call such
types squashed types. We denote by |M | the introduction of a squashed type. 〈N〉 is
the eliminator of squashed types. It states that constant functions factor through the
propositional truncation of their domain.

We then define the contextn, n ∈ N, of well-formed contexts of length n. We will
usually name contexts Γ. We also define context :=

⋃
n∈N contextn and |Γ ∈ context| := n

when Γ ∈ contextn.

context0 := ε
contextn+1 := contextn, termn

We define a telescope over a context of length n ∈ N, and denote their set by
telescopen, as being a context whose base case is any context of length n. Telescopes
will be named with the letter ∆. Given a telescope ∆ ∈ telescopen we denote by |∆|
the length of ∆, defined as the length of contexts. This naturally define a composition
operation that given a context Γ ∈ contextn, n ∈ N, and a telescope ∆ ∈ telescopen gives
a context Γ,∆ ∈ contextn+|∆|. This formalizes the usual pratice of splitting contexts.

telescopen :=
⊔
k∈N telescope

k
n

telescope0
n := εn

telescopek+1
n | telescopekn, termn+k

We define the syntax of judgments under a context of length n.

judgmentn := ok
| termn type
| termn : termn

| termn = termn type
| termn = termn : termn

A sequent is then a context and a judgment separated by `. The judgement ok means
that the context is valid, the colon denotes the membership of a type and the equal sign
the definitional equality. We will often forget to write the judgment in the sequent Γ ` ok,
that will be written Γ `.

sequent := contextn ` judgmentn, n ∈ N

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 5

Weakening We define for all n, k ∈ N, k ≤ n, a weakening operator ↑k: termn →
termn+1 by induction on the term.

↑k vari, i < k := vari
↑k vari, i ≥ k := vari+1

↑k Π A M := Π (↑k A) (↑k+1 M)
↑k λ A M := λ (↑k A) (↑k+1 M)
↑k M N := (↑k M) (↑k N)
↑k Σ A M := Σ (↑k A) (↑k+1 M)
↑k M,N := (↑k M) , (↑k N)
↑k M.1 := (↑k M) .1
↑k M.2 := (↑k M) .2
↑k Ul := Ul
↑k Ω := Ω
↑k ∗ := ∗
↑k M ≡A N := (↑k M) ≡↑kA (↑k N)
↑k ‖M‖ := ‖↑k M‖
↑k |M | := |↑k M |
↑k 〈M〉 := 〈↑k M〉

We then define the weakening ↑ ∆ ∈ telescopen+1 of a telescope ∆ ∈ telescopen,
where n ∈ N.

↑ εn := εn+1

↑ (∆,M) := ↑ ∆, ↑|∆| M

We also define the weakening ↑k J ∈ judgementn+1+k for J ∈ judgementn+k the
obvious way, with n, k ∈ N.

Substitution With this we can define by induction a substitution operator − [k \ −] :
termn+1+k → termn → termn+k for all n, k ∈ N.

var0 [0 \ S] := S
vari+1 [0 \ S] := vari
var0 [k + 1 \ S] := var0

vari+1 [k + 1 \ S] := ↑0 (vari [k \ S])
Π A M [k \ S] := Π (A [k \ S]) (M [k + 1 \ S])
λ A M [k \ S] := λ (A [k \ S]) (M [k + 1 \ S])
M N [k \ S] := (M [k \ S]) (N [k \ S])
Σ A M [k \ S] := Σ (A [k \ S]) (M [k + 1 \ S])
M,N [k \ S] := (M [k \ S]) , (N [k \ S])
M.1 [k \ S] := (M [k \ S]) .1
M.2 [k \ S] := (M [k \ S]) .2
Ul [k \ S] := Ul
Ω [k \ S] := Ω

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 6

∗ [k \ S] := ∗
M ≡A N [k \ S] := (M [k \ S]) ≡A[k\A] (N [k \ S])
‖M‖ [k \ S] := ‖M [k \ S]‖
|M | [k \ S] := |M [k \ S]|
〈M〉 [k \ S] := 〈M [k \ S]〉

Like the weakening we define a substitution ∆ [S] ∈ telescopen under a telescope
∆ ∈ telescopen+1 by a term S ∈ termn.

εn+1 [S] := εn
∆,M [S] := ∆ [S] ,M [|∆| \ S]

Finally we define the substitution J [k \ S] ∈ judgmentn+k of a judgment J ∈
judgmentn+1+k by a term S ∈ termn the obvious way, with n, k ∈ N.

1.2 Interpretation of the syntax

Semantic definitions We first define the semantic counterparts of the syntactic def-
initions above. A semantic context of length n ∈ N is a sub-object of a n-product in Ĉ
and denote the set of such objects by Ĉn. That is to say that whenever ξ ∈ Ĉn then for
each x ∈ C elements of ξx are n-tuples. A semantic term under a context ξ ∈ Ĉn should
be a morphism from ξ to some object of Ĉ. But we don’t want to specify the codomain
of a term in its definition as we want to allow a term to be a member of different types.
Thus a semantic term becomes a mapping from (x ∈ C)× ξx to Vω, and we denote their
set by termξ.

We then want to isolate a subset typeξ of termξ witch correspond to the terms that
can be interpreted as types under ξ. In the terms of category theory this would mean
that a term α ∈ typeξ is an element of some object classifier, depending of its set theoretic
size. Nevertheless we want to free the definition of a semantic type of any size issue so
we take the explicit lifting of Grothendieck universes to object classifiers of Ĉ found in
[HS97] and apply it to Vω. The intuition is that we should get a presheaf which, despite
being too big to be a member of Ĉ, generalizes the membership of any object classifier in
Ĉ. Concretely we get the following definition of typeξ, where f ∗ : Ĉ/x → Ĉ/y is induced
by f : y → x by selecting the morphisms that factor through f :

α ∈ typeξ ⇐⇒ α ∈ termξ

& ∀x ∈ C, ∀ρ ∈ ξx, α (x, ρ) ∈ Ĉ/x
& ∀x, y ∈ C, ∀f ∈ C (y, x) , ∀ρ ∈ ξx, α (y, ρ · f) = f ∗ (α (x, ρ))

Given α ∈ typeξ we can now define the set termξ;α ⊂ termξ of elements of α.

β ∈ termξ;α ⇐⇒ β ∈ termξ

& ∀x ∈ C, ∀ρ ∈ ξx, β (x, ρ) ∈ α (x, ρ) (idx)
& ∀x, y ∈ C, ∀f ∈ C (y, x) , ∀ρ ∈ ξx,

β (y, ρ · f) = α (x, ρ) (idx\f) (β (x, ρ))

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 7

We can also define the context extension ξ, α ∈ Ĉn+1 of ξ ∈ Ĉn by α ∈ typeξ, where
n ∈ N. This corresponds to the syntactic context weakening rule and likewise it allows
us to construct contexts from semantic types.

ξ, α (x ∈ C) := {ρ, a | ρ ∈ ξx, a ∈ α (x, ρ)}
ξ, α (f ∈ C (y, x)) := (ρ, a) 7→ (ρ · f, α (x, ρ) (idx\f) (a))

It should be noted that if we set ξ ∈ Ĉn then the previous construction provide an
isomorphism between typeξ and contexts ξ′ ∈ Ĉn+1 such that π̂0 ξ

′ = ξ. For each x ∈ C,
ρ ∈ ξx, taking the fiber of ξ′ over ξ induced by ρ considered as a partial element and then
reindexing the resulting presheaf by the forgetful functor from (C/x)op to Cop gives the
inverse, but a less abstract definition of this construction is also easily seen. Because we
can present any presheaf F over ξ as a context extension of ξ this makes the link between
our definition and the usual category theoretic definition of types and contexts.

Term’s interpretation We define for all n ∈ N, ξ ∈ Ĉn, an interpretation function
J−Kξ : termn → termξ for each term which satisfy the predicate [−]ξ. Here J−K is defined
by recursion on terms and [−] is defined as an indexed inductive type. They are mutualy
defined, the correctness of the construction comes from [Dyb00]. We will avoid explicit
quantification in the following definitions, for instance each of them will quantify over
objects x, y, z ∈ C, morphisms f ∈ C (y, x), g ∈ C (z, y) and elements ρ ∈ ξx.

For variables we simply take the projection corresponding to the DeBruijn index. This
is always defined by definition of a semantic context.

[vari]ξ := >
JvariKξ (x, ρ) := πi (ρ)

For Π-types we ask the domain and codomain interpretation to give semantic types.
We would like the semantic of Π A B as stage x with ρ ∈ ξx to be(

a ∈ JAKξ (x, ρ) (idx)
)
7→ JBKξ,JAKξ

(x, (ρ, a)) (idx)

but as for regular exponential it would be impossible to define suitable morphisms between
stages for this type. Still like for regular exponentials the fix is to add a quantification
over objects under x and to define morphisms between stages. Moreover, this define the
Π-type at one stage but to get a semantic type at this stage we also need to provide
definitions for each stages under the current one. This makes the following definition :

[Π A B]ξ := [A]ξ & JAKξ ∈ typeξ & [B]ξ,JAKξ
& JBKξ,JAKξ

∈ typeξ,JAKξ

JΠ A BKξ (x, ρ) (f) :=

{α ∈ (g ∈ ΣzC (z, y))→ (a ∈ JAKξ (z, ρ · f · g) (idz))→ JBKξ,JAKξ
(z, (ρ · f · g, a)) (idz)

| ∀g ∈ ΣzC (z, y) , h ∈ ΣwC (w, z) , ∀a, α (f) (a) · g = α (g ◦ f) (a · g)}
JΠ A BKξ (x, ρ) (f\g) := e 7→ (h ∈ ΣwC (w, z)) 7→ e (g ◦ h)

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 8

From there λ-abstraction and application are immediate. Hopefully we lose a level of
indirection at each step.

[λ A M]ξ := [A]ξ & JAKξ ∈ typeξ & [M]ξ
Jλ A MKξ (x, ρ) :=

(f ∈ ΣyC (y, x)) 7→
(
a ∈ JAKξ (x, ρ · f) (idy)

)
7→ JMKξ,JAKξ

(y, (ρ · f, a))

[M N]ξ := [M]ξ & [N]ξ & ∀x, ρ, idx ∈ dom
(
JMKξ (x, ρ)

)
∀x, ρ, JNKξ (x, ρ) ∈ dom

(
JMKξ (x, ρ) (idx)

)
JM NKξ (x, ρ) := JMKξ (x, ρ) (idx)

(
JNKξ (x, ρ)

)
Besides the indirection from the definition of typeξ, the natural definitions work for

Σ-types and the associated operations.

[Σ A B]ξ := [A]ξ & JAKξ ∈ typeξ & [B]ξ,JAKξ
& JBKξ,JAKξ

∈ typeξ,JAKξ

JΣ A BKξ (x, ρ) (f) :=
(
a ∈ JAKξ (y, ρ · f) (idy)

)
× JBKξ,JAKξ

(y, (ρ · f, a)) (idy)

JΣ A BKξ (x, ρ) (f\g) :=

(a,m) 7→
(
JAKξ (x, ρ) (f\g) (a) , JMKξ,JAKξ

(x, (ρ, a)) (f\g) (m)
)

[M,N]ξ := [M]ξ & [N]ξ

JM,NKξ (x, ρ) :=
(
JMKξ (x, ρ) , JNKξ (x, ρ)

)
[M.1]ξ , [M.2]ξ := [M]ξ & ∀x, ρ, ∃X, Y, JMKξ (x, ρ) = (X, Y)

JM.1Kξ (x, ρ) := π1

(
JMKξ (x, ρ)

)
JM.2Kξ (x, ρ) := π0

(
JMKξ (x, ρ)

)
For the regular universes we use the construction of [HS97] to get presheaves and

then precompose by the forgetful functor from (C/x)op to Cop to get a definition that
fits into typeξ. The morphisms are then only reindexing. For the proposition universe
we will also use the previous lifting but on 2, which is the proposition universe for sets,
beside the fact that it is not a Grothendieck universe. Indeed we only want it to classify
monomorphisms, that can be seen as fibrations with fibers in 2.

[Ul]ξ , [prop]ξ := >
JUlKξ (x, ρ) (f) := Cat ((C/y)op ,Ul)
JUlKξ (x, ρ) (f\g) := g∗

JΩKξ (x, ρ) (f) := Cat ((C/y)op , 2)

JΩKξ (x, ρ) (f\g) := g∗

∗ is to be considered as the unique witness of any true proposition, so it must be 0 at
each stages.

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 9

[∗]ξ := >
J∗Kξ := 0

We define the equality type as 1 at each stage where the two parameter terms are
equal and 0 at the others. This way we get a type in Ω. The morphisms must be the
identity morphisms because a semantic proposition is either 0 or 1 at each stages.

[M ≡A N]ξ := [A]ξ & JAKξ ∈ typeξ
[M]ξ & JMKξ ∈ termξ;JAKξ & [N]ξ & JNKξ ∈ termξ;JAKξ

JM ≡A NKξ (x, ρ) (f) :=
{
s | s = 0 & JMKξ (y, ρ · f) = JNKξ (y, ρ · f)

}
JM ≡A NKξ (x, ρ) (f\g) := s 7→ s

We define squashed type likewise.

[‖A‖]ξ := [A]ξ & JAKξ ∈ typeξ
J‖A‖Kξ (x, ρ) (f) :=

{
s | s = 0 & ∃X, X ∈ JAKξ (y, ρ · f)

}
J‖A‖Kξ (x, ρ) (f\g) := s 7→ s

The semantic of |M | is basically the same as ∗, as propositions have at most one
inhabitant. The distinction comes from the fact that we ask more to define |M |, we want
M to be also defined.

[|M |]ξ := [M]ξ
J|M |Kξ := J∗Kξ

The elimination principle for squashed types states that any constant function f :
A → B factors through a (unique) function 〈f〉 : ‖A‖ → B such that f = 〈f〉 ◦ |−|.
The semantic is then to take the unique element of the codomain whenever there is an
element in the domain. As we ask the parameter to be a constant function the union of
the codomain is a canonical way of recovering it.

[〈M〉]ξ := [N]ξ & ∀x, y, ρ, f : y → x, f ∈ dom
(
J〈M〉Kξ (x, ρ)

)
∀a, b ∈ dom

(
J〈M〉Kξ (x, ρ) (f)

)
,

J〈M〉Kξ (x, ρ) (f) (a) = J〈M〉Kξ (x, ρ) (f) (b)

J〈M〉Kξ (x, ρ) :=

(f ∈ ΣyC (y, x)) 7→
(
_ ∈ dom

(
JMKξ (x, ρ) (f)

))
7→
⋃
x∈cod(JMKξ(x,ρ)(f)) x

Weakening and substitution As a first step toward showing the fitness of our se-
mantic we show that it is well-behaved with regard to weakening and substitution.

First we prove the weakening lemma which states that the semantic of a term is
preserved by adding an unused variable to the context. We express the fact that a context

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 10

ξ extends a context ξ′ by adding a variable at position k by the equation ξ′ = π̂k (ξ). Let
be n, k ∈ N with k ≤ n, M ∈ termn and ξ ∈ Ĉn+1. We prove by induction on M that

[M]π̂k(ξ) ⇐⇒ [↑k M]ξ

∀x ∈ C, ∀ρ ∈ ξx, JMKπ̂k(ξ) (x, π̂ (ρ)) = J↑k MKξ (x, ρ)

For the most of the cases the induction is straightforward. The only difficulties come
from the binders, so here we will focus on the Π-type former. The full proof can be found
in annex A.1.

Let M = Π A B. It follows from the induction hypothesis on A that [A]π̂(ξ) ⇐⇒
[↑k A]ξ and that JAKπ̂k(ξ) ∈ typeπ̂k(ξ) ⇐⇒ J↑k AKξ ∈ typeξ. Next we have to prove that

[B]π̂k(ξ),JAKπ̂k(ξ)
⇐⇒ [↑k B]ξ,J↑kAKξ

But we known from the induction hypothesis on B that

[B]π̂k+1(ξ,J↑kAKξ)
⇐⇒ [↑k B]ξ,J↑kAKξ

It is then enough to prove that

π̂k (ξ) , JAKπ̂k(ξ) = π̂k+1

(
ξ, J↑k AKξ

)
Let be (ρ, a) ∈ π̂k (ξ) , JAKπ̂k(ξ) (x), with x ∈ C. There exists ρ′ ∈ ξx such that ρ = π̂k (ρ′).
Then we know from the induction hypothesis that JAKπ̂k(ξ) (x, ρ) = J↑k AKξ (x, ρ′), so that
a ∈ J↑k AKξ (x, ρ′) (idx). It follows that (ρ′, a) ∈ ξ, J↑k AKξ (x) and by computations on

the projection that (ρ, a) ∈ π̂k+1

(
ξ, J↑k AKξ

)
(x). This proves that for each x ∈ C we

have π̂k (ξ) , JAKπ̂k(ξ) (x) ⊆ π̂k+1

(
ξ, J↑k AKξ

)
(x), but all the proof can be fully inverted to

get the opposite inclusion, so that these two sets are in fact equal. To conclude that the
two presheaves are the same we also need to prove the equality on arrows, but the proof
would be the same as for the objects.

The rest of the proof is straightforward rewriting using the hypothesis.

The substitution lemma states likewise that semantic is preserved by substitution. Let
be n, k ∈ N, S ∈ termn and ξ ∈ Ĉn+1+k such that [S]π−>k(ξ) and

∀x ∈ C, ∀ρ ∈ ξx, πk (ρ) = JSKπ−>k(ξ) (x, π−>k (ρ))

Then for all M ∈ termn+1+k we have

[M]ξ ⇐⇒ [M [k \ S]]π̂k(ξ)

∀x ∈ C, ∀ρ ∈ ξx, JMKξ (x, ρ) = JM [k \ S]Kπ̂k(ξ) (x, π̂k (ρ))

The proof of the substitution lemma has the same structure as the substitution lemma
and uses the same arguments. Nevertheless we have to use the weakening lemma in the
variable case. The details can be found in annex A.2.

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 11

Statement’s interpretation Let be J ∈ judgementn, n ∈ N. We give the semantic
of J under a semantic context ξ ∈ Ĉn as a predicate [J]ξ.

[ok]ξ := >
[A type]ξ := [A]ξ & JAKξ ∈ typeξ
[A = B type]ξ := [A type]ξ & [B type]ξ & JAKξ = JBKξ
[M : A]ξ := [M]ξ & [A type]ξ & JMKξ ∈ termξ,JAKξ
[M = N : A]ξ := [M : A]ξ & [N : A] & JMKξ = JNKξ

We then define by induction the semantic JΓK ∈ Ĉn of a context Γ ∈ contextn and the
conditions under which this semantic is defined as a predicate [Γ].

[ε] := >
[Γ, A] := [Γ] & [A]JΓK & JAKJΓK ∈ typeJΓK

JεK := 1
JΓ, AK := JΓK , JAKJΓK

Finally we can define the semantic of a statement S = Γ ` J as the predicate

[S] := [Γ] & [J]JΓK

1.3 Derivation rules

The final step of the process of justifying our type theory is to prove the derivation rule
themselves. By proving a derivation rule we mean to prove that if the semantic of the
rule’s hypothesis hold then the semantic of its conclusion does. Most of the rules we
prove are usual for a Martin-Löf type theory, so we only present here the specificities of
our theory. The full list of rules can be found in annex A.3 along their demonstration.

We prove that we have universies à la Russel, that is to say that an element of a
universe does not need an operator translating it into a type.

Γ ` A : Ul
Γ ` A type

Γ ` A : Ω
Γ ` A type

Moreover the universe hierarchy is cumulative. This means that elements of one
universe are member of the ones above.

Γ ` A : Ul
Γ ` A : Ul+1

Γ ` A : Ω
Γ ` A : U0

We have strict propositions in the sens that a proposition is at most uniquely inhabited
by ∗. This has the practical consequence that all proofs are equal and we don’t need to
care about them.

Γ ` A : Ω Γ `M : A
Γ `M = ∗ : A

1 SEMANTIC OF AN EXTENSIONAL TYPE THEORY IN PRESHEAVES 12

Moreover we also have that two propositions with the same proof strength are equal.

Γ ` A : Ω Γ ` B : Ω Γ, A `M : B Γ, B ` N : A

Γ ` A = B : Ω

It is enough to build most propositions to have the propositional truncation. Hence
we define for each type A a proposition ‖A‖ which holds whenever A is inhabited.

Γ ` A type

Γ ` ‖A‖ : Ω
Γ `M ∈ A

Γ ` |M | : ‖A‖

Moreover we can eliminate squashed type thanks to the fact that constant functions
factor through their squashed domain.

Γ ` N : A→ B Γ, A,A ` N var1 = N var0 : B

Γ ` 〈N〉 : ‖A‖ → B

Γ ` N : A→ B Γ, A,A ` N var1 = N var0 : B Γ `M : A

Γ ` 〈N〉 |M | = N M : B

Finally we define the equality type to be extensional.

Γ ` T : M ≡A N
Γ `M = N : A

1.4 Discussion

As there is no issue in translating usual variable notation into DeBruijn indexes we will
use from now the common syntax.

In order to be useful our theory would need the addition of several “ regular ” data
types. In is important to note that the new symbol introduced to interpret additions to
the theory would require one the update the proofs of weakening and substitution, but
symbols for constants come with no effort. In particular there is no issue in adding a
boolean type B and a natural number type N. To do so we interpret them as constant
presheaves, defining their operations is them straightforward.

A more interesting addition would be the comprehension subtype {x : A | ϕ (x)},
where ϕ : A→ Ω, used in [OP17]. It could be built as different encoding of Σ (x : A)ϕ (x)
which take advantage of the proof’s irrelevance. This would allow a faithful translation
of [OP17] in our setting but one could argue that instead the construction Σ (x : A)ϕ (x)
could be used directly. In fact we use a quite different formulation of propositions, as
defining Σ (x : A)ϕ (x) would require a comprehension subtype in [OP17].

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 13

Example of interpretation We unfold the interpretation of the type

Π (ϕ : F) Π (u : ϕ→ A) Σ (x : A) Π (y : ϕ)x ≡A u y

where F is a sub-presheaf of Ω and A is a free variable of type Un. Having a term of this
type means that for any object o ∈ C, any type a : A→ yo, any proposition ϕ : yo→ F

and any morphism u : [ϕ]→ A such that a ◦ u = ϕ (with y being the Yoneda embedding
and [ϕ] → yo being the pullback of ϕ against the subobject classifier) there exists an
section x : yo→ A of a : A→ yo such that u factors through x.

This interpretation as an alternative to Kripke-Joyal semantics as a tool to enable
the use of logics in the study of categories. The main difference we see in the example
between the two semantics is that our semantic does not fully speak in terms of generalized
elements but in terms of elements with a representable codomain. But as any object in
a presheaf category is a colimit (generalized sum) of representable object we think that
we may recover the full Kripke-Joyal from this and even extend it, which would make
our interpretation is generalization of Kripke-Joyal in presheaves. Nevertheless we never
focused on this particular point.

2 Extension structure and the boolean stack model
In this section we will use the internal language of presheaves to study a notion of exten-
sion structure. Its aim is allow one to extend a partial element on a proposition ϕ, ie. a
member of ϕ → A for some type A, into a global element of A. The inspiration for this
construction is the Bousfield localization [Hir09], which is the process of adding trivial
cofibration to a Quillen model structure. In our attempt of internalizing this notion we
call trivial the propositions along which we will allow partial elements to be extended.

First we will present this as a way to translate a theory where selected propositions
are true to an other where they may not be. Then we will show how to adapt the
construction to an internal language that satisfies the axioms of [OP17] in order to get a
model of the univalence axiom. Thanks to this we will exhibit a model of both univalence
and Brouwer’s fan theorem.

The justification of Brouwer’s fan theorem from a boolean stack model is an immediate
adaptation of a proof of my supervisor for a boolean sheaf model. The “stackification” of
booleans and natural numbers are personal. Besides that all the work done here has been
suggested by Coquand, the proofs are personal.

2.1 Extension structure in dependent type theory

We give ourselves a dependent type theory as described in the first section. We will
annotate the sequents of this theory with a subscript 1, hence Γ ` S will become Γ `1 S.
By extension we will name this theory `1. We assume the existence of a subtype T of
Ω. Our aim will be to translate into `1 a dependent type theory `2 in which for all type

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 14

A there exists a canonical way of extending an element of ϕ → A into an element of A,
where ϕ : T, such that an element and its extension are equal where ϕ holds.

We will ask that T satisfies the “ strictness ” axiom from [OP17] for each universe
level, where ∼= is the type of isomorphisms, ie.

A ∼= B := Σ (f : A → B) Σ (g : B → A) f ◦ g = idB ∧ g ◦ f = idA

`1 strictl : Π (ϕ : T) Π (A : ϕ→ Ul) Π (B : Ul) Π (s : Πϕ (A ∗ ∼= B))
Σ (B′ : Ul) Σ (s′ : B′ ∼= B) Πϕ (A ∗ = B′ ∧ s ∗ = s′)

This axioms always holds for presheaf models when we work in a classical metatheory,
but does not in a constructive one. In presheaves it corresponds intuitively to saying
that the monomorphisms classified by T have decidable image at each stage of the base
category. The reciprocal is proven true in [OP17].

For each type A in `1 we define an extension structure ExtA to be an operation
ρ : Π (ϕ : T) (a : Π ϕA)A, called the extension, such that for each ϕ : T we have that
ρ ϕ is a right inverse of the restriction along ϕ, ie. a right inverse of λ (a : A)λ (_ : ϕ) a.
In practice we will explain this condition is a different but equivalent way.

ExtA := Π (ϕ : T) Σ (ρ : Π ϕA→ A) (ϕ→ Π (a : Π ϕA) ρ a = a ∗)
We will then translate a type A in `2 as a type A′ in `1 equipped with an extension

structure p : ExtA′ . We prove by induction the translation of the type formers.
We start with Π-types. Let A be a type (that may not have extension structures) and

a type B on A such that for each a : A we have an extension structure q a for B a. Then
we have an extension structure for Π A B. Indeed, let be ϕ : T and f : ϕ→ Π A B. We
define p′ f a : B a to be the extension of λ ϕ (f ∗ a) : ϕ→ B a. This define a function
p′ : (ϕ→ Π A B)→ Π A B. Now we assume that ϕ holds and check the constraint.

p′ f = λ (a : A) q a (λ ϕ (f ∗ a))
= λ (a : A) f ∗ a
= f ∗

Note that we don’t need the domain of a Π-type to have an extension structure. For
the Σ-type Σ A B we will need A to have an extension structure p. Let be ϕ : T and
t : ϕ → Σ A B. We first extend the first projection of t into an element a : A. Because
ϕ→ t ∗ .1 = a we can extend the second projection of t thanks to q a into b : B a. That
way we build the extension of a Σ-type, the constraint being straightforward to check.

We lift an element A of a universe, ie. a type, on ϕ thanks to Π ϕ A. More precisely, if
A is an element of a predicative universe we use the strictness axiom. If A is a proposition
we have to squash Π ϕ A to get a proposition which is definitionally equal to A under
ϕ. The details are in the annex B.1. We do not care about the lifting of T itself, but it
would require T to be stable under dependent product to be able to do so.

We are not able to lift equality types with the current definition of an extension
structure, nor we are able to lift propositional truncation. We can prove that being able
to extend an equality between elements of a type A, itself equipped with an extension

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 15

structure, is equivalent to saying that the extension on A is an isomorphism. But if
we ask extensions to be isomorphisms then we are no longer able to lift the predicative
universes. Anyway HOTT and CTT provide for these types replacements that we will
be able to lift. The intuition there is that these theories allow one to work nicely with
non-strict constraints.

An other issue with this construction is that we are not able to lift definitional booleans
and natural numbers. The problem comes from that despite being able to describe the
lifted type (externally using a “ sheafification ”, see [MM94]) we are not able in general
to lift the corresponding strict equalities.

2.2 Extension structure in cubical type theory

We adapt this extension structure to cubical type theory, in order to have a type theory
with both univalence and extensions for some propositions. We suppose that `1 satisfies
the axioms in [OP17].

Roughly speaking, their axioms suppose the existence of two types I and F such that
I is a path connection algebra (a De Morgan algebra without negation) with two distinct
endpoints 0 and 1 that are connected : if a proposition on I is decidable then it has the
same truth value on both endpoints. F is supposed to be a subtype of Ω stable by union,
dependent product, quantification over I and equality with endpoints of I. Finally the
original strictness axiom from [OP17] has its first quantification over F, so here we state
it that way.

`1 strictl : Π (ϕ : F) Π (A : ϕ→ Ul) Π (B : Ul) Π (s : Πϕ (A ∗ ∼= B))
Σ (B′ : Ul) Σ (s′ : B′ ∼= B) Πϕ (A ∗ = B′ ∧ s ∗ = s′)

The composition structure studied in [OP17] can then be thought as an extension
structure for propositions of the form (i = x) ∨ ϕ where i : I, x is 0 or 1 and ϕ : F does
not refer to i. The initial purpose of the extension structure we present in this report
was to generalize the propositions under which we can compose to those of the form
γ ∨ ϕ where γ : T and ϕ : F. Nevertheless it seems more natural to add it as a different
structure, as it still makes sens outside of models of cubical type theory.

We recover the strictness axiom for T by asking that T is a subtype of F. We also
assume that T is stable by union with elements of F.

We will interpret a cubical type theory `2 directly in Ĉ and prove its correctness by
using the correspondence between types in `2 and types in `1 equipped with a composition
structure of [OP17] and an extension structure. We don’t proceed by translation of `2

into `1 because of the negative result that can be found in [LOPS18]. This paper also
shows a way to modify our `1 so that we can retrieve the translation at the cost of `1

becoming non-standard, but there is other ways of constructing such universes as done in
[CCHM16]. Because the specific problem exposed by [LOPS18] lies in the translation of
predicative universes we will not assume that we have an internalization of them in `1.
Instead we will show that we can lift both an element of a predicative universe of `1 and

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 16

its composition structure and rely on the fact that we can built universes for such types
in `2.

The extension structures built in the non univalent case are still valid, so we focus
here on the additional “ unusual ” types we want to lift here. Within these types is the
type A : I → U , a : A 0, b : A 1 `1 Path A a b := Σ (p : Π IA) p 0 = a ∧ p 1 = b of
paths between elements of type on I. We cannot lift it the “ trivial ” way as we know we
cannot lift equalities. Instead we would like to be able to construct an element p′ on the
extent ψ := ϕ ∨ (i = 0) ∨ (i = 1) and under an abstraction over i : I, such that

ϕ → p′ = p ∗ i
i = 0 → p′ = a
i = 1 → p′ = b

Because of the constraints on p such definitions would agree on the intersections of
the three extents. For instance, when both ϕ and i = 0 hold we have p ∗ i = a. The
extension of p′ over ψ would then give us an element of Π I A which is indeed a path
between a and b. This kind of definitions by case analysis over propositions are called
systems in [CCHM16]. In order to build the system above we first define the function f
from the disjoint union ϕ + (i = 0) + (i = 1) that assigns p ∗ i to ϕ, a to i = 0 and b
to i = 1 and because this function is constant it factors through the (logical) disjunction
and we recover its codomain as the system we want.

Thanks to this use of systems and the fact that extension structures are preserved by
isomorphisms we then prove an extension structure for the glue types and composition
structure from [OP17]. This complete the justification of an extension structure for
cubical type theory, the details of the proof are in the annex B.2.

2.3 The boolean stack model

We call a cube category a category � with finite products equipped with an object i that
has the structure of a non-trivial connection algebra (so that the object of �̂ represented
by i satisfy the axioms of I) such that for all objects c ∈ �, � (c, i) has decidable
equality. The usual cube category from [CCHM16] is an instance of this definition. If we
take A to be a category with finite products, then the product category �×A is also a
cube category with iA := (i, 1A), where 1A is the terminal object (or 0-product) of A.
According to corollary 8.5 from [OP17] the internal language of a cube category satisfies
the axioms needed to model CTT.

Let be B the category of non-degenerate decidable boolean algebras. Its opposite
category Bop has all finite products so C := � × Bop is a cube category. The category
Bop corresponds through Stone duality to a sub-category of the category of topological
spaces : the non-empty compact totally disconnected Hausdorff spaces with an additional
decidability condition. The set of elements of a boolean algebra is then in bijection with
the both open and closed sets of the corresponding space.

What we will want to describe is geometrically the types whose terms at some boolean
algebra can be recovered from a finite partition of that algebra (seen as a space). That is

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 17

to say that if we have a term of that type for each element of the partition then we can
recover a term globally defined on the whole boolean algebra. We express this condition
on the types we are interested in as an extension structure. If we describe T as a presheaf
this would mean that at each stages (I, B) ∈ C if ϕ ∈ T (I, B) then ϕ ∈ F (I, B) and there
exists a finite partition B1, . . . , Bn of B such that for each i ∈ {1, . . . , n} the restriction
ϕ|Bi ∈ T (I, Bi) is true. Here true means that the presheaf in ̂C/ (I, Bi) induced by ϕ|Bi
is constant at 1. We say that the partition B1, . . . , Bn makes ϕ true. When we then
unfold the semantic of `1 this means that having an element of ϕ → A at stage (I, B)
under a parameter ρ from the context implies that for each i ∈ {1, . . . , n} we have an
element of A at stage (I, Bi) under the parameter ρ|Bi . Hence extending along ϕ → A
is recovering an element from a partition, although the whole operation is a bit more
general than that in order to have T stable by unions with elements of F.

Because we asked our boolean algebras to be decidable, the presheaf over C/ (I, B)
induced by such a partition is a decidable sub-object of the true presheaf. This means
that if we take F to be the presheaf of decidable sub-presheaves of true, as proposed in
[OP17], then we can take elements of T in F and keep the propositions induced by the
finite partitions. Formally, we will take T the presheaf of decidable sub-presheaves of
true such that, for each stage (I, B) if ϕ ∈ T (I, B) then there exists a finite partition of
B which makes ϕ true. This choice of T satisfies by construction the axioms needed to
get an extension structure in a cubical type theory.

Booleans and natural numbers We show that in this particular model of CTT with
extension structure we can externally describe the type of booleans and natural numbers.
More generally we will explain how we can lift a set S with decidable equality and its
operations to `2. First we define a presheaf PS by

PS (I, B) = {f : S → B | {x | f (x) 6= 0} ∈ Pfin (S)
∀x 6= y ∈ S, f (x) ∧ f (y) = 0∨
x∈S f (x) = 1 }

PS (u : J → I, vop : C → B) : PS (I, B)→ PS (J,C) is defined as the postcomposition
by v. The invariants of PS are indeed preserved because v is morphism of boolean
algebras.

Assume an object (I, B) ∈ C, a proposition ϕ ∈ T and an element e of PS defined
on the extent of ϕ. Because of the definition of ϕ we have a partition B1, . . . , Bn which
makes ϕ true. In particular e is defined for each Bi. Moreover, if we have an element
bi ∈ Bi for each i ∈ {1, . . . , n} we recover the unique element b ∈ B which restrict to bi
on Bi for each i by the universal property of the non-empty products in B (replacing S
with the free boolean algebra on S). That way we get an element of PS at stage (I, B).
Let now be (u : J → I, vop : C → B) such that ϕ (u, vop) = 1, when looking at ϕ as a
presheaf on C/ (I, B). The image of B1, . . . , Bn through v gives a partition of C which
makes ϕ · (u, vop) ∈ T (J,C) true, so that we can use the same argument to describe the
value of e at (J,C) (by assumption e is already defined here). By construction of the
partition on C we will then have that the element of PS (I, B) will indeed restrict the

2 EXTENSION STRUCTURE AND THE BOOLEAN STACK MODEL 18

element of PS (J,C) we just built. We successfully constructed the extension structure of
PS.

Because PS (I, B) = PS (J,B) for each I, J ∈ � and B ∈ B an explicit calculation
of the path types over PS shows that there are no non trivial paths between elements
of PS. This and the extension of PS entails that PS can be lifted to `2. Now we have
to lift the operations on S. For instance, let’s take S = N. The zero constructor is
defined to be (0 7→ 1, _ 7→ 0) at each stage (I, B) and the successor function is f 7→
(0 7→ 0, (s+ 1) 7→ f (s)). We define the recursor

A : N→ Ul, i : A 0, f : Π (n : N) (A n→ A (n+ 1)) , n : N `2 natrec A i f n : A n

at stage (I, B) by first restricting ourselves to the partition of B entailed by the domain
of (the semantic of) n. On each element of this partition n is a regular natural number so
we can do the recursion. If we consider the domain of n as an element ϕ of T (I, B), which
it is by definition of T, then we just built an element of ϕ→ A n. We don’t have to check
whether the elements on the partition are compatible because there is no intersection
of disjoint subspaces in Bop, indeed we removed the degenerate boolean algebra from B.
We then use the extension structure of A n is `1 to extend this element to A n. The
definitional equalities for the recursor in N is then entailed by the constraint on extension
structures.

We do the same for the booleans in `2.

Fan theorem Let U be some universe. We prove that the fan theorem holds in the
boolean stack model :

T : 2N ×N→ U , p : Π
(
α : 2N

)
Σ (n : N)T (α, n)

`2 fan T p : Σ (M : N) Π
(
α : 2N

)
Σ (n : N)n ≤M ∧ T (α, n)

First we can see that the interpretation of the type B of the booleans is isomorphic
to the presheaf π0 (I, B) = B, because an element f : 2 → B of B (I, B) is uniquely
determined by the image of 1 (or 0, it doesn’t matter which one). Then the semantic
of 2N is isomorphic at stage (I, B) to the functions N → B. This comes from the fact
that we do not need to lift into `2 the domain on a Π-type, and then that the functions
with lifted domain are isomorphic with the function with unlifted domain. If we take the
object C ∈ B to be the boolean algebra generated by countably many elements then we
have that 2N is represented by A := 1�×C, that is to say that 2N is isomorphic with the
morphisms to A in Ĉ.

The hypothesis of the fan theorem then means that for each morphisms f : B′ → B
and α : B′ → A in C there exists a partition Bi of B′ and for each i a natural number ni
such that T (α, ni) is inhabited at Bi for every i. To prove the theorem we then have to
choose an upper bond of each ni that can only depend on B, and prove that this choice
is natural.

To that extent we take B′ to be the product B ×A (which exists because C is a cube
category and thus has finite products) and f and α to be the projections. This gives us
a partition of B ×A and natural numbers which provide inhabitants for T . But because

REFERENCES 19

of the universal property of the products, any two arrows f : B′ → B and α : B′ → A
factors through B ×A and the corresponding projections. This means that the result at
B × A will restrict to any arrows under B, so we can choose at stage B a partition and
natural numbers that we will be greater than the ones at B × A.

It remains to prove that we can make this choice into a natural transformation. To
that extent we will rely of an explicit description of the coproduct of boolean algebras,
which becomes the product in C. An element of B × A is made of two partition B and
A of respectively B and A and a coloring c : B × A → 2 for all x 6= y ∈ B we have
c (x,−) 6= c (y,−) and for all x 6= y ∈ A, c (−, x) 6= (−, y). The inverse image of 1 by
c is then a finite formal sum of pairs of elements (x, y) where x ∈ B and y ∈ A. The
operations are taken pointwise and we take care of collapsing the partitions B and A
to preserve the invariant of the coloring. A partition with natural numbers of B × A is
then a function c like before but with codomain any finite subset of N. Our choice of
upper bound that does depend on A is then to take the maximum each line c (x,−) along
x ∈ (B) in order to get a partition with natural numbers on B. Such choice is natural
because the maximum of lines along B in B×A does not change along restrictions of the
form f × idA : B′ × A→ B × A with f : B′ → B.

Conclusion
This internship report aimed at proving the well-definedness and the usefulness of internal
languages in the study of models of dependent type theory. The ease with which we prove
the compatibility between univalence and the fan theorem should be a testimony of that
simplicity. In fact I spent most of my time during that internship gathering the knowledge
required to work about these subjects and trying out definitions, as the proofs themselves
are often immediate and straightforward.

We think that the compatibility result found in this internship is worth a publication
by itself, as the fan theorem is the key lemma to enable point-wise topology in a con-
structive theory. We also believe that we could get an other intuitionistic principle in
that setting, the fact that all functions from the real numbers onto themselves are con-
tinuous, with little efforts. We hope to find in the future more use of the constructions
described here, as they allow the description of more models of dependent type theory
with univalence.

On a more personal note this internship has been invaluable in all it allowed me to
learn about dependent type theories. Also, I can say from this experience that logic in
computer science is the field in which I want to specialize.

References
[Acz98] Peter Aczel. On relating type theories and set theories. In Types for Proofs and

Programs, International Workshop TYPES ’98, Kloster Irsee, Germany, March 27-
31, 1998, Selected Papers, pages 1–18, 1998.

[Bar10] Bruno Barras. Sets in coq, coq in sets. J. Formalized Reasoning, 3(1):29–48, 2010.

REFERENCES 20

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubi-
cal type theory: a constructive interpretation of the univalence axiom. CoRR,
abs/1611.02108, 2016.

[Dyb00] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log., 65(2):525–549, 2000.

[GS17] Nicola Gambino and Christian Sattler. The frobenius condition, right properness,
and uniform fibrations. 2017.

[Hir09] Philip Hirschhorn. Model categories and their localizations, volume 99 of Mathemat-
ical Surveys and Monographs. American Mathematical Society, 2009.

[HS97] Martin Hofmann and Thomas Streicher. Lifting grothendieck universes, 1997.
[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes

in models of homotopy type theory. CoRR, abs/1801.07664, 2018.
[ML79] Per Martin-Löf. Constructive mathematics and computer programming. Logic,

Methodology and Philosophy of Science, VI:176–184, 1979.
[MM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer-

Verlag New York, 1994.
[OP17] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory in a

topos. CoRR, abs/1712.04864, 2017.
[Str91] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and In-

dependence Results. Birkhauser Boston Inc., Cambridge, MA, USA, 1991.
[Voe10] Vladimir Voevodsky. Univalent foundations project. a modified version of an NSF

grant application, page 1–12, October 2010.

A PROOFS FROM SECTION 1 21

A Proofs from section 1

A.1 Semantic weakening

Let be n, k ∈ N with k ≤ n, N ∈ termn and ξ ∈ Ĉn+1. We prove by induction that

[M]π̂k(ξ) ⇐⇒ [↑k M]ξ

∀x ∈ C, ∀ρ ∈ ξx, JMKπ̂k(ξ) (x, π̂k (ρ)) = J↑k MKξ (x, ρ)

• ↑k vari, i < k = vari

We first have to prove that [vari]π̂k(ξ) ⇐⇒ [vari]ξ, but both sides are true by
definition.

Let be x ∈ C and ρ ∈ ξx. We have to prove that JvariKπ̂k(ξ) (x, π̂k (ρ)) = JvariKξ (x, ρ)
that is to say ρi = ρi because i < k.

• ↑k vari, i ≥ k = vari+1

We first have to prove that [vari]π̂k(ξ) ⇐⇒ [vari+1]ξ, but both sides are true by
definition.

Let be x ∈ C and ρ ∈ ξx. We have to prove that JvariKπ̂k(ξ) (x, π̂k (ρ)) = Jvari+1Kξ (x, ρ)
that is to say ρi+1 = ρi+1 because i ≥ k.

• ↑k M N = (↑k M) (↑k N)

This is straightforward rewriting thanks to the induction hypothesis.

• ↑k λ A M = λ (↑k A) (↑k+1 M)

It follows from the induction hypothesis on A that [A]π̂k(ξ) ⇐⇒ [↑k A]ξ and then
that JAKπ̂k(ξ) ∈ typeπ̂k(ξ) ⇐⇒ [↑k A]ξ ∈ typeξ. To prove the equivalence we then
have to prove that

[M]π̂k(ξ)·JAKπ̂k(ξ)
⇐⇒ [↑k+1 M]ξ·J↑kAKξ

We know thanks to the induction hypothesis on M that

[M]π̂(k+1)(ξ·J↑kAKξ)
⇐⇒ J↑k+1 MKξ·J↑kAKξ

Hence we only have to prove that π̂k (ξ) · JAKπ̂k(ξ) = π̂(k+1)

(
ξ · J↑k AKξ

)
to get the

equivalence we want.

Let be (ρ, a) ∈ π̂k (ξ) · JAKπ̂k(ξ) (x) with x ∈ C. By definition, ρ ∈ π̂k (ξ)x and
a ∈ JAKπ̂k(ξ) (x, ρ) (idx). ρ ∈ π̂k (ξ)x implies that there exists ρ′ ∈ ξx such that
ρ = π̂k (ρ′). Thanks to the induction hypothesis on A we have that JAKπ̂k(ξ) (x, ρ) =
J↑k AKξ (x, ρ′) so we have that a ∈ J↑k AKξ (x, ρ′) (idx). It follows that (ρ′, a) ∈
ξ · J↑k AKξ and that (ρ, a) ∈ π̂(k+1)

(
ξ · J↑k AKξ

)
. We have one inclusion. The other

inclusion is proven the same way, we only reverse the proof.

A PROOFS FROM SECTION 1 22

To complete the proof of this case we also have to prove that the morphisms of the
two previous presheaves are equal, and that the equality part of the lemma holds.
But this is immediate thanks to the induction hypothesis.

• ↑k Π A M = Π (↑k A) (↑k+1 M)

Like in the previous case we have

[A type]π̂k(ξ) ⇐⇒ [↑k A type]ξ

[M]π̂k(ξ)·JAKπ̂k(ξ)
⇐⇒ [↑k+1 M]ξ·J↑kAKξ

and the associated equalities thanks to the induction hypothesis. The only difference
between this case and the previous is that we have to show

JMKπ̂k(ξ)·JAKπ̂k(ξ)
∈ typeπ̂k(ξ)·JAKπ̂k(ξ)

⇐⇒ J↑k+1 MKξ·J↑kAKξ
∈ typeξ·J↑kAKξ

before proving the goal equivalence and equality the same way as before. But this
is straightforward rewriting using the induction hypothesis and the equalities that
we can derive like in the previous case.

• ↑k Σ A M = Σ (↑k A) (↑k+1 M)

We prove this case like the previous one.

• ↑k M,N = (↑k M) , (↑k N)

Straightforward using the induction hypothesis.

• ↑k M.1 = (↑k M) .1

Straightforward using the induction hypothesis. We have to use the equality part
of the induction hypothesis to prove the goal equivalence, but because “no types
are dependent” this is indeed straightforward.

• ↑k M.2 = (↑k M) .2

We prove this case like the previous one.

• ↑k Ul = Ul
Immediate. Indeed, both sides are the same.

• ↑k Ω = Ω

Immediate.

• ↑k ∗ = ∗
Immediate.

• ↑k M ≡A N = (↑k M) ≡↑kA (↑k N)

Straightforward using the induction hypothesis.

A PROOFS FROM SECTION 1 23

• ‖U‖ [k \N] = ‖U [k \N]‖
Straightforward using the induction hypothesis.

• |U | [k \N] = |U [k \N]|
By induction if U is defined then U [k \N] is also defined. The result follows.

• 〈T 〉 [k \N] = 〈T [k \N]〉
This is also straightforward.

A.2 Semantic substitution

Let be n, k ∈ N, S ∈ termn and ξ ∈ Ĉn+1+k such that [S]π−>k(ξ) and

∀x ∈ C, ∀ρ ∈ ξx, πk (ρ) = JSKπ−>k(ξ) (x, π−>k (ρ))

Then for all M ∈ termn+1+k we have

[M]ξ ⇐⇒ [M [k \ S]]π̂k(ξ)

∀x ∈ C, ∀ρ ∈ ξx, JMKξ (x, ρ) = JM [k \ S]Kπ̂k(ξ) (x, π̂k (ρ))

We prove this by induction. Most of the cases (actually all but the variable cases)
follows the same pattern as their corresponding case in the semantic weakening proof so
we omit them here.

• var0 [0 \ S] = S

We first have to prove [var0]ξ ⇐⇒ [S]π̂0(ξ). The left side is true by definition and
the right one by hypothesis. The associated equality that we then have to prove is
also true by hypothesis.

• vari+1 [0 \ S] = vari

Both side of the equivalence are true by definition. The equality follows by compu-
tation of both side.

• var0 [k + 1 \ S] = var0

Same as previous.

• vari+1 [k + 1 \ S] =↑0 (vari [k \ S])

We first have to prove that

[vari+1]ξ ⇐⇒ [↑0 (vari [k \ S])]π̂(k+1)(ξ)

Because the left side is true by definition we only have to prove that the right side
is true. By the induction hypothesis we know that

[vari]π̂0(ξ) ⇐⇒ [vari [k \ S]]π̂{0,k+1}(ξ)

which also implies that [vari [k \ S]]π̂{0,k+1}(ξ)
holds. We then use the weakening

lemma to prove the equivalence of the right hand sides of both equations.
The equality part of the lemma is also proved thanks to the weakening lemma.

A PROOFS FROM SECTION 1 24

A.3 Derivation rules

We prove here that the derivation rules from the theory in the first section are valid in
any presheaf model.

Structural rules

ε `

The empty context is always defined, and its semantic is the 0-product in Ĉ.

Γ ` A type

Γ, A `

The semantic predicate of the hypothesis and the conclusion are the same.

Γ,∆ ` J Γ ` A type

Γ, A, ↑ ∆ `↑|∆| J

We prove by induction on ∆ that the weakening context is well defined thanks to the
weakening lemma. Then the same lemma then proves that the conclusion holds.

Γ, A,∆ ` J Γ `M : A

Γ,∆ [M] ` J [|∆| \M]

As in the previous case we first use the substitution lemma to prove by induction
on ∆ that the conclusion’s context is defined. Then we conclude with the substitution
lemma.

Γ, A `
Γ, A ` var0 : A

This is immediate.

Definitional equality

Γ ` A type

Γ ` A = A type

Γ ` A = B type

Γ ` B = A type

Γ ` A = B type Γ ` B = C type

Γ ` A = C type

Γ `M : A
Γ `M = N : A

Γ `M = N : A
Γ ` N = M A

Γ `M = N : A Γ ` N = O : A
Γ `M = O : A

The definitional equality on types and on terms is an equivalence relation because it
is

Γ `M = N : A Γ,∆ [M] ` J [M]

Γ,∆ [N] ` J [N]

A PROOFS FROM SECTION 1 25

We have that M and N are both defined and that there semantic is the same, so the
conclusion holds.

Γ, A `M = N : B Γ ` λ A M

Γ ` λ A N

Γ, A `M = N : B Γ ` Π A M

Γ ` Π A N

Γ, A `M = N : B Γ ` Σ A M

Γ ` Σ A N

These congruence rules are also immediate to prove thanks to the hypothesis that M
and N have the same semantic.

Universes

Γ `
Γ ` Ul type

Γ `
Γ ` Ω type

Universes are types by definition, so the conclusion reduces to the context being
defined, which is the hypothesis.

Γ `
Γ ` Ul : Ul+1

Γ `
Γ ` Ω : U0

These rules holds thanks to the definition of Grothendieck universes. Indeed all the
constructions made to construct a type theoretic universe univn are made is n + 1-th
Grothendieck universe. The propositional universe is itself built in the first Grothendieck
universe.

Γ ` A : Ul
Γ ` A type

Γ ` A : Ω
Γ ` A type

To be a type is defined as to be an element of some universe but without the set
theoretic size constraints, hence these rules hold.

Γ ` A : Ul
Γ ` A : Ul+1

Γ ` A : Ω
Γ ` A : U0

The only differences being the universes are size constraints. Those rules weaken these
constraints.

A PROOFS FROM SECTION 1 26

Product types

Γ, A ` B type

Γ ` Π A B type

It is immediate to see that [Π A B]JΓK, and it is also immediate to see from its definition
that, ∀x, y ∈ C, ∀ρ ∈ JΓKx, f ∈ C (y, x), we have JΠ A BKJΓK (x, ρ) ∈ Cat (C/x, Set).

Let be x, y, z ∈ C, f ∈ C (y, x), g ∈ C (z, y) and ρ ∈ JΓKx.

JΠ A BKJΓK (y, ρ · f) (g)

= (h ∈ ΣwC (w, z))→
(
a ∈ JAKJΓK (w, ρ · f · g · h) (idw)

)
→

JMKJΓK·JAKJΓK
(w, (ρ · f · g · h, a)) (idw)

= (h ∈ ΣwC (w, z))→
(
a ∈ JAKJΓK (w, ρ · (f ◦ g) · h) (idw)

)
→

JMKJΓK·JAKJΓK
(w, (ρ · (f ◦ g) · h, a)) (idw)

= JΠ A BKJΓK (x, ρ) (f ◦ g)

JΠ A BKJΓK (y, ρ · f)
(←−g idy

)
=

(
e ∈ JΠ A BKJΓK (y, ρ · f) (idy)

)
7→ (h ∈ ΣwC (w, z)) 7→ e (g ◦ h)

=
(
e ∈ JΠ A BKJΓK (x, ρ) (f)

)
7→ (h ∈ ΣwC (w, z)) 7→ e (g ◦ h)

= JΠ A BKJΓK (x, ρ)
(←−g f

)
With this we have JΠ A BKJΓK ∈ typeJΓK, and thus the validity of the rule.

Γ ` A : Ul Γ, A ` B : Ul
Γ ` Π A B : Ul

We have all the conclusion but the size constraints from the previous derivation rule.
These constraints are satisfied because only constructions under which universes are stable
are used, so that the result is still in the l-th Grothendieck universe.

Γ, A `M : B

Γ ` λ A M : Π A B

Likewise almost everything is immediate. We only need one more equality to prove
that Jλ A MK ∈ typeJΓK,JΠ A BKJΓK

.

JΠ A BKJΓK (x, ρ) (f : idx → f)
(
Jλ A MKJΓK (x, ρ)

)
= (g ∈ ΣzC (z, y)) 7→ Jλ A BKJΓK (x, ρ) (f ◦ g)

= (g ∈ ΣzC (z, y)) 7→ Jλ A BKJΓK (y, ρ · f) (g)

= Jλ A BKJΓK (y, ρ · f)

Γ `M : Π A B Γ, A ` N : B

Γ `M N : B [N]

A PROOFS FROM SECTION 1 27

The fact that M N is well defined is immediate from the hypothesis. Also, Γ ` B [N]
is defined thanks to the substitution lemma. We then recover from the semantic of a
Π-type that the codomain of the application that defines M N is B [N].

Γ, A `M : B Γ ` N : A

Γ ` (λ A M) N = M [N] : B [N]

Substituted terms are defined thanks to the substitution lemma. The rule then follows
from computations of the semantics.

Sum types

Γ, A ` B type

Γ ` Σ A B type

Γ ` A : Ul Γ, A ` B : Ul
Γ ` Σ A B : Ul

We show the first of the two derivation rule, the other will follow easily by looking at
the size of the semantics.

It is immediate to see that [Σ A B]JΓK holds. Let be ξ := JΓK. Let x, y, z ∈ C, ρ ∈ ξx,
f ∈ C (y, x), g ∈ C (z, y) and (a, b) ∈ JΣ A BKξ (x, ρ) (f). We have

JAKξ (y, ρ · f)
(←−g idy

)
(a)

∈ JAKξ (y, ρ · f) (g)

= JAKξ (z, ρ · f · g) (idz)

JBKξ·JAKξ
(y, (ρ · f, a))

(←−g idy
)

(b)

∈ JBKξ·JAKξ
(y, (ρ · f, a)) (g)

= JBKξ·JAKξ

(
z,
(
ρ · f · g, JAKξ (y, ρ · f)

(←−g idy
)

(a)
))

(idz)

Hence JΣ A BKξ (x, ρ)
(←−g f

)
(a, b) ∈ JΣ A BKξ (x, ρ) (f ◦ g) and JΣ A BKξ (x, ρ) ∈

Cat (C/x, V). The two other results needed to have JΣ A BKξ ∈ typeξ are immediate
thanks to the definitions.

Γ, A ` B type Γ `M : A Γ ` N : B [M]

Γ `M,N : Σ A B

It is immediate to see that [M,N]ξ and JΣ A BKξ ∈ typeξ, where ξ := JΓK. Let x ∈ C,
ρ ∈ ξx. Because of the substitution lemma we have that

JBKξ·JAKξ

(
x,
(
ρ, JMKξ (x, ρ)

))
(idx) = JB [M]Kξ (x, ρ) (idx)

It follows that JM,NKξ (x, ρ) ∈ JΣ A BKξ (x, ρ) (idx). It is then straightforward to see
that, ∀x, y ∈ C, ∀f ∈ C (y, x), ∀ρ ∈ ξx,

JΣ A BKξ (x, ρ)
(←−
f idx

)(
JM,NKξ (x, ρ)

)
= JM,NKξ (u, ρ · f)

A PROOFS FROM SECTION 1 28

Γ `M : Σ A B
Γ `M.1 : A

Γ, A ` B type Γ `M : A Γ ` N : B [M]

Γ ` (M,N) .1 = M : A

Γ `M : Σ A B
Γ `M.2 : B [M.1]

Γ, A ` B type Γ `M : A Γ ` N : B [M]

Γ ` (M,N) .2 = N : B [M]

These rules are straightforward to prove. We still need the substitution lemma to
have that the substituted terms are well-defined.

Propositions

Γ ` A : prop Γ `M : A

Γ `M = ∗ : A

Γ ` A : Ω Γ ` B : Ω Γ, x : A ` b : B Γ, x : B ` a : A

Γ ` A = B : Ω

By unfolding the last two hypothesis we have that at each stage whenever A or B is
inhabited then the other is. It follows that their squashed types are equal, but A and B
being in prop they are equal to their squashing.

Squash types

Γ ` A type

Γ ` ‖A‖ : Ω

Notice that, ∀x, y, z ∈ C, ∀ρ ∈ JΓKx, ∀f ∈ C (y, x), ∀g ∈ C (z, y),

JAKJΓK (x, ρ)
(←−g f

)
: JAKJΓK (x, ρ) (f)→ JAKJΓK (x, ρ) (f ◦ g)

hence
JAKJΓK (x, ρ) (f) 6= 0 =⇒ JAKJΓK (x, ρ) (f ◦ g) 6= 0

The validity of the rule is then straightforward to prove.

Γ `M : A
Γ ` |M | : ‖A‖

The rule follows from the definition of a squashed type.

Γ ` N : A→ B Γ, A,A ` N var1 = N var0 : B

Γ ` 〈N〉 : ‖A‖ → B

N being a constant function we have that 〈N〉 is defined. We get its domain and thus
its type from N .

Γ ` N : A→ B Γ, A,A ` N var1 = N var0 : B Γ `M : A

Γ ` 〈N〉 |M | = N M : B

This is immediate by looking at the semantics, knowing that N is a constant function.

B PROOFS FROM SECTION 2 29

Propositional equality

Γ `M : A Γ ` N : A
Γ `M ≡A N : Ω

Γ `M = N : A
Γ ` ∗ : M ≡A N

Γ ` T : M ≡A N
Γ `M = N : A

These rules are straighforward to prove from the definitions.

B Proofs from section 2

B.1 Extension structure in dependent type theory

We suppose a type T of propositions and a strictness axiom for each universe level, with
∼= the type of isomorphisms, like the one stated in [OP17] for cofibrant propositions

`1 strictl : Π (ϕ : T) Π (A : ϕ→ Ul) Π (B : Ul) Π (s : Πϕ (A ∗ ∼= B))
Σ (B′ : Ul) Σ (s′ : B′ ∼= B) Πϕ (A ∗ = B′ ∧ s ∗ = s′)

Our aim will be to translate into a dependent type theory `1 a theory `2 in which
partial elements on the extent of a proposition in T can be extended. Types `2 will be
the types A in `1 equipped with an extension structure ExtA that will be translated into

Π (ϕ : T) Σ (ρ : Π ϕ A→ A) (ϕ→ Π (a : Π ϕ A) ρ a = a ∗)

In order to prove such translation we will only have to prove that the extension structure
is preserved by the type formers in `1. Hence we will work only in `1.

Product types Let A be a type that may not have extension structures and B
a type on A such that, for all a : A, B a has an extension structure ρB a. Assume
f : ϕ→ Π A B with ϕ : T. λ (a : A) ρB a (λ ϕ (f ∗ a)) is an extension of f .

Sum types Let A be a type equipped with an extension structure ρA and B a type
of A also equipped with an extension structure ρB. Let ϕ : T and t : ϕ→ Σ A B. First
we extend the first projection of t, this defines t′1 := ρA (λ ϕ (t ∗ .1)) : A. Because t′1
and t ∗ .1 are equal on ϕ then B t′1 and B (t ∗ .1) are also the same on ϕ. Hence we
can use ρB t′1 to extend the second projection of t. This defines an extension for t.

Predicative universes Let l ∈ N be a universe level. We build an extension
structure for univl. Assume ϕ : T and A : ϕ → Ul. We define B := Π ϕ A and
T := strictl ϕ A B s : Σ (B′ : Ul) Σ (s′ : B′ ∼= B) Π ϕ (A ∗ = B′ ∧ s ∗ = s′) with s being
the trivial isomorphisms between A ∗ and B over ϕ. The first projection of T defines an
extension for A.

Proposition universe Whatever the propositions ϕ : T and ψ : ϕ → Ω we have
that ‖Π ϕ ψ‖ is an extension of ψ.

B PROOFS FROM SECTION 2 30

B.2 Extension structure in cubical type theory

We use the notation 〈ϕ1 7→ a1 ; . . . ; ϕn 7→ an〉 to denote the system defined on ϕ1 ∨
. . . ∨ ϕn whose value at ϕi is ai for each i in {1, . . . , n}.

Stability by isomorphism An helpful lemma will be the stability of extension
structures by strict isomorphism. Let A be a type with an extension ρ and a type B
strictly isomorphic to A. Let f : A → B and g : B → A be the two side of the iso-
morphism. We use the isomorphism to lift the extension operation (without the equality
constraint) from A to B. This defines a term

p := λ (ϕ : T) λ (a : Π ϕ A) f (ρ ϕ (λ ϕ g (a ∗))) : Π (ϕ : T) Π ϕ A→ A

and we have on the extent of ϕ : T that

p ϕ a = f (ρ ϕ (λ ϕ g (a ∗)))
= f (g (a ∗))
= a ∗

Hence p defines an extension structure for B.

Path types We define the type Path A a b := Σ (p : I→ A) p 0 = a ∧ p 1 = b.
Assume that A as an extension structure ρ and terms ϕ : T and p : ϕ→ Path A a b with
a and b defined globally. By hypothesis on T, if we add an element i : I to the context
then the proposition ψ := ϕ ∨ i = 0 ∨ i = 1 is still in T. We define

s := λ (i : I) ρ ψ (λ ψ 〈ϕ 7→ (p ∗ i) ; i = 0 7→ a ; i = 1 7→ b〉) : I→ A

We have by definition of ρ that s 0 = a and s 1 = b so that s defines an element of
Path A a b. Moreover we have that this path is equal to p on ϕ.

Glue types Because of the stability of extension structures by isomorphism we only
need to be able to lift the type

G = Glue ϕ A B f := Σ (a : ϕ→ A ∗) Σ (b : B)ϕ→ f ∗ (a ∗) = b

with ϕ : F, A : ϕ → U , B : U and f : (u : ϕ) → A u → B, to be able to lift the strict
glue type from [OP17].

Assume that A and B have extension structures ρA and ρB and that we have terms
ψ : T and g : ψ → G. By postcomposing g with the right projections we get the three
following terms

a : ψ → ϕ→ A ∗
b : ψ → B
e : ψ → ϕ→ f ∗ (a ∗ ∗) = b ∗

B PROOFS FROM SECTION 2 31

We first extend a into

a′ := λ (_ : ϕ) ρA ∗ ψ (λ (_ : ψ) a ∗ ∗) : ϕ→ A ∗

We then extend b on ψ ∨ ϕ : T in order to preserve the equality constraint. Thus we get

b′ := ρB (ψ ∨ ϕ) 〈ψ 7→ b ∗ ; ϕ 7→ f ∗ (a′ ∗)〉 : B

On ψ this restricts to b and on ϕ it implies the equality constraint of glue types.

Composition structures It remains to prove that we can extend composition
structures for type families as in [OP17]. Let B be a type family on a type A. A
composition structure for B is a function

cB : Π (ϕ : F) Π (f : I→ A) Π (p : ϕ→ Π (i : I)B (p i))
Π (x0 : B (p 0)) (ϕ→ p ∗ 0 = x0)→ Σ (x1 : B (p 1))ϕ→ p ∗ 1 = x1

Consider that we have a composition structure for B on the extent of ψ : T and that
we have an extension structure for the type family B. We use here the same trick as
before, that is to say that we construct the result of the composition structure we extend
the system on ψ ∨ ϕ made by x1 on ψ and p ∗ 1 on ϕ (by hypothesis x1 may not be
defined on ϕ).

