
Lecture Notes on Cubical sets

March 13, 2015

Introduction

These are some lecture notes for a course presenting the cubical set model of type theory, first in
Copenhagen, December 2014, and then in Paris, February 2015.

We describe a particular presheaf model of type theory. This description can also be seen as an
operational semantics of a purely syntactical type system. It involves a nominal extension of λ-calculus.

We use a generalization of the Kan composition operation which is represented by a nominal operation.
Any element represents a hypercube, the direction being represented by the symbols this element depends
on. One can define the notion of homotopy between two cubes (it is a cube with one new dimension
connecting the two given cubes). The operation we introduce consists in changing some faces along given
homotopies. (Kan composition is the special case where we replace all faces along given homotopies.)
One new feature, compared with usual λ-calculus or first-order logic, is how this operation interacts with
substitution.

1 Cubical sets

1.1 Definitions

A de Morgan algebra is a bounded distributive lattice A, with a top element 1 and a bottom element 0
and with an operation 1− i satisfying

1− 0 = 1 1− 1 = 0 1− (i ∨ j) = (1− i) ∧ (1− j) 1− (i ∧ j) = (1− i) ∨ (1− j)

This notion differs from the one of Boolean algebra by requiring neither 1 = i∨ (1− i) nor 0 = i∧ (1− i).
A prime example of a de Morgan algebra, which is not a Boolean algebra, is the interval [0, 1] with
max(i, j),min(i, j) operations.

We assume a given (discrete) set of symbols/names/directions, not containing 0, 1. We let I, J,K, . . .
denote finite sets of such symbols. Let C be the following category. The objects are finite sets I, J,K,
A morphism I → J is a map I → dM(J), where J is the free de Morgan algebra on J . We think of f
as a substitution and may write if the element f(i) in dM(J). If f : I → J and g : J → K we write
fg : I → K the composition of f and g. We write 1I : I → I the identity map. A cubical set is a presheaf
on Copp, i.e. a functor C → Set.

A cubical set X is thus given by a family of sets X(I) together with a restriction map

X(I)→ X(J)

u 7−→ uf

such that u1I = u and (uf)g = u(fg). (We write uf for what is usually written X(f)(u), since we want
to think about this operation as a substitution; the elements of X(I) for I = i1, . . . , in are thought of
as elements u = u(i1, . . . , in) depending on i1, . . . , in and the restriction uf as a substitution operation.)
For instance an element u = u(i, j) in X(i, j) represents a square, and if (i0) : i, j → j is the map sending
i to 0, then u(i0) is the face u(0, j) of this square. If (i = j) : i, j → j is the map sending i to j then
u(i = j) is the diagonal u(j, j).

1

We write `I A if A is a preshaf on the slice category Copp/I. If I is empty, we get back a cubical
set. If I = i then A = A(i) represents a “line” connecting the cubical sets A(0) and A(1). In general,
if I = i1, . . . , in then A represents a hypercube. Concretely, A is given by a family of sets Af indexed
by f : I → J together with a family of restriction maps u 7−→ ug, Af → Afg for g : J → K such that
u1J = u and (ug)h = u(gh) if h : K → L. If `I A and f : I → J we can consider `J Af which is defined
by (Af)g = A(fg) for g : J → K.

We write `I a : A to mean that a is an element in the set A1I . It then defines a family of elements
af in Af .

1.2 Examples

Any topological space X defines a cubical set, by taking X(I) to be the set of continuous maps [0, 1]I →
X.

Any (strict) category defines a cubical set, by taking for points the object of the category, the lines
being given by maps, squares given by commuting squares, and so on.

If R is any de Morgan algebra, a map f : I → J defines canonically a map RJ → RI by composing
RdM(J) → RI with the extension map RJ → RdM(J). Since [0, 1] is a de Morgan algebra, we can in
particular define a functor

Copp → Top

I 7−→ [0, 1]I

This can then be used to define the geometric realization functor sending a cubical set to a topological
space; this functor commutes with finite products.

The interval I is the cubical set defined by I(J) = dM(J). This defines a functor since any map
I → dM(J) corresponds exactly to a de Morgan algebra map dM(I)→ dM(J). We can think of I as an
abstract representation of the unit real interval [0, 1], and we have operations i ∧ j, i ∨ j, 1− i that are
abstract representations of the operations min(i, j), max(i, j), 1− i. An element of dM(I) is determined
by a de Morgan formula ψ on indeterminates in I and the restriction map ψ 7−→ ψf is a substitution.

2 Remarks on the base category

We say that a map f : I → J is strict if if is neither 0 nor 1 for all i in I. One key remark is the
following.

Lemma 2.1 If f : I → J is strict and ψ in dM(I) such that ψf = b (where b is 0 or 1) then already
ψ = b.

(This does not hold if we work with Boolean algebra instead of de Morgan algebra. For instance the
map (i = j) : {i, j} → {j} is strict and (i ∧ (1 − j))(i = j) = 0 in a Boolean algebra, but i ∧ (1 − j) is
neither 0 nor 1.)

A face map α : I → Iα is a map such that iα is either 0, 1 or i for all i in I. We write Iα the subset
of element i such that iα = i, and dom(α) = I − Iα is the domain of α. If ια : Iα → I is the inclusion,
we have ιαα = 1 and hence any face map α is epi. If f : I → J we write f 6 α to mean that there
exists a map f ′ (uniquely determined) such that f = αf ′. This means that if = iα for all i in the
domain of α. This defines a poset structure on the set of face maps α : I → Iα and this poset is a partial
meet-semilattice: if α and β are compatible then they have a meet γ = α ∧ β with Iγ = Iα ∩ Iβ .

Corollary 2.2 If fg 6 α and g is strict then f 6 α.

Proof. For any i in the domain of α we have iα = ifg and so iα = if since iα = 0 or 1 and by Lemma
2.1.

Any map f : I → J can be written uniquely as the composition f = αh of a face map α : I → Iα
and a map h : Iα → J which is strict.

2

Lemma 2.3 If we have αf = βg with f : Iα → J and g : Iβ → J then α and β are compatible. If γ
is the meet of α and β, then there exists a unique h : Iγ → J such that αf = γh = βg. If we write
αα1 = γ = ββ1 then α1f = h = β1g.

3 Systems

We define S(I) to be the set of downward closed subset of face operations on I. An element of S(I) is
determined uniquely by the set of its maximal element, a set L of incomparable face operations on I.
We write α 6 L to mean that α 6 β for some β in L. If L is in S(I) and g : I → J we write f 6 I
to mean that f 6 α for some α 6 L. We define then β 6 Lf for β : J → Jβ and f : I → J to mean
fβ 6 L. This define a new downward closed subset of face operations of J . Thus S can also be seen as
a cubical set, since we have L1I = L and (Lf)g = L(fg).

If `I A, and L in S(I) a L-system for A is given by a family aα in Aα which is compatible: if
αα1 = ββ1 then aαα1 = aββ1. We think of such a system as a system of equations uα = aα for α in L.
Notice that any element v in A1I defines a compatible system aα = vα. This implies that if αf = βg
then we have aαf = aβg.

If f 6 L we can define af in Af without ambiguity: if we have both f = αg and f = βh then α and
β are compatible by Lemma 2.3. A L-system can also be seen as a compatible family af for f 6 L.

If f : I → J and we have a L-system (ah), h 6 L we define a Lf system bβ by taking bβ = afβ and
more generally bg = afg.

We adopt the following notations for systems. If for instance I = i, j and `I A and L is determined
by (i0) and (j1), a L-system ~a will be determined by an array (i0) 7→ u, (j1) 7→ v, with u in A(i0) and
v in A(j1). If f : I → k, l, j is defined by f(i) = k ∧ l, f(j) = j then Lf is the system (k0), (l0), (j1)
and ~af is the system (k0) 7→ u, (l0) 7→ u, (j1) 7→ v. If g : I → j is defined by g(i) = g(j) = j then Lg
is empty and ~ag is the empty system. Notice that ~a(i0)(j1) is the system () 7→ u(j1) which is equal to
() 7→ v(i0).

For motivations why we introduce such a notion of system, see Appendix 1.

4 Operational semantics

We limit ourselves first to the description of the system without universes. (We describe later the
operational semantics for univalence and composition in te universe.) The point is to explain how we
can justify function extensionality without using function extensionality at the metalevel.

The syntax for the terms is

t, p, A,E, F ::= x | t t | λx.t | Id A t t | Π A F | 〈i〉t | t|~p | compi(A) | t ϕ

where ϕ represents an element in the free de Morgan algebra on the symbols. In this syntax, 〈i〉t
represents the path abstraction operation, and binds the symbol i. We use the vector notation ~t to
represent a system of terms. For instance ~t may be of the form (j0) 7→ t, (j1) 7→ u or of the form
(j0) 7→ t, (k0) 7→ u, (j1)(k1) 7→ v.

The composition operation t|~p is a new kind of nominal operation. Intuitively, it consists in replacing
the face tα, which is equal to pα0, by the face pα1. The special character of this operation is reflected
by the way substitution interacts with it. We have for instance

(a|(j0) 7→ u, (j1) 7→ v)f = (af |(k0) 7→ u, (l0) 7→ u, (k1)(j1) 7→ v)

if jf = k ∧ l. We also have

(a|(j0) 7→ p, (j1) 7→ q)(j0) = p 1 (a|(j0) 7→ p, (j1) 7→ q)(j1) = q 1

This operation also satisfies a regularity condition. We have a = a|~p if all pα are constant path, and
a|~p = a|~q if ~q is obtained from ~p by removing some pα that are constant path. This expresses a strict
identity element law for this composition.

3

We define p∗ = 〈i〉p(1− i) and
~p|a = a| ~p∗

The operation compi(A) binds the symbol i. Its intended type is A(i0) → A(i1). The regularity
condition is that compi(A, a0) = a0 if A is independent of i. We may write compi(A, a0) instead of
compi(A) a0.

We define filli(A, a0) = compj(A(i∧j), a0) which satisfies Γ `I,i filli(A, a0) : A and filli(A, a0)(i0) = a0
and filli(A, a0)(i1) = compi(A, a0). So this element represents a line in direction i connecting a0 and
compi(A, a0).

We can generalize this operation as follows. We define, given a system `Iα,i aα : Aα such that
a0α = aα(i0) the element

compi(A, a0,~a) = u|~u : A(i1)

where u = compi(A, a0) : A(i1) and uα = 〈i〉compj(Aα(i ∨ j), aα). This element satisfies

compi(A, a0,~a)α = aα(i1)

We can then define
filli(A, a0,~a) = compj(A(i ∧ j), a0,~a(i ∧ j)) : A

which satisfies
filli(A, a0,~a)α = aα filli(A, a0,~a)(i0) = a0

We have the usual β-reduction rule

(λx.t) u = t(x = u)

We write (x : A)→ B for Π A (λx.B).
If f : I → dM(J) we can define the operation t 7−→ tf on terms. (Notice that this is a defined

operation on terms; we don’t have an explicit term constructor for substitution.) We have

(〈i〉t)f = 〈j〉tg

where g : I, i→ dM(J, j) extends f by g(i) = j not in J . We also have

(λx.t)f = λx.tf xf = x (t u)f = tf uf (t ϕ)f = tf ϕf (Π A F)f = Π Af Ff

We can then state the path reduction law

(〈i〉t) ϕ = t(i = ϕ)

A canonical object of type Id A a b is of the form 〈i〉t with t(i0) = a and t(i1) = b. If w is of type
Id A a b, then wϕ is of type A and w0 = a and w1 = b.

If L is a system for I we write p : IdL A u v or p : u ∼L v to express that we have p 0 = u and p 1 = v
and each pα is constant for α 6 L.

We define a ↑ ~p to be 〈i〉a|~q where qα = 〈j〉pα(i ∧ j). Using regularity we have that a ↑ ~p defines a
line l : a ∼ (a|~p) such that lα = pα. We also define ~p ↑ a = a ↑ ~p∗.

The main new computation rules are for the composition of a product type and the composition of
an identity type.

4.1 Dependent products

For dependent product types, we have
(w|~p) a = (w a)|~q

where qα = 〈i〉pα(i, aα).

This provides a short and effective justification of the fact that homotopy types are closed by expo-
nentiation. The reader can compare this argument with the argument in [6, 4].

We also have
compi(Π A F,w0) u1 = compi(F u,w0 u(i0))

where u = fill1−i(A, u1).

4

4.2 Identity types

For identity types, we have
(p|~q) ϕ = p ϕ|~r

where rα = 〈i〉qα(i, ϕ).
We also have

compi(Id A a b, p0) = 〈j〉compi(A, ~u, p0 j)

~u is the system (j0) 7→ a, (j1) 7→ b.

We can interpret
Id A a0 a1 → B(a0)→ B(a1)

Indeed if p is of type Id A a0 a1 and b0 : B(a0) then compi(B(p i), b0) is of type B(a1).

Using the operation i ∧ j on symbols we can interpret the fact that (x : A, Id A a x) is contractible.
Indeed, if x, p is an element of this type then

q = 〈i〉(p(i), 〈j〉p(i ∧ j))

is a path such that q(0) = (a, 〈j〉a) and q(1) = (x, 〈j〉p(j)) = (x, p). If x = a and p = 〈i〉a (which
interprets reflexivity) we get q = 〈i〉(a, 〈j〉a) which is a constant path.

We can then interpret the usual J elimination rule. Because of the regularity condition, the compu-
tation rule for J is interpreted as a judgemental equality.

5 Typing rules

We have judgement of the forms Γ `I , Γ `I` A and Γ `I t : A relativized at a “level” (finite set of
symbols) I . The rules are the usual rules of type theory at all levels I, and the restriction rule

Γ `I t : A

Γf `J tf : Af
f : I → dM(J)

is admissible.
The new rules are then the following.

Γ `I a : A Γα `Iα pα : Id Aα aα uα
Γ `I a|~p : A

with a computation rule (a|~p)α = uα. We also have

Γ `I A Γ `I a0 : A Γ `I a1 : A

Γ `I Id A a0 a1

Γ `I A Γ `I,i t : A

Γ `I 〈i〉t : Id A t(i0) t(i1)

In particular, we get the reflexivity proof of a : A as the constant path 〈i〉a

Γ `I t : Id A a0 a1
Γ `I t ϕ : A

Γ `I t : Id A a0 a1
Γ `I t 0 = a0 : A

Γ `I t : Id A a0 a1
Γ `I t 1 = a1 : A

We also have
Γ `I,i A

Γ `I compi(A) : A(i0)→ A(i1)

We can justify function extensionality by the defined constant

Γ `I t : (x : A)→ B Γ `I u : (x : A)→ B Γ `I p : (x : A)→ Id B (t x) (u x)

Γ `I ext t u p : Id ((x : A)→ B) t u

where ext t u p = 〈i〉λx.p x i.

5

6 Equivalence

We say that `I σ : T → A is an equivalence if, given a L-system ~t in T , and a : A such that aα = σα tα,
we can find t in T such that tα = tα and a path in A showing a ∼L σ t. Furthermore this operation
transforming a and ~t to u has to be uniform.

6.1 Isomorphisms

We introduce a type Iso(A,B) of isomorphisms between A and B. An element of Iso(A,B) is a tuple
(σ, δ, η, ε) where σ : A→ B and δ : B → A and ηa : σδa→ a and εt : δσt→ t. If u : Iso(A,B) we write
u+ : A→ B and u− : B → A the correspondig functions.

6.2 Graduate Lemma

Lemma 6.1 If u : Iso(A,B) then u+ : A→ B is an equivalence.

This corresponds to the 〈〈graduate lemma 〉〉, and it has a rather direct proof.
If u is the identity isomorphism, then the L-path produced by the corresponding equivalence is a

constant path.

Lemma 6.2 If E : T →i A then compi(E) is an equivalence.

7 Representation of cubical sets

We define an I-element to be a tuple u = (uα) indexed by all face operations α : I → Iα. If all elements
of a set X are I-element, we say that X is a I-set. If u is a I-element and α : I → Iα is a face of I we
can define an Iα element uα by taking uαβ = uαβ .

If a is an I-element and ~v a system of Iα element v(α) which is compatible, i.e. v(α)β1 = v(β)α1

whenever αβ1 = βα1, then we define an I-element (~v, a) by taking (~v, a)α = v(β)α1
if α = βα1 and

(~v, a)α = aα otherwise. This operation satisfies (~v, a) = a if v(α) = aα.

We consider only presheaves A on Copp such that

1. all elements of A(I) are I-element

2. for any u in A(I) we have uαβ = uαβ

It can be checked that all type-forming operations produce objects of this form. For instance if F
and G are any presheaves on C then GF (I) is a set of sequences λf in F (J) → G(J) for f : I → J ,
satisfying the condition (λf u)g = λfg ug, and hence λ can be written as a tuple (λα) with λα = (λαg)
indexed by strict map g : Iα → J . This follows from the fact that a map can be uniquely written as the
composition of a projection and a strict map.

If we have `I A and L is an element of S(I) and we have `Iα σα : Tα → Aα we define a new type
`I B = ~σ|A. For f : I → J , an element of Bf is a J-element (~t, u) where u is in Af and we have
σβtβ = uβ for β in Lf .

If L is empty then ~σ|A = A. If L has one element () then ~σ|A = T().
If each σα is the identity map then A = ~σ|A as a cubical set.

This basic operation will be used to define glueing (which transforms equivalence to equality) and
the composition operation in the universe. In each case, we will get the same underlying type if all maps
are identities. In the case of glueing however, the Kan composition operations does not need to stay the
same, while it will be the same for composition, which ensures regularity for composition in the universe.

If we have B = ~σ|A then there is a canonical map δ : B → A. For instance, if I = i and we have
σi0 : Ti0 → Ai0 then B is the set of sequences (ti0, ai1, a1) such that a1 is in A1(σi0ti0, ai1) and we define
δ(ti0, ai1, a1) = (σi0ti0, ai1, a1).

6

8 Glueing operation

We introduce an operation on the universe, which consists in changing some faces of a given cube along
isomorphisms. As a particular case, we can transform one given isomorphism to an equality between
two types.

Lemma 8.1 If we have `I,i σ : T → A then we have a path σ(i1) (compi(T, t0))→ compi(A, σ(i0) t0).

Proof. We define a system ~w as (j0) 7→ σ(filli(T, t0)), (j1) 7→ filli(A, σ(i0) t0) and p = 〈j〉comp(A, ~w, a0)
is a path u(i1)→ v(i1).

Lemma 8.2 If we have `I σ : T → A then for any system of paths ~p compatible with t : T we have
σ(t|~p) ∼L σt|~q where qα = 〈i〉σαpα(i).

In order to interpret univalence we explain how to transform an equivalence to an equality.
More generally, given a L-system ~T in U and a type A together with a compatible system of isomor-

phisms uα : Iso(Aα, Tα) we define a new type

B = A|~u

As a cubical set B is ~σ|A where σα = u−α . An element of this type is of the form (~t, a) with tα : Tα and
a : A such that aα = σαtα. If L = (), we only have one equivalence σ() : T() → A and B = T(). If L is
empty we have B = A. If f : I → J we define

Bf = Af |~uf

If we have one equivalence u : Iso(A, T), then introducing a fresh symbol i, we have A = A(i0) and
B = A|(i0) 7→ u. This type B will be such that B(i0) = T and B(i1) = A(i1) = A. So we get in this
way an operation transforming an equivalence to an equality.

We have a map δ : B → A such that δ(~t, a) = a and δαt = σαt for α in L.

Proposition 8.3 The type B = A|~u has composition operations.

Proof. We have to define v0|~q for v0 : B and a J-system ~q. Using the map δ, we define a J-system ~p in
A by pα = 〈i〉δαqα(i) and a0 = δv0.

We consider a1 = a0|~p. For β in J we have a1β = pβ(1).
The goal is to build v1 = v0|~q in B.
We should have, for each α in L, tα = v1α = v0α| ~qα : Tα. On the other hand, we have a1α = a0α|~pα

in Aα.
Using Lemma 8.2, we have that a1α ∼Jα σαtα and so, we have a line rα : a1α→ σαtα constant on

Jα. We define v1 = (~t, a1|~r).

Notice that the argument uses only that we have compatible functions Tα → Aα and not that these
functions are equivalences.

Proposition 8.4 The type B = A|~u has transport functions.

Proof. We have to define compi(B, v0) : B(i1) for v0 : B(i0). We define a0 = δ(i0) v0 and a1 =
compi(A, a0).

Let L′ be the subset of γ in L not mentionning i and L′′ subset of γ such that γ(i1) is in L. Since the
element in L are incomparable, L′ and L′′ are disjoint but it may be that some element in L′ is < some
element in L′′. We have that L(i1) is a the union of L′′ and of L′1 subset of element in L′ not < L′′.

We want to write v1 = (~r, u1) for some u1 in A(i1) which should be obtained from a1 by modifying
some faces in L′ and L′′. What are the constraints on this element u1?

For γ in L′, we should have u1γ = σγ(i1)tγ where tγ = compi(Tγ , ~vγ, v0γ) is of type Tγ(i1).
For γ in L′′, then u1γ should be of the form σγ(i1)rγ for some rγ in Tγ(i1).

7

We first deal with the constraints for γ in L′. We have

a0γ = σγ(i0)v0γ a1γ = compi(Aγ, a0γ) tγ = compi(Tγ , v0γ)

We can build a line wγ : σγ(i1)tγ → ai1γ using Lemma 8.1.
(There is no reason for this line to be constant even if σγ is the identity map. This is why we need

another argument for composition in the universe.)
We define a′1 = ~w|a1. We have a′1γ = σγ(i1)tγ for all γ in L′.

The second step deals with the element γ in L′′. For such an element γ we have α = γ(i1) in L.
For β in L′γ we have γβ 6 L′ and we also have a′1γβ = σαβtβ for some tβ in Tαβ. Since σα is an

equivalence we can build tγ in Tγ(i1) = Tα and a line sγ : σαtγ → a′i1γ which is a L′γ-path. We change
then a′1 to u1 = ~s|a′1.

By regularity, we have u1δ = a′1δ for δ in L′, so we did not modify the L′ faces of a′1.
The element u1 = ~s|a′1 satisfies u1γ = σγtγ for γ in L′ and u1γ = σγ(i1)tγ for γ in L′′. Hence, we can

define a corresponding element v1 = (~r, u1) in B(i1) with rγ = tγ in Tγ(i1) for γ in L′1 and rγ = tγ in
Tγ(i1) for γ in L′′.

The corresponding typing rules are

Γ `I A Γα `Iα uα : Iso(Aα, Tα)

Γ `I A|~u

Γ `I a : A Γα `Iα uα : Iso(Aα, Tα) Γα `Iα u−α tα = aα : Aα

Γ `I (~t, a) : A|~u
We also have

Γ `I b : A|~u
Γ `I (~v, b) : A

where vα = u−α bα.

9 Composition in the universe

It is almost the same operation as for glueing. We assume given a type A and paths Eα : Aα→ Tα. and
we explain how to build B = A| ~E.

We have a corresponding equivalence σα : Tα → Aα using Lemma 6.1. The type B is defined as A|~σ
as a cubical set. As for glueing, we define an element of B to be of the form (~t, a) with a in A and tα
in Tα such that σαtα = aα. The difference between the previous case of glueing is how we define the
composition for A| ~E.

Lemma 9.1 We assume given A, T,E with E(j0) = T and E(j1) = A and we define σ : T → A by
σt = compj(E, t). Given t0 in T (i0) we have a path compi(A, σ(i0)t0)→ σ(i1)compi(T, t0). Furthermore
this path is constant if E is independent of j.

Proof. We define e0 = fillj(E(i0), t0) and t1 = compi(T, t0). If e1 = compi(E, e0) we have e1(j0) = t1
and e1(j1) = compi(A, σ(i0)t0).

We define next e′1 = fillj(E(i1), t1) so that e′1(j0) = t1 and e′i1(j1) = σ(i1)t1. We can then consider

〈k〉(t1|(k0) 7→ 〈j〉e1, (k1) 7→ 〈j〉e′1)

which is a path compi(A, σ(i0)t0) → σ(i1)t1. If E is independent of j then so are e1 and e′1 and this is
the constant path 〈k〉t1.

Lemma 9.2 We assume given A, T,E with E(j0) = T and E(j1) = A and we define σ : T → A by
σt = compj(E, t). We have for any L-system of paths ~p and t0 in T that σ(t0|~p) ∼L σt0|σ~p. Furthermore
this path is constant if E is independent of j.

8

Proof. We define in Eα qα = 〈i〉fillj(Eα, pα(i)) and e0 = fillj(E(i0), t0). and e1 = e0|~q and t1 = t0|~p. We
have e1(j0) = t1 and e1(j1) = σt0|σ~p.

We define e′1 = fillj(E, t1) so that e′1(j0) = t1 and e′1(1) = σt1. We can then consider

〈k〉(t1|(k0) 7→ 〈j〉e1, (k1) 7→ 〈j〉e′1)

which is a path compi(A, σt0) → σt1. If E is independent of j then so are e1 and e′1 and this is the
constant path 〈k〉t1.

The operation of composition and transport are almost the same as for glueing. The difference is
that we use Lemmas 6.1, 9.1 and 9.2 instead of Lemmas 6.2, 8.1 and 8.2.

The corresponding typing rules are

Γ `I A Γα `Iα Eα : Id U Aα Tα

Γ `I A| ~E

Γ `I a : A Γα `Iα Eα : Id U Aα Tα Γα `Iα compi(E∗αi, tα) = aα : Aα

Γ `I (~t, a) : A| ~E

10 Circle

We describe S1 as a higher inductive type.
We need to define a set S1(I) for each finite set of symbols I. An element of this set is

1. either base

2. or loop ϕ where ϕ is an element of dM(I) different from 0, 1

3. or of the form u0|~p where u0 is in S1(I) and pα is of the form 〈i〉uα with uα in S1(Iα, i), and such
that uα(i0) = u0α

Thus the element of S1(I) are defined by these generators together with the relation that we have
compi(~u, u0) = u0 if all uα are independent of i.

We define recursively on u in S1(I) at the same time the element uf in S1(J) if f : I → J . In this way
we interpret ` S1 with ` base : S1 and `i loop i : S1. For the cubical set S1 it is decidable if u ∈ S1(I) is
independent or not of some element i in I.

Given S1 ` F it is also possible to define a section ` s : (Πx : S1)F (x) if we give ` b : F base and
`i l : F (loop i). Furthermore, we have ` s base = b : F base and `i s (loop i) = l : F (loop i).

11 Propositional truncation

We describe now the propositional truncation as an element of type U → U . We define U(I) to be
the set of small A such that `I A. Concretely A is a family of small sets Af with restriction maps
Af → Afg, u 7−→ uf satistying u1 = u and (uf)g = u(fg). Given such a structure A, we have to define
a family of sets inh(A)f . An element of inh(A)f is defined inductively as before, it is

1. either inc u with u in the set Af

2. or squash ϕ u0 u1 with ϕ in dM(J) and u0, u1 in inh(A)f

3. or of the form u0|~p where u0 is in inh(A)f and pα is in Path(inh(A))fα

It is then possible to define ug in inh(A)fg for g : J → K by induction on u in inh(A)f . We also have
inh(Af)g = inh(A)fg and hence we have defined a natural transformation inh : U → U .

We show next that inh(A) has a transport function if A has transport function. (This seems to be
closely connected to Lemmas 6.2.3 and 6.2.4 in [2].)

We define compj(v0) in inh(A)f(j1) if v0 is in inh(A)f(j0). Let tr be the transport function v 7−→
compj(v0). The definition of tr(v0) is done by induction on v0:

9

1. in the case where v0 is in the form inc(a0) we only need that A has transport

2. in the case where v0 is of the form squash ϕ u0 u1 then tr(v0) is squash ϕ tr(u0) tr(u1)

3. in the case of v0 is of the form compj(~u, u0) where j not in J then tr(v0) is compj(tr(~u), tr(u0))

The definition of the suspension operation is similar. The definition of the push-out operation involves
new complications for defining the transport function.

12 Fibrant replacement

A slight modification of the previous example gives the fibrant replacement Ã of a cubical set which has
transport functions. An element of this type will be

1. either inc u with u in the set Af

2. or of the form u0|~p where u0 is in Ãf and pα is in Path(Ã)fα

Acknowledgement

Many thanks to Georges Gonthier and Thomas Streicher for comments and multiple corrections. In
particular, Georges Gonthier noticed a problem with the use of Boolean algebra instead of de Morgan
algebra in the first version of this note. Many thanks also to Rasmus Møgelberg and to Pierre-Louis
Curien for comments and corrections.

Appendix 1: Motivations for the notion of system

Compared to the original approach by Kan [5] we add new composition operations in order to express
how composition interacts with (symbol) substitution.

Let us consider a composition u|(i0) 7→ q, (i1) 7→ r

a
u - b

c

q

?
d

r

?

Intuitively, we replace a by c and b by d, and we get a new line connecting c and d.
We have to consider the degenerate of this composition to be given by

c d

a
u-

�
q

b

r
-

a
? u- b

?

c
?�

q

d
?

r

-

where we replace the constant face a by c and the constant face b by d.

10

The connection [3] of the same diagram should be

c d

a
u-

�
q

b

r
-

b

u

?
- b
?

d -
�

r

d
?

r

-

where we replace the point a by c and two constant faces b by d.
If f : i→ i, j is defined by f(i) = i ∨ j this corresponds to the equality

(u|(i0) 7→ q, (i1) 7→ r)f = u(i ∨ j)|(i0)(j0) 7→ q, (i1) 7→ r, (j1) 7→ r

Appendix 2: Kan cubical sets

12.1 Kan composition operation

A cubical set A has Kan composition operations iff we have a family of operations u0|~p which takes u0 in
A(I) and ~p a L-system for Path(A) such that pα 0 = u0α and produces an element in A(I). This should
satisfy the uniformity condition (u0|~p)f = u0f |~pf , and such that u0|~p = q 1 if ~p is a system of the form
() 7→ q.

12.2 Combinatorial definition of homotopy groups

Given a cubical set X with composition operation and a point a in X() we define π1(X, a) as follows.
The elements are homotopy equivalent classes of path a → a and two paths p, q : a → a are equivalent
iff we can fill a square

a
p i - a

a

a

?

q i
- a

a

?

We define then the composition of two paths p, q : a → a as being the path obtained by the Kan
composition

a
p i - a

a

a

?

(p·q) i
- a

q j

?

We can write p · q = 〈i〉(p i|(i1) 7→ q).
It is then possible to show in a purely combinatorial way that this defines a group. The proof is

simpler than in [8] since we have connections. For instance, if p : a→ a we have

11

a
a - a

p (i ∧ j)

a

a

?

p i
- a

p j

?

and the following square shows that p∗ = 〈i〉(p(1− i)) is an inverse of p

a
p - a

p(i ∧ (1− j))

a

a

?

a
- a

p∗(j)

?

Since it is clear how to define combinatorial the loop space Ω(X, a) we get in this way a simple
combinatorial definition of π2(X, a) = π1(Ω(X, a), 1a), . . .

We can consider a cubical set with Kan composition operations to be a combinatorial representation
of homotopy types. Contrary to Kan’s original definition, we can show that this notion of homotopy
types is closed under exponential in a constructive meta-framework.

12.3 Reasoning with equality proofs

This cubical description of homotopy types suggest the following “diagrammatic” way to reason about
equality proofs. This suggests a direct cubical syntax for representing these proofs, which can be shorter
than the proof we obtained using the elimination rule J .

Let us show by diagram that p · q = p · r implies q = r. We have two filled squares

a
p i - b

a
?

(p·q) i
- u

q j

?

and

a
p i - b

a
?

(p·r) i
- u

r j

?

The cube

12

b
q i - c

a -

�
p
k

a

(p
·q)
k -

a
?

- a
?

b
?

r i
-�

p
k

c
?

(p·r)
k
-

shows then that p · q is equivalent to p · r if, and only if, q is equivalent to r.
The proof we get in this way is more direct than the proof obtained using the elimination rule for

identity types.

12.4 Combinatorial description of S2

A possible combinatorial description of S2 as a cubical set is the following. An element of the the set
S2(I) is

1. either base

2. or loop ϕ ψ where ϕ and ψ are element of dM(I) different from 0, 1

3. or of the form u0|~p with u0 is in S2(I) and pα = 〈i〉uα with uα is a family in S2(Iα, i) such that
uα(i0) = u0α. Furthermore i should appear free in all uα.

At the same time, we define the substitution operation uf in S2(J) if f : I → J . For instance we have
(loop i j)(i0) = base and (loop (i ∨ j) (i ∧ j))(i0) = base.

It can then be proved in a purely combinatorial way that π1(S2, base) is trivial.

Appendix 3: General remarks about the model

The first remark is that all paths in N are constant, as expected.

Proposition 12.1 I is the presheaf defined by I(J) = dM(J) and N is the constant presheaf N(J) = N.
Any natural transformation I→ N is constant and is determined by the image of i by the map I({i})→ N.

The second remark is that one cannot hope to have the right lifting property for monomorphisms
against trivial fibrations. If we had this property, we could do the following operation. (I learnt this
from Vladimir Voevodsky.)

Proposition 12.2 For any map f : A→ B if we have a : A and b : B and a path f a→ b then we can
find g : A→ B such that g a = b with a path f → g.

Indeed we can consider the trivial fibration (y : B, Id B (f x) y), x : A and the monomorphism 1→ A
defined by a : A. We have a map (b, q) : 1→ (y : B, Id B (f a) y). If we had the right lifting property we
could find a lifting map (x : A)→ (y : B, Id B (f x) y), x 7−→ (g x, p x) such that p x : Id B (f x) (g x)
and g a = b and p a = q.

However, it is not possible to have such a map g in general as is shown by the following Kripke model
over 0 6 1. At time 0 let A have two distinct points a and a′ which becomes equal at time 1. Let B
be the groupoid having two connected component u → b and u′ at time 0 and only one u′ = u → b at
time 1. We then have a map f : A → B taking f a = u and f a′ = u′ and we have a path f a → b,
but there is no map g : A→ B such that g a = b with a path f → g. (Notice that this counter-example
holds already in the strict groupoid model: already for this model, we cannot have a constructive model
structure.)

13

Appendix 4: New Typing Rules

We collect all new rules of our system.

Γ `I a : A Γα `Iα pα : Id Aα aα uα
Γ `I a|~p : A

Γ `I A Γ `I a0 : A Γ `I a1 : A

Γ `I Id A a0 a1

Γ `I A Γ `I,i t : A

Γ `I 〈i〉t : Id A t(i0) t(i1)

Γ `I t : Id A a0 a1
Γ `I t ϕ : A

Γ `I t : Id A a0 a1
Γ `I t 0 = a0 : A

Γ `I t : Id A a0 a1
Γ `I t 1 = a1 : A

Γ `I,i A
Γ `I compi(A) : A(i0)→ A(i1)

Γ `I A Γα `Iα uα : Iso(Aα, Tα)

Γ `I A|~u

Γ `I a : A Γα `Iα uα : Iso(Aα, Tα) Γα `Iα u−α tα = aα : Aα

Γ `I (~t, a) : A|~u
Γ `I b : A|~u

Γ `I (~v, b) : A
where vα = u−α bα

Γ `I A Γα `Iα Eα : Id U Aα Tα

Γ `I A| ~E

Γ `I a : A Γα `Iα Eα : Id U Aα Tα Γα `Iα compi(E∗αi, tα) = aα : Aα

Γ `I (~t, a) : A| ~E

References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] B. van der Berg and R. Garner. Topological and simplicial models of identity types. ACM Transactions
on Computational Logic (TOCL), Volume 13, Number 1 (2012).

[3] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed
complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics , European
Mathematical Society, 2011.

[4] H. Cartan. Sur le foncteur Hom(X,Y) en théorie simpliciale. Séminaire Henri Cartan, tome 9
(1956-1957), p. 1-12

[5] D. Kan. Abstract Homotopy I. Proc. Nat. Acad. Sci. U.S.A., 41 (1955), p. 1092-1096.

[6] J.C. Moore. Lecture Notes, Princeton 1956 p. 1A-8.

[7] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

[8] R. Williamson. Combinatorial homotopy theory. Preprint, 2012.

14

