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References on constructive mathematics

R. Mines, F. Richman and W. Ruitenburg
A Course in Constructive Algebra

H. Lombardi home page

H. Lombardi and C. Quitté
Algèbre commutative: méthodes constructives
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Content of the lectures

4 first lectures: introduction to univalent foundation

Roughly cover the first 4 chapters of the Univalent Foundation Program book

2 last lectures: semantics, groupoid model, presheaf models
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Univalent Foundations

The goal is to design a suitable formal system for expressing and checking
mathematical proofs on a computer

These issues have close connections with proof theory and foundation of
mathematics

Traditionally, this interaction has been going in one direction

I will present a new vision on the foundations of mathematics suggested by
the quest of a good formal system for expressing mathematical proofs

In particular, new insight on one of the most basic notion of mathematics the
notion of equality
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Current existing foundations

(1) Set theory: ZFC

→ system MIZAR

(2) Category theory
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Univalent Foundations

“It is extremely difficult to accept that mathematics is in need of a completely
new foundation . . . ”

“There is a good reason it is difficult: the existing foundation of mathematics
-ZFC, and its main contender for a new foundation -category theory, have been
very successful”

It is overcoming the appeal of category theory as a candidate for a new
foundation of mathematics that was for me personally most difficult

V. Voevodsky
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Univalent Foundations

Any mathematical object is an “object of” a category
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Univalent Foundations

Any mathematical object is an “object of” a category

Any mathematical object is an object of a type
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Univalent Foundations

Any mathematical object is an “object of” a category

Any mathematical object is an object of a type

Any type comes with its own notion of equality
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Simple type theory

(3) Type theory: mostly unknown among mathematicians
(some exceptions: A. Turing, N.G. de Bruijn, T. Hales, V. Voevodsky)

→ systems HOL, Isabelle, Idris, Coq, Agda

1908 Russell Mathematical Logic as Based on the Theory of Types

1940 Church A Formulation of the Simple Theory of Types
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Simple type theory

Uses λ-calculus notation

Notation which is at the basis of functional programming (LISP,Scheme,
Miranda, O’Caml, Haskell) and denotational semantics

Through the work of P.J. Landin, this calculus is very appropriate to describe
many features of programming languages
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Simple type theory

In set theory, a function is essentially a functional graph a “static” notion

Through λ-calculus, we can represent functions as programs

Simple types: a type o which represents the type of “propositions”

A type ι which represents the type of “individuals”

Function type: α→ β, or (β)α in Church’s notation

Such a type system is essentially the one used in O’Caml or Haskell

Addition of type variables; already suggested in R. Gandy’s PhD thesis 1952

12



Univalent Foundation and Constructive Mathematics

Simple type theory

Two notions of functions: functional graph or program

How to connect the two notions?

Any functional graph has to determine a program

Description operator ιx.ϕ and axiom

(∃!x :α)ϕ → ϕ(ιx.ϕ)

We then have the “axiom of unique choice”

(∀x :α)(∃!y :β)ψ(x, y) → (∃f : (β)α)(∀x :α)ψ(x, f(x))

To use (∃!x :α)ϕ assumes that we have a notion of equality on the type α
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What is equality in mathematics?

In set theory, the axiom of extensionality states that two sets are equal if they
have the same(!) elements
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What is equality in mathematics?

In Church’s system we have two form of the axiom of extensionality

10o two equivalent propositions are equal

(ϕ ≡ ψ) → ϕ = ψ

10αβ two pointwise equal functions are equal

((∀x :α) f(x) = g(x)) → f = g

Church notices that 10o allows to identify classes with propositional functions
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What is equality in mathematics?

Equality x = y is defined as

(∀P :α→ o) P x→ P y

x = y is of type o if x y are of type α

ϕ ≡ ψ is defined to be ϕ→ ψ ∧ ψ → ϕ

We can rewrite the extensionality axioms

(ϕ = ψ) ≡ (ϕ ≡ ψ)

(f = g) ≡ ((∀x :α) f(x) = g(x))
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What is equality in mathematics?

In Church’s system equality x = y is defined as

(∀P :α→ o) P x→ P y

Henkin, and then P. Andrews, gave alternative presentations of type theory
taking equality as primitives

Cf. Lambek and Scott “Introduction to Higher-Order Categorical Logic”
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What is equality in mathematics?

One can justify these axioms by defining equality by induction on the types

In set theory, one can also interpret the extensionality axiom

Can we justify/explain the operation ιx.ϕ?
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How to “explain” logical laws

1908 Russell Mathematical Logic as Based on the Theory of Types

1940 Church A Formulation of the Simple Theory of Types

1973 Martin-Löf An Intuitionistic Theory of Types: Predicative Part

(Curry, de Bruijn, Howard, Tait, Scott, Martin-Löf, Girard, . . . )

To consider propositions as types
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How to “explain” logical laws

This “explains” some logical laws such as

modus-ponens: from A→ B and A we can deduce B

introduction: if we can deduce B from A we can deduce A→ B

This reduces the problem of proof-checking to the problem of type-checking

Introduction of dependent type B (x : A) and dependent product (Πx : A)B
and dependent sum (Σx : A)B
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Univalent foundation

In type theory and therefore in Univalent Foundations the fundamental notion
is that of a dependent function, not of a “straight” function, and this is what
makes the whole system successful
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Type system

We can also introduce a notion of “disjoint sum”

The elements are inl(a) with a in A or inr(b) with b in B

We can define function by cases

We can also introduce data types like the type of natural numbers

This strengthens the connection with programming languages

constructors corresponds to introduction rules
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Type of propositions

A proposition is a (special kind of) type

For the type of proposition we need a “type of types”

Universe U

What is the equality on U?

When are two types equal?
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Rules for equality

P. Martin-Löf (1973) introduces a primitive notion of equality EqA(a0, a1)

What are the laws?

Any element is equal to itself 1a : EqA(a, a)

Leibnitz’s law C(a) implies C(x) if p : EqA(a, x)
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Rules for equality

New law

J(d) : (Πx0 x1 : A)(Πp : EqA(x0, x1))C(x0, x1, p)

given d : (Πx : A)C(x, x, 1x)

Computation rule: J(d) x x 1x = d x

This generalizes

(∀x y)EqA(x, y)→ C(x, y) given (∀x)C(x, x)

Strengthening similar to the one for existence and disjunction
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Rules for equality

Other formulation

J′(d) : (Πx : A)(Πp : EqA(a, x))C(x, p)

given d : C(a, 1a)

Computation rule: J′(d) a 1a = d

This generalizes

(∀x)EqA(a, x)→ C(x) given C(a)

Problem: are these two formulations equivalent?
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The singleton law

A.k.a. the “vacuum cleaner power chord principle”

The type Sa = (Σx : A)EqA(a, x) has for element (x, p) with p : EqA(a, x)

In particular it has for element (a, 1a)

Singleton Law (Πz : Sa)EqSa((a, 1a), z)

This follows from the first formulation, and this implies the second formulation

(The fact that the two formulations are equivalent was considered to be a
tricky result before work on univalent foundations)

New logical law for equality (unknown until 1973)!
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The singleton law

“Indeed, to apply Leray’s theory I needed to construct fibre spaces which did
not exist if one used the standard definition. Namely, for every space X, I needed
a fibre space E with base X and with trivial homotopy (for instance contractible).
But how to get such a space? One night in 1950, on the train bringing me back
from our summer vacation, I saw it in a flash: just take for E the space of paths
on X (with fixed origin a), the projection E → X being the evaluation map:
path → extremity of the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! . . . It is strange that such a simple construction had so
many consequences.”
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Stratification of types

As soon as we introduce EqA(x, y) as a type we can iterate this operation

EqEqA(x,y)(p, q)

A type A is a proposition

(Πx0 x1 : A)EqA(x0, x1)

A type A is a set

(Πx0 x1 : A)prop(EqA(x0, x1))

a.k.a UIP(A) “Uniqueness of Identity Proof”

Question (around 1991): is any type a set?
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Stratification of types

It seems possible to show

(Π x : A)(Πp : EqA(x, x))Eq(1x, p)

and it is instructive to understand where is the problem with this

This statement is actually equivalent to UIP(A)
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Stratification of types

N1 is a proposition

N0 is a proposition
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Stratification of types

A is a groupoid

(Πx0 x1 : A)set(EqA(x0, x1))

Theorem: any type satisfies the groupoid laws

Follows from the singleton law

Application: UIP(A) iff each EqA(a, a) has one element
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Stratification of types

Theorem: any function f : A→ B satisfies the functorial laws

Any f : A→ B defines

pMap(f) : EqA(a0, a1)→ EqB(f a0, f a1)

We can define 2-groupoids, 3-groupoids, . . .

Type theory appears to be a generalization of set theory
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Properties of Equality

1a : EqA(a, a)

transp : C(a)→ EqA(a, x)→ C(x)

EqC(a)(transp u 1a, u)

Eq(Σx:A)EqA(a,x)((a, 1a), (x, p))

Univalence Axiom
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Constructive mathematics

Let Nk be the data type with k element

Let N be the data type of natural numbers

The type N0 represents the empty type/the absurd proposition

Let ¬A be the type A→ N0

We say that A is “decidable” A+ ¬A

A type A is discrete if each type EqA(x, y) is decidable

Proposition: The types Nk and the type N are discrete
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Hedberg’s Theorem

Theorem: (Hedberg, 1996) Any discrete type is a set

Lemma: If we have an operation f p : EqA(x, y) for p : EqA(x, y) then
Eq(f p, (f 1) · p) for any p : EqA(x, y)

Lemma: If C is decidable we can define f : C → C with a proof of
(Πx y : C)EqC(f x, f y)

Given extensionality we can weaken the hypothesis to

¬¬C → C

instead of C decidable

36



Univalent Foundation and Constructive Mathematics

Constructive mathematics

N2, N are sets

With one universe, we can show that they are not propositions

SSReflect considers only decidable structures because of this result

If A is a set we will see later that we have

Eq(Σx:A)B((a, b0), (a, b1)) → EqB(a)(b0, b1)

but this implication may fail if A is not a set
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Equivalence

Voevodsky gives a simple and uniform notion of equivalence between two
types

If A and B are sets, this gives the notion of bijection

If A and B are propositions, this gives the notion of logical equivalence

If A and B are groupoids, this gives the notion of categorical equivalence of
groupoids
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Equivalence

If f : A→ B the fiber of f at b : B is the type

F (b) = (Σx : A)EqB(b, f x)

f is an equivalence iff this fiber is contractible at each point b

prop(F (b))× F (b)

We write A ' B for (Σf : A→ B)Equiv(f)

Proposition: The identity function on any type is an equivalence

This is not trivial!
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Equivalence

If g : C → D is an equivalence we have a proof of (Πd : D)F (d)

Hence there exists a function h : D → C which is a section of g

(Πx : D)EqB(x, g (h x))
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Univalence Axiom

Since X ' X we have a map EqU(A,B)→ A ' B

The Univalence Axiom states that this map is an equivalence

In particular we have

A ' B → EqU(A,B)

This generalizes Church’s axiom of extensionality for propositions

Lemma: If A and B are two propositions and B → A then any map A→ B
is an equivalence

This will be proved later
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Univalence Axiom

We have EqU(A,B) if A and B are equivalent propositions

We can hope closer connections to HOL

and to the SSReflect style of doing proofs (equational reasoning)

E.g. EqA(a0, a1)→ EqA(u0, u1)→ EqU(EqA(a0, u0),EqA(a1, u1))
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Univalence Axiom

The Univalence Axiom implies that two isomorphic sets are equal

It also implies that two equivalent groupoids are equal

Voevodsky has shown that this axiom implies function extensionality

From now on, we shall work with Univalence and hence function extensionality
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Equivalence

We say that g : B → A is a section of f : A→ B iff Eq(f ◦ g, idB)

We say that f is a retraction of g iff Eq(g ◦ f, idA)

f and g are inverse iff g is a section of f and f a retraction of g
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Equivalence

Graduate Lemma: If f and g are inverse then f is an equivalence

Given this we can prove e.g.

Lemma: If A and B are two propositions and B → A then any map A→ B
is an equivalence
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Equivalence

The proof of the Graduate Lemma consists itself in several Lemmas

Lemma 1: If f : A→ B has a left inverse g then prop(B) implies prop(A)

Lemma 2: If f has a left inverse, then
pMap(f) : EqA(a0, a1)→ EqB(f a0, f a1)

has a left inverse

Lemma 3: If we have a family of maps ϕx : D(x)→ E(x) and for all x : A,
the map ϕx has a left inverse then the map

(Σx : A)D(x)→ (Σx : A)E(x)
(x, d) 7−→ (x, ϕx d)

has a left inverse
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Applications

Any involutive function is an equivalence

¬ : N2 → N2 is an equivalence

We need function extensionality to prove ¬ ◦ ¬ = idN2

Hence we have a proof of EqU(N2, N2) which is not the reflexivity

By univalence Eq(EqU(N2, N2),Equiv(N2, N2))

Hence U is not a set

It can be shown that U1 is not a groupoid, U2 is not a 2-groupoid and so on
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Applications

Axiom of “choice”

EqU((Πx : A)(Σy : B)C(x, y), (Σf : A→ B)(Πx : A)C(x, f x))

Distributivity law

EqU((Σx : A)(B + C), (Σx : A)B + (Σx : A)C)

Induction principle

EqU((Πz : A+B)C(z), (Πx : A)C(inl(x))× (Πy : B)C(inr(y)))
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Univalence Axiom

We have

EqU(A×B,B ×A)

EqU(A× (B × C), (A×B)× C)

EqU(A×N1, A)

This is less surprising than it seems however

A×B is not convertible to B ×A

49



Univalent Foundation and Constructive Mathematics

Univalence Axiom

We have EqU(N,N +N1)

Notice that this is not true in set theory

0 belongs to N but not to N +N1

a type structure is a “syntactical discipline for enforcing level of abstraction”
Reynolds 1983

0 : N is a judgement and not a type (using Martin-Löf terminology)

This can already be found in the design of Automath (1967)
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Universal family of types

A family of types over A can be seen as a function A→ U

The map

EqU(A,B)→ A ' B

gives for each p : EqU(A,B) a map

λx.transp x p : A→ B

and the transport of a family C : A → U can be seen as the composition of
this map and pMap(C)
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Induction Principle for equivalences

If we have a statement P (B, f) for

B : U, f : A→ B, p : isEquiv(A,B, f)

For proving that P (B, f) holds universally, it is enough to prove P (A, idA)

This follows from univalence and the singleton law
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Application

E.g. define the type of pointed types Pt = (ΣX : U)X

If f : A→ B equivalence and EqB(f a, b) then

EqPt((A, a), (B, b))
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Application

Consider now the type Fam = (ΣX : U)X → U

This is the type of “families” (X,F ) with F : X → U

If f : A→ B equivalence and C : B → U then

EqFam((A,C ◦ f), (B,C))

Hence

EqU((Σx : A)C(f x), (Σy : B)C(y))

and

EqU((Πx : A)C(f x), (Πy : B)C(y))
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Back to the stratification

Using function extensionality we can show prop(¬A) for any type A
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Back to the stratification

Using function extensionality, we can prove

Theorem: If we have (Πx : A)prop(B) then prop((Πx : A)B)

A can be any type in this statement

This is similar to impredicativity: any product of propositions is a proposition

What about a product of sets?
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Back to the stratification

We have a notion of property: family of propositions over a type

To be an equivalence is a property of a function

The axiom of univalence is a proposition

Essential difference between property and structure

E.g. f :A→ B isomorphism is a structure in general

and a property if A and B are sets

E.g. to be discrete is a property of a set, and hence a property of a type
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Back to the stratification

If P is a proposition and x y : P , is EqP (x, y) a proposition?

Lemma: If A is a type and we have ϕ : (Πx : A)EqA(a, x) then

(Πx u : A)(Πp : EqA(x, u))Eq(p · (ϕ u), ϕ x)

Direct from the singleton law and the groupoid laws
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Back to the stratification

Corollary: If P is a proposition and x y : P then EqP (x, y) is contractible

Q contractible means prop(Q)×Q, and this is a proposition
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Back to the stratification

In particular any proposition is a set

Any set is a groupoid

Voevodsky’s stratification is cumulative
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Back to the stratification

To be a proposition, a set, . . . is a property

To prove

(Πu v : prop(A))Eq(u, v)

we use that prop(A)→ set(A) and function extensionality

By function extensionality, set(A) is a proposition as well
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Back to the stratification

N0 is a proposition

N1 is contractible

N2, N3, . . . and N are sets (by Hedberg’s Theorem)

With a universe one can prove that they are not propositions
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Equality in a sigma type

If B(x) (x : A) is a family of type and p : EqA(a0, a1) we can define

B(a0)→ B(a1)

b 7−→ transp b p

We have

EqU(Eq(Σx:A)B((a0, b0), (a1, b1)), (Σp : EqA(a0, a1))EqB(a1)(transp b0 p, b1))
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Equality in a sigma type

We have

prop(A), (Πx : A)prop(B)→ prop((Σx : A)B)

set(A), (Πx : A)set(B)→ set((Σx : A)B)

In particular

prop(A), (A→ prop(B))→ prop(A×B)

prop(A)×A is a proposition
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Equality in a sigma type

It follows that “to be contractible”

prop(A)×A

is a proposition

It then follows by extensionality that to be an equivalence is a property

We have EqU(prop(A)×A,EqU(A,N1))

In particular A is contractible iff EqU(A,N1)
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Equality in a sigma type

If A is a set and

Eq(Σx:A)B(x)((a, b0), (a, b1))

then

EqB(a)(b0, b1)

This is because EqA(a, a) is a proposition
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Equality in a sigma type

We say that g : C → D is an embedding iff

pMap(g) : EqC(x, y)→ EqD(g x, g y)

is an equivalence

This is a property of g

If C and D are sets, this is the same as being injective

EqD(g x, g y)→ EqC(x, y)
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Equality in a sigma type

Proposition: If B(x) is a family of propositions over a type A then the first
projection (Σx : A)B → A is an embedding

If A is a set we can think of (Σx : A)B as the

subset of elements in A satisfying B

Cf. definition of subset in Bishop’s mathematics
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Applications

Given A

There are two notions of family of types on A

A→ U and Slice(A) = (ΣX : U)X → A

Any F : A→ U defines a pair

u(F ) = (Σx : A)F x, (λz)z.1

in Slice(A)

Theorem: The map u : (A→ U)→ Slice(A) is an equivalence
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Applications

If A B : U we can define T : N2 → U by

T 0 = A T 1 = B

Proposition: We have EqU(A+B, (Σx : N2)T x)

This implies e.g. that A+B is a set if A and B are sets
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Product of sets?

Lemma: The canonical map (and actually any map)

Eq(Πx:A)B(f, g)→ (Πx : A)EqB(f x, g x)

is an equivalence

The proof is incredible
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Product of sets?

Let C = (Πx : A)B

We notice that both

(Σg : C)EqC(f, g) and (Σg : C)(Πx : A)EqB(f x, g x)

are contractible

By “choice”

EqU((Σg : C)(Πx : A)EqB(f x, g x), (Πx : A)(Σy : B)EqB(f x, y))

Corollary: The product of any family of sets is a set
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Product of sets?

Lemma: if we have a family of maps ϕx : D(x) → E(x) for x : C and
the total map (x, b) 7−→ (x, ϕx b) is an equivalence then each map ϕx is an
equivalence

This is a standard lemma in the theory of fibrations in homotopy theory

E.g. P. May A concise course in algebraic topology

73



Univalent Foundation and Constructive Mathematics

Product of sets?

The proof is a sequence of equality, where F = (Σx : C)D and G = (Σx : C)E

(Σ(x, d) : F )Eq((x0, e0), (x, ϕx d))

(Σx : C)(Σd : D(x))(Σp : EqC(x0, x))EqE(x)(transp e0 p, ϕx d)

(Σx : C)(Σp : EqC(x0, x))(Σd : D(x))EqE(x)(transp e0 p, ϕx d)

(Σu : N1)(Σd : D(x0))EqE(x0)(e0, ϕx0 d)

(Σd : D(x0))EqE(x0)(e0, ϕx0 d)
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Set mathematics

What is a poset?

It should be a set A

with a relation R : A→ A→ U such that prop(R x y)

this relation should be reflexive and transitive

and we have EqU(EqA(x, y), R x y ×R y x)
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Set mathematics

What is a group?

It should be a set A

with some operations

m : A→ A→ A inv : A→ A e : A

and the usual axioms

We can form the type of all groups
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Transport of structures

Let Grp(A) be the type of structures of groups over the set A

If f : A→ B is a bijection between the sets A and B

then we have EqU(A,B) by univalence

Hence we have a map Grp(A)→ Grp(B)

Any group structure on A can be transported into a group structure on B
along the bijection f
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Transport of structures

On the other hand there is a direct notion of transport of operations

mB b b′ = f (mA (g b) (g b′)) invB b = f (invA (g b)) eB = f eA

where g is the inverse of f

The two notions of transport coincide

In particular, we get in this way that B satisfies the axioms of group with
operations mB, invB, eB
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Structures

The collection of binary sequences form a set because we know what it means
for two binary sequences to be equal. Given two groups, or sets, on the other
hand, it is generally incorrect to ask if they are equal; the proper question is
whether or not they are isomorphic
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Structures

The collection of all groups

Group = (ΣX : U)set(X)× Grp(X)

form a groupoid

Theorem: The map EqGroup(g0, g1)→ Iso(g0, g1) is an equivalence

In particular, two isomorphic groups are “equal”
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Resizing rule

We add A : U0 if A is a type and prop(A)

With the resizing rule, the system becomes impredicative
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Resizing rule

Voevodsky also requires that the collection of all propositions is a small type
(which will be a small set)

For expressing this, we introduce a type Ω : U0 with the rules

(A, p) : Ω if A is a type and p : prop(A)

If X : Ω then X.1 : U0 and X.2 : prop(X.1)

Theorem: Ω is a set

The collection of sets form a topos with Ω as the set of truth-values
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Propositional truncation

Using the resizing rule, Voevodsky defines the operation

inh(A) = (ΠX : U)prop(X)→ (A→ X)→ X

What is important is

(1) inh(A) is a proposition

(2) A→ inh(A)

(3) inh(A)→ prop(X)→ (A→ X)→ X

Intuitively inh(A) is a proposition expressing that A is inhabited

If A is a proposition we have EqU(A, inh(A))
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Constructive mathematics

We can define new connectives

(∃x : A)B defined as inh((Σx : A)B)

A ∨B defined as inh(A+B)

These connectives are similar to (but different from) the corresponding
connectives in topos theory

Lemma: If A and B are incompatible propositions then EqU(A+B,A ∨B)

In particular, A+B is a proposition in this case

(ΠX : U)prop(X)→ X + ¬X is a proposition
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Unique Choice

We also have the principle of unique choice, for C,D sets

(∀x :C)(∃!y :D)ψ(x, y) → (Σg :C → D)(∀x :C)ψ(x, g x)

Without this principle, we would have two notions of functions

Function as λ-term or as functional relation

For A set and B propositions we have

(∃!x : A)B → (Σx : A)B

This can be seen as a refinement of Church’s description operator
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Constructive mathematics

We can define the image of a map f : A→ B

This is determined by the property (∃x : A)EqB(b, f x) on B

Compare with the fiber (Σx : A)EqB(b, f x)

We have a satisfactory correspondance between subsets and properties
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Constructive mathematics

Difference between inh(A) and ¬¬A

We have inh(A) → ¬¬A

Let P (n) be a family of decidable propositions over N

Proposition: inh((Σn : N)P (n))→ (Σn : N)P (n)

This is remarkable since (Σn : N)P (n) needs not be a proposition

Theorem: ¬¬((Σn : N)P (n))→ (Σn : N)P (n) is not provable
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Constructive mathematics

No reason any more why countable choice

(∀n : N)(∃x : X)R(n, x) → (∃f : N → X)(∀n : N)R(n, f n)

should hold

This is like in topos theory
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Constructive mathematics

Definition of quotient by an equivalence relation

Given A a type and R : A → A → U a proposition valued family of types
which is an equivalence relation we define an equivalence class to be a proposition
valued P : A→ U such that

P is inhabited (∃x : A)P (x)

P x→ P y → R x y

P x→ R x y → P y

Notice that from P a given equivalence class we cannot extract in general any
element in A satisfying P
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Univeral property

Let A/R the set of equivalence classes

We have a canonical map s : A→ A/R and R x0 x1 → EqA/R(s x0, s x1)

Let f : A→ B a map into a set B such that R x0 x1 → EqB(f x0, f x1)

There exists a unique map g : A/R→ B such that g ◦ s = f

And this despite the fact that we cannot extract in general an element in a
given equivalence class!
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More example in algebra

A ring R will be represented as a set with the usual structure

a divides b will be defined as there exists x such that ax = b

If a is regular i.e. au = 0→ u = 0 then this x is uniquely determined and we
have an explicit division operation
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More example in algebra

An ideal P is a subset of R satisfying the usual laws

The ideal is prime iff abεP → aεP ∨ bεP

Notice the use of ∨

We say that an ideal I is finitely generated iff there exists a finite list x1, . . . , xn
which generates I

Notice that given I finitely generated we cannot in general extract an explicit
list of generators

Lemma: If I · J ⊆ P and P is prime then I ⊆ P or J ⊆ P
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More example in algebra

In general, we can introduce the witness of an existential statement as long as
we use this witness to build an object which does not depend on the exact choice
of this witness
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An example in analysis

If we define the type of real numbers R as a quotient of the set of Cauchy
sequences of rationals

We can define x#y as meaning (∃r > 0)r 6 |x− y|

We can define the inverse function (Πx : R)x#0→ R

This is because the inverse is uniquely determined
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More example in algebra

Even if we start with a discrete structure, some natural operations build non
necessarily discrete structure

E.g. localization of a ring for a multiplicative monoid

What was missing before was the insight that structures in algebra should be
represented by sets
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Finite sets

Category of finite sets Nk+1 = Nk +N1

We say that X is finite iff there exists k such that EqU(X,Nk)

(∃k : N)EqU(X,Nk) is a proposition

If X is finite, we can extract its cardinality but not the given equality proof
EqU(X,Nk) (there are k! such proofs)

We use that EqU(Nk, Nl) implies EqN(k, l)

If X has k elements we have inh(EqU(EqU(X,X), Nk!))

If X is finite then X is a discrete set
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Torsors

We consider only Z-torsors

A torsor is a set X with a Z-action such that for any u in X the map
n 7−→ u+ n, Z→ X is an equivalence

and inh(X)

If X is a torsor we cannot in general exhibit one element of X

There is always the trivial torsor triv where X = Z

Theorem: EqU(EqTorsor(triv, triv),Z)

cf. D. Grayson Foundations.Ktheory
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Torsors

If X is a torsor we have

(Πu0 u1 : X)(∃!n : Z)EqX(u0 + n, u1)

and so, by unique choice we have an application

X ×X → Z

(u0, u1) 7−→ u1 − u0

such that EqX(u0 + u1 − u0, u1)
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Resizing rule

What about a resizing rule for sets?

We cannot add A : U0 if A is a type and set(A)

We cannot have

T = (ΠX : U0)set(X)→ (((X → Ω)→ Ω)→ X)→ X

in U0, since then EqU0
(T, (T → Ω)→ Ω) which implies N0

Cf. Reynolds non set theoretic model of polymorphisms

So we still need the hierarchy of universe
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Global choice

We have

¬((ΠX : U)set(X)→ inh(X)→ X)

which is the negation of the axiom of global choice

No global choice function is invariant by isomorphism
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Category theory

Look at the example of the collection of groups

A category is given by a type of objects A which should be a groupoid

We have Hom(a0, a1) which is a set

with the usual operations and laws of composition

We can then define the set of isomorphisms IsoA(a0, a1)

We have a map EqA(a0, a1)→ IsoA(a0, a1)

This map should be an equivalence (a bijection in this case)
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Category theory

Compare with the definition in set theory

Notion of “locally small” category

But this refers to the “size” and not to the complexity of equality
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Category theory

We can define the notion of equivalence between two categories

We can consider the collection of “all” categories

Two equivalent categories are equal

B. Ahrens, C. Kapulkin, M. Shulman
“Univalent categories and the Rezk completion”
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Category theory

The notion of Galois connections between posets

The notion of adjunction between categories
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Category theory

Let F : A→ B be a functor between two categories A and B

Like a monotone map at the level of groupoids

F is essentially surjective iff

(Πb : B)(∃a : A)IsoB(b, F a)

This is a property of the functor

F is full and faithful iff the map

HomA(a0, a1)→ HomB(F a0, F a1)

is an equivalence (here a bijection)
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Category theory

Lemma: If F is full and faithful then for any b in B the type

(Σa : A)IsoB(b, F a)

is a proposition

Corollary: If F is full and faithful and essentially surjective then F is an
equivalence of categories

We use the principle of unique choice at the level of groupoids!
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Category theory

This definition of category solves some foundational issues that are somewhat
disturbing when category theory is formulated in set theory

For instance, what should be a cartesian category (i.e. category with binary
product)?

Should the product of two objects given explicitely as a function?

We have two notions (if we don’t assume choice)
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Category theory

In the univalent foundation, there is no problem since the product of two
objects is uniquely determined up to isomorphism

And hence up to equality by definition of category

Since we have uniuqe choice, we have an explicit product function on objects
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Beyond groupoids

U0 is not a set

U1 is not a groupoid

For 2-groupoids new phenomena arise

E.g. Eckmann-Hilton

EqEqEqA(x,x)(1x,1x)(α · β, β · α)
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