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Talk 1.
Coquand’s Semantics of Evidence

If we add to Tarski games the possibility 
of retracting each move finitely many times, 

we obtain an effective,  sound and complete model 
of Truth for Classical Arithmetic

Stefano Berardi
C.S. Dept., Turin University http://www.di.unito.it/~stefano

A <<Semantics of Evidence>>
for Peano Arithmetic PA

• In an unpublished work, rediscovered in 1970
[Bern], Gentzen provided a proof that PA is
consistent, a proof which may be read as a game
theoretical interpretation of PA.

• In June 1991, T. Coquand [Coq91] built over this
work, providing an interpretation of proofs of PA
as recursive winning strategies of a suitable game.

• Coquand calls his work a Semantics of Evidence,
because it interprets a classical proofs as the
construction of an evidence for its thesis.
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Tarski Games for 
Arithmetical Formulas

• In a Tarski game, the play is between Nature (also
called Abelard, the opponent) and Myself (also called
Eloise) Myself tries to defend the truth of the formula
while Nature attack it.

• We first give a semantics for closed prenex arithmetical
formulas only: A = xyz … p(x,y,z,…) , for any
primitive recursive p.

• Rules of the play. When the formula is existential,
Myself chooses an instance of it, when the formula is
universal, Nature chooses an instance of it.

• When we reach an atomic instance p(a,b,c,…), if it is
true then Myself wins, if it is false Nature wins.

Tarski Games in Set Theory 
(with non-recursive strategies)

• Myself has a (usually non-recursive) winning
strategy for A if and only if A is true.

• Nature has a (usually non-recursive) winning
strategy for A if and only if A is false.

• The optimal strategy for Myself is to choose some
true instance of A, if any, and to move 0 otherwise.

• The optimal strategy for Nature is to choose some
false instance of A, if any, and to move 0 otherwise.

• The objection to this semantics is: we only recopy
the classical definition of truth in game theoretical
terms.

Tarski Games restricted 
to recursive strategies 

• If we want an effective semantics, a proof should be
interpreted by a recursive winning strategy.

• However, for most theorems of PA, say A =
xyz. q(x,y,z) (with q(x,y,z)p(x,y)~p(x,z) )
• there is no recursive winning strategy (see next

slide). Thus, Tarski Games are no effective
interpretation of PA.

• The problem is that we impose no limitation
whatsoever to the way Nature selects its moves, and
therefore Nature is much stronger than Myself.

Proof: there is no recursive winning 
strategy for xyz.q(x,y,z)

• Choose any non-recursive 0
1-predicate y.p(x,y),

and define q(x,y,z)  p(x,y)~p(x,z).
• Assume there is a recursive map b=(a), selecting

our move y=b out of the move x=a of Nature, in
such a way to win the game for xyz.q(x,y,z).

• Then for all x, z the formula q(x,(x),z), that is,
p(x,(x))~p(x,z), is true. If p(x,(x)) is true, then
y.p(x,y) is true. If p(x,(x)) is false, then ~p(x,z) is
true for all z, therefore y.p(x,y) is false.

• Thus, y.p(x,y), being equivalent to p(x,(x)), is a
recursive predicate. Contradiction.
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Retracting a previous move

• In order to counteract the overwhelming power of
Nature, we allow Myself to retract any of his
previous moves finitely many times, and to move
again from this position, restarting the game.

• However, if the play is infinite then Myself loses.
• This bonus to Myself produces a perfect balance of

power: we may classically prove that there is a
winning strategy for Myself over a prenex formula
of PA if and only if the formula is true (see later).

• Coquand called the retraction of a previous move:
Backtracking

There a recursive winning strategy 
for xyz.q(x,y,z)
using backtracking

• Nature plays x=a. Myself answer y=0.
• Nature plays z=c.
• If q(a,0,c), that is, p(a,0)~p(a,c), then Myself wins.
• Otherwise p(a,c) is true. Myself retracts his first

move y=0. This times, Myself moves y=c.
• Nature plays any z=d. Myself wins, because the

final position is p(a,c)~p(a,d), and p(a,c) is true.
• Myself wins with a strategy by trial and error.

Myself uses his mistakes to improve his moves.

There a recursive winning strategy 
for xy.f(x)f(y) (with f:NatNat)

using backtracking
• Myself plays x=a0=0.
• Nature plays y=a1 such that f(a0)>f(a1)
• Myself retracts his first move x=a0. This times,

Myself moves x=a1.
• Nature plays y=a2 such that f(a1)>f(a2).
• Myself retracts his second move x=a1. This times,

Myself moves x=a2.
• Since f(a0)>f(a1)>f(a2)>f(a3)>…, eventually Nature

plays some y=ai+1 such that f(ai)  f(ai+1) and loses.

Generalization to all closed formulas of PA
• We call , , ,  the positive connectives: ,  are

disjunctive and ,  conjunctive.
• Rules for , . When the formula is AB, Myself

chooses either A or B. When the formula is AB,
Nature chooses either A or B.

• We define A as the dual of A, by switching all 
with , all  with , and each closed atomic formula
p(a,b,c,…) with p(a,b,c,…), with p the primitive
recursive predicate complement of p.

• In the original Coquand’s formalization there are no
connective AB and ~A: they are represented by
AB and A.
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Closed sequents of PA interpreting plays
• A sequent  = A1, …, An interprets a (possibly

unfinished) play with backtracking if all formulas
are closed, all but at most the last one are
disjunctive, and:

1. An is the current position.
2. the formulas Ai with i<n are all previous positions

of the play from which Myself moved, in the same
order they have in the play.

• A sequent  is valid if there is some recursive
winning strategy from the position of the play
interpreted by .

Closed sequents of PA interpreting plays
Let A=xyz.q(x,y,z) (q(x,y,z) p(x,y)~p(x,z))
•  ={A} interprets the initial position of the play.
•  ={yz.q(a,y,z)} interprets the play after Nature

moves x=a.
•  ={yz.q(a,y,z), z.q(a,0,z)} interprets the play

after Myself moves y=0.
•  ={yz.q(a,y,z), q(a,0,c)} interprets the play after

Nature moves z=c.
•  ={yz.q(a,y,z), q(a,0,c), z.q(a,c,z)} interprets

the play after Myself retracts his first move y=0 and
moves y=c this time.

Interpreting some closed sequents of PA
•  ={yz.q(a,y,z), q(a,0,c), z.q(a,c,z), q(a,c,d)}

interprets the play after Nature moves z=d.
• This is the final position of the play. Since q(x,y,z)
 p(x,y)~p(x,z), then, as we already explained:

1. either q(a,0,c) is true, and the play terminates with
q(a,0,c),

2. or q(a,c,d) is true, no matter what is the value of d,
and the play terminates with q(a,c,d).

In which sense we have 
a Semantics of Evidence?

• The note of June, 1991 is quite informal but raises
two precise problems about the semantics of
evidence.

• Problem 1. How much are the moves of a winning
strategy for Myself reliable?

• In general, the moves of Myself are only attempts
to find the right move.



06/05/2014

5

The moves of a winning strategy for 
Myself are reliable for 0

2-formulas
• Indeed, a winning strategy for a formula
xy.p(x,y), with p symbol for primitive recursive
predicate, must effectively provide for each x=a
some y=b such that p(a,b) is true.

• Instead, Myself may win a game for xy.p(x,y) by
playing a false witness x=a for yz.(p(x,y),
provided Nature is unable to find some y=b such
that ~p(a,b), even if such b exists.

• If A is not a 0
2-formula, a winning strategy may

produce a wrong witness.

The interest of 0
2-formulas

• 0
2-formula are specifications of algorithms and

play a central role in an applicative view of
Mathematics.

• Formulas which are not 0
2-formulas may be

considered as Lemmas in the derivation of a 0
2-

formula. Even if win the play we are not sure we
have a correct witness for them.

• However, even an imprecise evidence for a Lemma
which is not 0

2 may be enough for producing a
precise evidence for a 0

2-thesis.

In which sense we have 
a Semantics of Evidence?

• Problem 2. Are games with backtracking a sound
interpretation for all logical rules? That is: if all
premises of a rule of Sequent Calculus are valid, is
the conclusion valid?

• Modus ponens and Cut rule are problematic. Given a
recursive winning strategy for A and for AB =
AB we should produce a winning strategy for B.

• This is easy to do for Tarski games, but problematic
in the case of games with backtracking.

The symmetry of Tarski Games makes 
the interpretation of cut easy

• Let A, B be any formula of PA.
• Any strategy for Myself in a Tarski game over A

corresponds to a strategy for Nature in a Tarski
game over A, and conversely. The reason is that a
strategy for Myself moves over disjunctive
subformulas of A, which correspond to conjunctive
subformulas of A, those on which Nature moves.

• Therefore we may interpret Modus Ponens over
Tarski games by playing the winning strategy for
AB against the winning strategy for A over A,
and against Nature over B.
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The asymmetry of the Semantics of 
Evidence makes Cut rule problematic

• Let A be any formula of PA.
• Most strategies for Myself in a game with

backtracking over A do not correspond to a strategy
for Nature in a game with backtracking over A,
because Myself may backtrack, while Nature
cannot.

• The solution proposed by Coquand it to allow both
players to backtrack, but to reduce the visibility of
past moves for each of them, in such a way that
each player does not see that the other player
backtracks.

An asymmetric view of past moves 
restores the asymmetry of cut rule 

• Whenever a player comes back to a previous move
and changes it, he makes invisible to the other
player all moves from the move he changes. The
other player does not perceive the backtracking done
by his opponent.

• For each player in a cut rule, the other player looks
like Nature, non-recursive and non-deterministic,
while in fact he looks so only for lack of
information.

• This symmetric illusion restore the asymmetry
Myself/Nature in the interpretation of cut rule.

Toward a formal definition 
of game with backtracking and cut

• It not easy to provide a mathematical description of
the symmetric illusion making each player non-
recursive, non-deterministic and without
backtracking to the eyes of the other player.

• T. Coquand solves this problem in a message to the
type net of Jan., 4 1992, introducing the
combinatorial notions of Interaction Sequence and
view.

Interaction Sequences
• An interaction sequence is any map f:{1,…,n}

{0,…,n-1}, such that f(i)<i and i, f(i) have the same
parity.

• The integers are indexes of moves in a game with
backtracking. The player doing the move of index i
moves back to f(i), erases all moves after f(i) if any
from the memory of the other player, then moves.

• Coquand assumes that players alternate. One
player moves at even positions and comes back to
even positions. The other player moves at odd
positions and comes back to odd positions.
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A notion of visibility
• There is a notion of visibility for each player. If a

player makes a move invisible to the other, we say that
he makes the other to forget the move.

1. The move number j is immediately visible from
player p from move i if either p does the move i and
j=i-1, or the opponent of p does the move i and j=f(i).

2. Visibility is the transitive closure of immediate
visibility.

3. If p does the moves i we require that f(i) is visible by p
from i-1.

• f(i) is the move to which the opponent of p comes back
before moving i.

An example of visibility
• We introduce the sequences of interactions for the

play from A=xyz.q(x,y,z) (with q(x,y,z) 
p(x,y)~p(x,z)). We represent j=f(i) by an arrow
from j to i.

yz.q(a,0,z) q(a,0,c) z.q(a,c,z)z.q(a,y,z)

backtracking

A

10 2 3 4

We have f(0)=1, f(2)=1, f(3)=2, f(4)=1. In the move
4, Myself comes back to yz.q(a,0,z), then retracts
the move z.q(a,y,z) and moves z.q(a,c,z).

An example of visibility
Myself always sees all previous moves:

yz.q(a,0,z) q(a,0,c) z.q(a,c,z)z.q(a,y,z)A

10 2 3 4
Nature cannot see the moves in ]1,4[, because Myself
erased them from its view, when he retracted the move
2: z.q(a,y,z) and did the move 4:z.q(a,c,z)

yz.q(a,0,z) z.q(a,c,z)A

10 4

The formal definition of a game 
with backtracking and cut rule

• We recall that moves in a play with backtracking
and cut have an additional visibility constraint:

if p does the move i, then f(i) is visible by p from i
• This clause concludes the definition of game with

backtracking and cut.
• This clauses expresses the fact that the opponent of

p forced p to forget the existence of some moves,
and p cannot backtrack to a move of which he
ignores the existence.
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Lifting of a strategy to a game with cut

• If we have a recursive strategy for Myself in a game
with backtracking but without cut (in which Nature
cannot backtrack), we may lift it to recursive
strategy in a a game with cut (in which Nature
backtracks).

• The reason is that the part of a play visible by
Myself is always cut-free: Myself cannot catch
Nature to backtrack, becomes when this happen,
Nature makes Myself to forget that this happened.

• We call these strategies lifted strategies.

The visibility makes 
the interpretation of Cut rule possible

• Let A, B be any formula of PA.
• Any strategy for Myself in a game with

backtracking and cut over A corresponds to a
strategy for Nature over A, and conversely, because
now both players may backtrack. The strategy for
Myself moves over disjunctive subformulas of A,
which correspond to conjunctive subformulas of
A, those on which Nature moves.

• Therefore we may interpret Modus Ponens over
Tarski games by playing the winning strategy for
AB against the winning strategy for A over A,
and against Nature over B.

Cut-elimination theorem for game theory

Theorem ([Coq95] 1995). The cut between a lifted
recursive winning strategy over A and a lifted
recursive winning strategy over AB is a lifted
winning strategy over B.

Proof. We give a hint in the next talk.

• To put otherwise: Cut rule preserves the validity of a
sequent in the game interpretation with
backtracking. Cut rule is interpreted by a dialogue
between strategies about the truth of the cut
formula.
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Talk 2. The Cut-Elimination 
and the Isomorphism Theorems 

for Games with Backtracking

Stefano Berardi, Semantic of Computation group
C.S. Dept., Turin University, http://www.di.unito.it/~stefano

Abstract of the talk
• We give some proof hint of the Cut-Elimination

Theorem for Games with backtracking: the Cut rule
preserve the validity of a formula in the Game
semantics.

• We include another result of interest: arithmetical proof
of a formula A of PA (Peano Arithmetic extended with
recursive -rule) are in one-to-one correspondence with
recursive winning strategies for Eloise on the game with
backtracking for A.

• Theorems of PA are exactly the classically true
arithmetical formula: thus, games with backtracking are
a recursive, sound and complete interpretation of truth
for classical arithmetic.

The language of PA

35

• The formulas of PA are all first order arithmetical
formulas we may define from symbols for all primitive
recursive functions and predicates with ,,,.

• A closed atomic formula is conjunctive if it is true and
disjunctive if it is false. A formula with first symbol
, is conjunctive, with first symbol , is
disjunctive.

• We write A = iIAi, iIAi for a generic conjunctive,
disjunctive formula of immediate subformulas {Ai|iI}:
I= if A atomic, I={1,2} if A=BC,BC, and
I={closed terms} if A= x.B, x.B.

Formulas as games
• Any formula F of PA is interpreted as a game with

backtracking.
• The moves of the game for F are the nodes of the

subformula tree for F.
• E (Myself or Eloise) moves from a disjunctive

subformula. A (Nature or Abelard) moves from a
conjunctive subformula.

• For sake of simplicity we assume as in [Coq95] that
label are alternating in every branch (we could
bypass this extra hypothesis).
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Games with backtracking
• A partial play with backtracking and cut in F is a

pair <m0, m1,…,mn> of a list of moves (nodes of the
subformula tree of F) and a map
f:{1,…,n}{0,…,n-1} such that for all i {1,…,n}:

1. m0 =F, mf(i) is the father node of mi.
2. f(i)<i and i,f(i) have a different parity.
3. f(i) is visible from i-1 by the player moving from

mi-1.
4. Visibility of player p is the sequence i-1, f(i-1), f(i-

1)-1, f(f(i-1)-1)-1, … if p has the parity of i-1, it is
the sequence f(i), f(i)-1, f(f(i)-1), … otherwise.

Strategies
• We order plays <L,f>  <L’,f’> if the list L of moves is

a prefix of L’ and the map f:{1,…,n}{0,…,n-1} is a
restriction of f’:{1,…,n’}{0,…,n’-1} .

Def. A (lifted) strategy  for player p in F is a tree of
plays in F w.r.t. the ordering , such that:

1. if p moves from <L,f> then there is at most one
successor <L1,f1> of <L,f> in ,

2. whenever the opponent of p moves from <L,f>,
then all successors of <L,f> are in .

3. if the p-visible parts of <L,f>, <L’,f’> are the same
and <L1,f1>, <L’1,f’1> are their successors in , then
the p-visible parts of <L1,f1>, <L’1,f’1> are the same

Winning Strategies and dialogues

• A strategy for p is terminating if the p-visible parts of
all <L,f> form a well-founded tree.

• A strategy  for p is winning if  is terminating and
whenever p moves from <L,f> then there is exactly
one successor of <L,f> in .

• Assume ,  are strategies for E, A on a formula F. We
call the dialogue between ,  and we denote with *
the maximal play between , .

• * is unique because each strategy has at most one
move from each position. * may be infinite.

The cut operator
• Given a strategy  of E on FG and a strategy  of E on

F we may define a strategy Cut(, ) of E on G.
• Indeed, from  we may define a strategy  of A on F, by

switching E and A. In Cut(, ), E follows , and plays
against A on G, and against the strategy  of E on F.

• We define Cut(, ) by skipping all moves on FG, F.
• Cut(, ) may fail to answer to a move of A on G

because the play on F against  may be infinite.
• However, uniqueness of the move on G is preserved by

Cut, therefore if ,  are strategies then Cut(, ) is.
• Given F = i<r Fi and for all jX[0,r[ some strategy j

for A on Fj, we may define Cut(, {j |jX}).
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The Cut-elimination Theorem for 
Games with backtracking

• Our aim is to prove: given a winning strategy  of E on
FG and a winning strategy  of E on F the strategy
Cut(, ) of E on G is winning.

• We prove first the following Lemma. Assume F = i<r Fi
and  is a terminating strategy for E on F.

1. If  is a terminating strategy for A on F then * is
finite.

2. If for some i,r and all ji we have a terminating
strategy j for A on Fj, then Cut(, {j |ji}) is a
terminating strategy for E on Fi, and every finite play
on Fi is obtained from some finite play on F.

Proof of the Main Lemma

• We argue by principal induction F = i<r Fi and
secondary induction over the ordinal height of the
strategy  for E on F.

1. Let  be a terminating strategy for A on F. We have to
prove that the dialogue * is finite.

• Assume that the first move of  is some Fi. From now
on,  may move on the subformula Fi, or may backtrack
to F and choose some j<r and move from Fj. Thus, 
defines a strategy ’ for E on F’ = Fi F0  F1  F2…,
F’ has the same height as F, while ’ has ordinal height
less than .

Proof of point 1 of the Main Lemma

• Let j<r. The terminating strategy  for A on Fj defines a
terminating strategy j for A on Fj: j is obtained by
skipping the initial position F from the set of all plays in
 in which E first moves Fj, then never backtracks to F.

1. The part of the play on Fi may be described as the
dialogue Cut(’, {j |j<r})*i. By secondary induction
hypothesis on ’, the strategy Cut(’, {j |j<r}) is
terminating. Thus, the dialogue Cut(’, {j |j<r})*I is
terminating by principal induction hypothesis on Fi, and
it is obtained from a finite play of ’, hence of . less
than .

Proof of point 2 of the Main Lemma
2. Assume that for some i,r and all ji we have a

terminating strategy j for A on Fj. We have to prove
that Cut(, {j |ji}) is a terminating strategy for E on
Fi, and every finite play on Fi is obtained from some
finite play on F.

• Between any two moves on G, the strategy Cut(, )
may play against the winning strategy  for A on F.
This dialogue is finite by point 1.

• Thus, we may map any visible part of a play <L,f>
Cut(, {j |ji}) into the visible part of some play
<L’,f’> of . From  termining we conclude the thesis.
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The Cut-elimination Theorem for 
Games with backtracking

• Given a winning strategy  of E on FG and a winning
strategy  of E on F the strategy Cut(, ) of E on G is
winning.

• Proof. By the Main Lemma, point 2, Cut(,) is
terminating, and every finite play is obtained from a
finite play of . Assume E moves from <L,f>Cut(,).
If there is no successor of <L,f> in Cut(, ), then
<L’,f’> is obtained from a terminated play in , in
which E wins on F . But this is impossible because  is
a winning strategy for A on on F.

A formulation of PA satisfying the 
proof/strategy isomorphism

46

• The formulas of PA are the formula of PA.
• Sequents of PA are ordered lists of closed formulas.
• Contraction and Exchange rules are not built-in in the

notion of sequent.
• We hyde Exchange rule through the fact that the active

formula, if disjunctive, may be in any position in the
sequent.

• Identity rule is trivially derivable in PA.
• Cut rule is derivable but not trivial at all.

A formulation of PA with 2 rules
(in one-side form, with judgements)

, Ji (all iI) (conj.: 
, iIJi for all iI, and rec. in i)

Remark the asymmetry with : we do not have , iIJ,

, iIAi, , Ai (disj. with implicit contraction and 
, iIAi,  exchange: for some iI)

Unfolding the rules of PA for 
atomic formulas

(a atomic true)
, a

If we replace iIAi, iIAi in the rules of PA with a
false, true atomic formula (hence I=) we obtain no
rule in the disjunctive case, and in the conjunctive case
a rule with no assumptions:
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Unfolding the rules of PA for , 

, A ,B (conjunctive)
, AB

, AB , , A (disj. 1) 
, AB , 

If we replace iIAi, iIAi in the rules of PA with a
finite conjunctive, disjunctive formula (hence I={1,2})
we obtain

, AB , , B (disj. 2) 
, AB, 

Unfolding the rules of PA for ,

… |-A[t/x] … (conj.: all closed terms t, rec. on t)
|- x.A 

 ,  x.A, , A[t/x] (disjunctive)
, x.A, 

If we replace iIAi, iIAi in the rules of PAwith an
existential, universal quantifier (hence I={closed
terms}) we obtain:

Soundness, Completeness and Curry-
Howard Isomorphism for PA

Theorem. Let A be any closed arithmetical formula.
1. (Soundness and Completeness) A formula A is a

theorem of PA if and only if Eloise has a recursive
winning strategy with backtracking on A.

2. (Curry-Howard) The recursive winning strategies for
Eloise on A are in one-to-one correspondence with
recursive cut-free proof-trees of A in HA, and two
corresponding trees are tree-isomorphic.

Classically, A is a theorem of if and only if A is classically
true. Thus, games with backtracking are a recursive,
sound and complete interpretation of classical truth. 51
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Talk 3. Stratifying Game 
Models for Arithmetic through 

the level of backtracking

The level of backtracking connects winning 
strategies to subclassical logics and to the 

degrees of a non-recursive map

Stefano Berardi, Semantic of Computation group
C.S. Dept., Turin University, http://www.di.unito.it/~stefano

The level 1 of Backtracking
• In the previous lessons we introduced

“Backtracking”, the possibility, in a game, to come
back to a previous move and retract it, forgetting
everything took place after it.

• Backtracking is complex to describe and to
implement.

• Coquand ([Coq91], p.90) proposed a simpler notion
of backtracking, now called “1-backtracking”. It is
a particular case of backtracking in which forgetting
is irreversible. If we forget a move we can never
restore it back.

• We will characterize the formulas validated by 1-
backtracking. 54

What we know about 
1-Backtracking

• Learning. 1-backtracking characterizes the set of
formulas we can “learn” (in the sense of LCM, Limit
Computable Mathematics) by Incremental Learning.

• Recursion Theory. 1-backtracking simulates, in any
computation, an oracle for the Halting Problem.

• Program extraction. 1-backtracking interprets as
algorithms exactly all classical proofs using Excluded
Middle only on 0

1-formulas.
• Stratification of Backtracking. To each strategy with

backtracking we may assign a level of backtracking,
ranging from 1 to any recursive ordinal .

55

§ 0. The most general notion of 
Games in Set Theory

56

x z …y …
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Games in Set Theory
A game G = (T, R, turn, WE , WA) between two players,

E (Eloise or Myself) and A (Abelard or Nature),
consists of:

1. a tree T of positions of the game, with a father/child
relation R.

2. A map turn:T{E, A}.
3. A partition (WE, WA) of infinite branches of T.
A play is any finite or infinite branch of T, starting from

the root of T. In each node x of the branch, the player
turn(x) must select a child of x in T, otherwise his
opponent wins. If a play continues forever, the winner
is E if the play is in WE, and the winner is A if the
play is in WA.

An example of Game and of play
a turn(a)=A

b         turn(b)= E

e        turn(e)=A c

f        turn(f)=A d

A moves

E moves

A moves

A should move, he cannot and he loses

Tarski Games are a particular 
case of Set-Theoretical games

• Fix any arithmetical formula A.
• E argue in favor of the truth of A, and A argue in

favor of the falsity of A.
• If A is disjunctive, then E must pick some

immediate subformula A’ of A, and argue in favor
of the truth A’. If A is conjunctive, then A must
pick some immediate subformula A’ of A, and
argue in favor of the falsity of A’.

• When A is atomic or atomic negated, if A is true
then E wins, if A is false then A wins.

Formal definition of Tarski Games

1. Tree T of positions = subformula tree of A.
2. turn(B)=E if B=xC,CD or B=p(t1,…tn),

p(t1,…tn) for some p recursive, and B is false.
turn(B)=A if B=xC,CD or B=p(t1,…tn),
p(t1,…tn) for some p recursive, and B is true.

3. WE = WA =  (T has no infinite branch)
Let B =p(t1,…tn), p(t1,…tn). If B is false, then E

should move, she cannot and she loses. If B is
true, then A should move, he cannot and he loses.
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The Tarski’s Game for EM-1 
Excluded Middle for 0

1-formulas
x. ( y.p(x,y)y.p(x,y) )

y.p(n,y)y.p(n,y)

y.p(n,y) y.p(n,y)

p(n,m) p(n,m)

A moves

E moves

A moves

Assume p(n,m) is true 
A should move, he cannot and he loses

Winning strategies
• A winning strategy (for E) is any map taking any

position of the game from which E moves, and
returning some move for E. We already proved:

• Thm. E has a winning strategy in the Tarski game
G for A if and only if A is true.

• We already remarked that usually (for instance,
when A=1-EM) a winning strategy for G is not
recursive.

§ 1. 1-Backtracking as an operator 
on Set-Theoretical Games 

63

x z y’y …

Games with 1-backtracking
• Given a game G, we define a game bck(G). In

bck(G), any player p moving from a position z can
come back to some previous position x, provided: x
is an ancestor of z in the tree of positions of G, and
p moved from x. Then p definitively erases all
moves after x, and he makes a new move y’.

x zy … y’

y’ new move of p 
from xx ancestor z in G

p 1-backtracks to x

turn(x)=p turn(z)=p
forgotten moves
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1-backtracking is irreversible

• We said that if a player p comes back to a position
x, all moves after x are ``irreversibly erased’’
from the memory of the other player.

• The player who erased them may still see them,
but cannot come back to them, because this would
make them again visible to his opponent.

• In general (unlimited) backtracking there is no
irreversible erasing. If a player may see some
moves, he may come back to them, showing them
again to his opponent.

Infinite 1-backtracking is losing
• It is still valid the rule that a player p is allowed to

backtrack to a given position xi of the play only
finitely many times. Intuitively, backtracking is a
way, for p, of ``learning the best move’’ from xi,
but we only allow a finite time to learn.

• A player p backtracking infinitely many times to
the same position xi, in violation of the constraint
above, loses.

• If E backtracks infinitely many times to some xi
and A infinitely many times to some xj, the loser
is the player backtracking infinitely many times to
a position with smaller index.

An example of 1-backtracking for E
x. ( y.p(x,y)y.p(x,y) )

y.p(n,y)y.p(n,y)

y.p(n,y) y.p(n,y)

p(n,m) p(n,m)

A moves:

E moves:

A moves

Assume p(n,m) is false.
E cannot move from p(n,m)

Now p(n,m) is true. 
A should move, he loses

E can backtrack here:

E moves again:

This time, E moves:
erased moves

The intuition behind 1-backtracking
• If a player is allowed to 1-backtrack, we imagine he

may find out for sure that a move is wrong.
Whenever he finds a wrong move, he can come
back to it, irreversibly erase it from the memory of
its opponent, and make a different move.

• We only allow a finite time to learn. After finitely
many mistakes, a player should select some
definitive move, otherwise he loses.

• We will formally define a game bck(G), associated
to G, in which both player can learn ``better’’
moves in the game G.
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An operator removing 1-
backtracking

• Fix any (finite or infinite) play  = <s0, …, sn, …>
of bck(G). We can remove 1-backtracking from ,
by waiting that both players stop erasing moves.
The result is some canonical (finite or infinite)
backtracking-free play (1) = <t0, …, tn, …> in the
original game G.

• Definition of (1) runs as follows:
1. t0 = initial position of G.
2. tn+1 = last child of tn in , provided tn has a last

child in . Otherwise (1) ends.
(1) is not recursive in general

Formal definition of the game bck(G)

• Nodes of bck(G). All finite successions <s0, …, sn>
of positions of G, such that: (i) s0 initial position of
G (ii) any si+1 is a child in G of some sj, with ji, sj
ancestor in G of si, and turn(sj) = turn(si).

• Turn. The player moving from a node <s0, …, sn>
of bck(G) is the player moving from sn.

• Winner of a infinite play. The winner of an infinite
play  in bck(G) is the winner, in G, of the
backtracking-free play (1).

§ 2. What we know about
1-Backtracking 

, , ,  Tarski(A) bck(Tarski(A))

HA + -rule + 1-EM

§2 Limit Computable 
Mathematics

• The notion of learning in the limit or incremental
learning is due to Gold.

• S. Hayashi formalized it by a Realization model
having, as realizers, all maps recursive in an
oracle for the Halting problem. These maps are,
equivalently, all 0

2 maps.
• Total realizers interpret proofs, and are exactly all

total recursive limits of recursive maps.
• The set of arithmetical formulas realizable in this

model is called Limit Computable Mathematics or
LCM.
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§2.2 Limit Realization
Denote with {a}’(x) the result of the application of

the ath partial map in 0
2 to x. We define a|=A, or

“a realizes A” by induction on A:
• a |= (s = t)  (s = t)
• a |= AB  (p1(a) |= A)  (p2(a) |= B)
• a |= AB  (p1(a) = 1  p2(a) |= A) 

(p1(a) = 2  p2(a) |= B) 
• a |= AB xN. (x |= A)  ({a}’(x) |= B)
• a |= x.A xN. ({a}’(x) |= A)
• a |= x.A  p2(a) |= A[x/p1(a)]

§2.3 Realization and Limit Realization
• The difference with the standard Realization

interpretation is that we consider an enumeration
{.\}'(.) of all partial maps recursive in the Halting
problem, instead of all partial recursive maps.

• LCM is not defined giving an axiomatization, but
through a semantics, as the set of realizable
formulas.

• Most theorems of a first course in Algebra are
learnable in the limit, while some crucial
theorems of a first course in Analysis (like the
compactness of an interval [a,b]) are not (see
LICS04, APAL06).

1-Backtracking and 
Limit Computable Mathematic

• Let A be any arithmetical formula in the
connectives , , , . Let Tarski(A) be the
Tarski game associated to A. Let LCM be
Hayashi’s Limit Computable Mathematic (or
“Arithmetic with incremental learning").

• Theorem. A is realizable in LCM if and only
E if has a recursive winning strategy on
bck(Tarski(A)).

1-backtracking characterizes the set 
of formulas we can “learn” incrementally

1-Backtracking and 
Recursive Degrees

• Let G any game either with alternating
players, or with no infinite plays. Let p any
player.

• Theorem. p has a winning strategy of
recursive degree 1 on G if and only if p has a
winning strategy of recursive degree 0 on
bck(G).

1-backtracking can replace, in a game strategy,
an oracle for the Halting Problem
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1- Backtracking and 
Excluded Middle

• Let A be any arithmetical formula in the
connectives , , , . Let Tarski(A) be the
Tarski game associated to A. Let HA be
Intuitionistic Arithmetic. Let 1-EM be
Excluded Middle for degree 1 formulas.

• Theorem. E has a recursive winning
strategy for bck(Tarski(A)) if, and only if:

HA + -rule + 1-EM  |- A
1-backtracking interprets as algorithms 

exactly all classical proofs using only 1-EM

Cut-free 1-Backtracking
• As done by Coquand for general backtracking, we

can define a cut-free version bckCF(G) of bck(G).
• bckCF(G) is the subgame of bck(G) in which A

cannot backtrack (A cannot answer to a move
which is not the previous one: he cannot ``learn”).

• It is much easier to define winning strategies for E
on bckCF(G) than on bck(G), because A has a
serious handicap in bckCF(G).

• As in the case of general backtracking, every
winning strategy for E on bckCF(G) can be raised, in
a canonical way, to a winning strategy for Eloise on
bck(G) (in which A has no handicap, and can
``learn’’).

2-Backtracking
• We defined the maps G|bck(G),bckCF(G) from

games of Set Theory to games of Set Theory.
• By iteration, for any nN we can define bckn(G),

bckCF
n(G), the games with n-backtracking over G,

with and without cuts.
• The difference between 1-backtracking and 2-

backtracking is that, in 2-backtracking, forgetting is
sometimes reversible (by 2-backtracking, we may
recover a previous move forgotten by 1-
backtracking).

Higher levels of Backtracking
• By direct limit we can define bck(G), bckCF

(G), for
all ordinal .

• As the superscrpt  increases, forgetting becomes
more and more reversible in the game bck(G).

• 2-Backtracking validates exactly the theorem of
Heyting Arithmetic with rec. -rule and EM-2: this
part of the classical logic is required for elementar
analysis

• 3-Backtracking validates exactly the theorem of
Heyting Arithmetic with rec. -rule and EM-3: this
part of the classical logic is required for Ramsey
Theorem and most of its corollaries.
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A stratification of unlimited 
Backtracking

• For any game G with alternating players and all
plays of length  n, Coquand defined a game
Coq(G). In Coq(G), Eloise has an unlimited
backtracking over G. Abelard, instead, cannot
backtrack: Coq(G) is cut-free.

• Theorem. bckCF
1(G) is a subgame of Coq(G), and

conversely, any winning strategy in Coq(G) is a
winning strategy in some bckCF

(G).
Unlimited backtracking can be 

obtained by iterating 1-backtracking.
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Talk 4. A definition of truth 
for Intuitionistic Arithmetic 

through Games with Backtracking

An intutionistic proof uses no backtracking at all in 
output and unlimited backtracking on inputs

Stefano Berardi C.S. Dept., Turin University,
http://www.di.unito.it/~stefano

Abstract of the Talk
1. There is common agreement that the first order

intuitionistically valid formulas are those derivable in
first order intuitionitistic logic LJ and validated by a
suitable Kripke model [ref].

2. There is no common agreement to what the notion of
truth for intuitionistic first order arithmetic should be.
Is the Markov principle intuitionistically true? Is the
negation of Excluded Middle intuitionistically true?

3. In this talk we introduce a game theoretical model
with backtracking of first order Arithmetic which, we
claim, validates exactly the intuitionistically true
formulas.

86

A notion of Truth for Intuitionism
1. We consider the intuitionistically true formulas as the

classically true formulas in which if we prove xP(x,y)
we have a way of computing in finite time some x and
some proof of P(x,y) out of y, and if we prove
A1(y)A2(y) we have a way of computing in finite time
some i=1,2 and a proof of Ai out of y.

2. This rules out the BHK Realization semantics [ref],
which validate the negation of Excluded Middle and
therefore are not included in Classical Logic.

3. The values x, i are computable in game semantics
with backtracking [Coq95], but sometimes they are
wrong and must be changed. 87

Which notion of Truth for 
Intuitionism?

1. We will restrict backtracking semantics in such a way
that once we send a value x,i then we cannot change
it: this is our interpretation of “x,i are computable”.

2. In order to represent proofs of implications AB as
functions, we represent negative formulas A as input
gates and positive formulas (the only formulas
considered in [Coq95]) as output gates.

3. This game model is influenced from Hyland-Ong game
model of lambda calculus [ref] in the representation of
negative/positive formulas, in the representation of
disjunctive/conjunctive formulas by Coquand.

88
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Intuitionistic Truth and backtracking
1. We consider game with turn conflicts, and a more

general backtracking: Sequential Backtracking.
2. We start from Tarski games, and we define a game

semantics for classical arithmetic with implication as
a primitive connective. We obtain a game semantics
for intuitionism by forbidding to send an output twice.

3. We will prove that there is a one-to-one
correspondence (a kind of ``Curry Howard''
isomorphism) between: proofs of Intuitionistic
Arithmetic HA extended with recursive -rule, and the
winning strategies for games with sequential
backtracking for intuitionistic arithmetic. 89

The state of the art.
• In 1975, Lorentzen defined the first sound and complete

game semantics for Infinitary Intuitionistic Arithmetic
HAw (for details we refer to [Fel]).

• Lorentzen interprets cut-free proofs with infinitary -
rule of an arithmetical formula A as recursive winning
strategies for a game associated to A.

• His game semantics is “ad hoc”, carved on the notion
of constructive proofs he wants to interpret. Thus, it is
difficult to argue that Lorentzen model is a definition of
arithmetical truth. We will show that a game semantics
equivalent to Lorentzen may be obtained from a game
semantics with backtracking for classical logic, by
forbidding to change an output after we sent it. 90

What are Games 
with turn conflicts

• There are two players, E (Eloise) and A (Abelard).
• The set of rules for a game G with turn conflicts is a tree

with nodes and edges having the color either of E or of
A. Nodes are positions of the game, edges are moves.

• The play starts at the root of G. At each turn, a player
may: either drop out and lose the game, or move from
the current node along an edge of his color, or wait for
his opponent’s move.

• If both E or A want to move, or both want to wait, we
say there is a turn conflict. In this case, the player
having the color the node succumbs, and change its
choice.

An example of turn conflict
A

A
A

E

Both E or A may move from a node having the color
of A. If both want to move, A waits and E moves. If
both want to wait, A moves and E waits. A is the
player having the color the node, the succumbing
player, therefore he is forced to change its choice.
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Winner of a game
• In any leaf of G there are no moves left for both

players: the succumbing player is forced to drop
out.

• The player who drops out loses.
• If G is a finite game (all branches of G are finite),

we decide in this way the winner for all plays.
• Otherwise there are infinite plays. In this case, G is

equipped with two disjoint sets of infinite plays:
WE and WA.

• E wins if the infinite play is in WE, and A wins if
the infinite play is in WA. Otherwise both lose.

93

Games without conflict
• If all edges from a node have the color of the node,

then it is never possible for both players to move
from the same node: hence there are never conflicts.

• In this case the succumbing player, having color of
the node, is the player forced to move or to drop
out (having the move obligation).

• If there are no turn conflicts, the color of the edge is
useless.

• When all edges have the same color of the initial
node of their edge, we obtain the usual notion of
game, without turn conflicts.

Games without turn conflict
A

AE E

When all edges have the same color of the initial
node of the edge, we obtain the usual notion of
game, without turn conflicts.

Backtracking simplifies strategies
• Recall that winning strategy for a game G are often

non-recursive, even when G is a recursive tree. If we
allow E to retract finitely many times her move,
many winning strategies for E become recursive. In
fact, winning strategies for E become programming
learning the correct move by trial and error.

• We may extend any game G with conflict with the
possibility for E of retracting any previous move.

• This notion of backtracking is broader that in
[Coq95]: we call it G with Sequential Backtracking
or Seq(G). Seq(G) always has turn conflicts, even if
G had no turn conflicts.



06/05/2014

25

A new notion of game: Seq(G)
• The color of a node in Seq(G) is the same as in G.
• The moves of A in Seq(G) and in G are the same.
• E may move from any position in Seq(G) (even if his

opponent should move), and has two kinds of possible
moves.

1. Explicit Backtracking (new) . E may come back to
any previous node in the history of the play, then E
duplicates it as next move

2. Implicit Backtracking (as in [Coq95]). E may come
back to any previous node in the history of the play
from which E may move, then E produces a move in
the original G from it as next move.

The winner of an infinite play
• We include here the winning condition for infinite plays

of Seq(G) only in the case G is a finite play and there
is no cut rule. In this case we ask: all infinite plays in
Seq(G) are won by A.

• Why? In Seq(G), E is allowed to retract finitely many
times her previous move, but only in order to find a
better move by trial-and-error.

• If G is a finite play, a play in Seq(G) is infinite only if E
changes infinitely many times her move from a given
node, just to waste time and to avoid losing the game.

• This behavior is unfair and therefore is penalized: E
loses any infinite play.

§2. Tarski games with Sequential 
Backtracking

• Tarski games are the canonical notion of games
(without turn conflicts) representing the truth of an
arithmetical statement. In order to define Tarski
games, we consider a first order language L: True,
False, , , , , , , with all connectives and
all primitive recursive predicates and functions.

• We define a relation <1 (immediate subformula) for
closed formulas of L. We set A <1 A and:

A, B   <1 AB,   AB,   AB
A[t/x]   <1 x.A, x.A    (for all closed terms t) 99

Game theoretical meaning of Disjunctive, 
conjunctive, positive and negative formulas

• AB, x.A, AB, A are disjunctive formulas.
• AB, x.A are conjunctive formulas.
• A <1 AB, A is a negative subformula. In all other

cases A <1 C is a positive subformula.
• Negative formulas are input gates. Positive formulas

are output gates.
• Disjunctive positive formulas correspond to sending an

output, conjunctive positive formula to receiving an
output. Disjunctive negative formulas correspond to
sending a input, conjunctive negative formula to
receiving a input.

100
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Disjunctive, conjunctive, 
positive and negative “judgements”

• Judgements: J = s.A, where either s=true or s=false.
• true.A is a positive judgement. true.A is disjunctive

(conjunctive) iff A disjunctive (conjunctive).
• false.A is a negative judgement. false.A is disjunctive

(conjunctive) iff A conjunctive (disjunctive).
• s.A<1t.B if and only if: A <1 B, and s=t if A is a positive

subformula of B, and st if A is a negative subformula.
• For instance, false.A, true.B <1 true.AB.
• We write a conjunctive judgement J as iIJi for all Ji

<1 J, and a disjunctive judgement J as iIJi for all Ji <1
J. The result of iIJi , iIJi is unique.

The game Tarski(s.A)
• We write  for the transitive closure of <1. For each

judgement s.A we define Tarski(s.A), the game
associated to the notion of truth for s.A.

• The nodes of Tarski(s.A) are all judgements t.B  s.A.
The root is s.A, the child/father relation is t.B <1 u.C.

• Disjunctive formulas and edges from them are colored
E, conjunctive formulas and edges from them are
colored A. We recall the following:

• Theorem (Completeness for Tarski games and
Truth). E has an arithmetical winning strategy from
Tarski(s.A) if and only if s.A is classically true.

The game model Int(s.A) for 
intuitionistic truth

We write <,  for the strict and large order on
judgements associated to <1. For each judgement
s.A we define Int(s.A) by a restriction of the
backtracking in Seq(Tarski(s.A)).

(1) Ordinary move. mk = t.B, for some t.B  s.A.
(2) Backtracking or duplication move. mk =

bck(i)+t.B for some iN and some t.B  s.A.
(3) End move. mk = drop. “I quit”.
Positions. The position associated to m = t.B, or to m

= (bck(i) + t.B) is t.B.

Players and turn for Int(s.A)
The Players are: Eloise (defending the truth of the

current position t.B of the play), Abelard (attacking
the truth of the current position t.B of the play).

The player moving from a position t.B of the play
is defined as follows.

1. If t.B is a disjunctive judgement, then Eloise
moves next.

2. If t.B is a conjunctive judgement, then Abelard
moves next, unless Eloise asks to move next and
she moves bck(i)+t.B.

We record, for each position, the player moving
next as part of the history of the play. 104
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Plays for the cut-free game Int(s.A)
Inductive definition of Plays of G(t.A).
1. p = s.A is a play.
2. Assume p=m1, …,mk is a play. Let si.Ai be the

position associated to mi, for any 1ik.
• Correct ordinary move from p: mk+1=some t.B <1

sk.Ak
• Correct backtracking move from p: mk+1 = bck(i)+t.B

for some 1ik, some t.B1si.Ai, provided:
(1) Eloise moves next from sk.Ak (only Eloise backtracks)
(2) Either t.B=1si.Ai, or t.B<1si.Ai and si.Ai is disjunctive.
(3) if si = true, then si.Ai is the last positive position of p.
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The Winner of a play of Int(s.A)
• A play of G(s.A) is terminated if either it is finite

and ending with drop, or it is infinite. If a
terminated play ends with “drop”, the player
playing “drop” loses.

• If a terminated play is infinite, in a cut-free game
the winner is Abelard.

Why are infinite plays lost by Eloise? Eloise, to
avoid losing the game, may come back infinitely
many times to the same position, just to waste time.
This behaviour is unfair and therefore it is
penalized. 106

Discussing the rules of Int(s.A)
For any backtrack/duplication move mk+1 = bck(i)+t.B we

asked that 1ik, that t.B1si.Ai, and three clauses.
(1) “Eloise moves next from sk.Ak” This means that only

Eloise may backtrack (come back to a previous
position).

(2) “Either t.B=1si.Ai, or t.B<1si.Ai and si.Ai is
disjunctive.” Thus, the only way for Eloise to come
back to a conjunctive position si.Ai, is to move
bck(i)+si.Ai, duplicating the conjunctive position si.Ai.
Backtracking to disjunctive and conjunctive positions
is asymmetric.

(3) “If si = true, then si.Ai is the last positive position of
p” We forbid to change an output after we sent it.

A formulation of HAwsatisfying the 
proof/strategy isomorphism

108

• The language of HA are all judgements. Any
judgement is of the form iIJi or iIJi. Say:
true.AB = {false.A,true.B} and
false.AB={true.A, false.B}.

• Sequents of HA are ordered lists of judgements.
Therefore Contraction and Exchange rules are not
built-in in the notion of sequent.

• We explicitly assume Contraction in HA. We hyde
Exchange rule through the fact that the active formula,
if disjunctive, may be in any position in the sequent.

• Identity rule is trivially derivable in HA. Cut rule is
derivable but not trivial at all.
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A formulation of HA with 3 rules
(in one-side form, with judgements)

, J, , J (contraction with implicit exchange)
, J,  provided that: if J is positive, then J is the 

last positive judgement in , J, . 

, iIJi, Ji (all iI) (conj. with implicit 
contraction: 
, iIJi for all iI, and rec. in i)

Remark the asymmetry with : we do not have , iIJ,

, iIJi, , Ji (disj. with implicit contraction and 
, iIJi,  exchange: for some iI)
provided that: if  iIJ is positive, then  iIJ is the last 

positive judgement in ,  iIJ, . 

Any one-sided sequent represents 
a two-sided intuitionistic sequent 

• Any one-sided ordered list of judgements has the form
 = false.0, true.B1, false.1, …, true.Bn, false.n

for some ordered lists of negative judgements of the form:
false.i = false.Ai,1, …, false.Ai,mi

•  represents (many-to-one) the following two-sided
intuitionistic ordered sequent of formulas:

0, 1, …, n |- Bn

• The formulas B1, …, Bn-1 are not visible in the two-
sided form of . The 3 rules of HA correspond, in the
two-sided version, to one rule for each connective and
side.

Unfolding the rules of HA for 

, AB, , AB |-D (contraction+exchange)
, AB, |-D 

, AB|-A , AB, B|-D (conjunctive)
, AB|-D

|-B (disjunctive 2)
|-AB

, A|- AB (disjunctive 1) 
|-AB

If we replace the one-side sequent of judgements with
the corresponding two-side sequent of formulas, then
in the case of AB we obtain:

Unfolding the rules of HA for 

 , x.A, , x.A |-D (contraction+exchange)
, x.A, |-D

… |-A[t/x] … (conj.: all closed terms t, rec. on t)
|- x.A 

 , x.A, , A[t/x]|- D (disjunctive)
, x.A ,  |-D

If we replace the one-side sequent of judgements with
the corresponding two-side ordered sequent of
formulas, then in the case of x.A we obtain:
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Isomorphism and 
Cut-Elimination Theorem for HA

Theorem. Let A be any closed arithmetical formula.
1. (Soundness and Completeness) A formula A is a

theorem of HA if and only if Eloise has a recursive
winning strategies on the cut-free game Int(true.A).

2. (Curry-Howard) The recursive winning strategy-trees
for Eloise on Int(true.A) are tree-isomorphic to the
infinitary recursive cut-free proof-trees of A in HA.

3. (Cut-Elimination) It is translated in a game-theoretical
result: “any dialogue of two terminating strategies is
terminating”. Asymmetry of backtracking to disjunctive
and conjunctive positions is essential for termination.113

Course given in Bath, May 13-14 2014
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