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Abstract

The �rst paper in this thesis presents a machine checked formalisation, in Martin-Löf's type

theory, of pointfree topology with applications to domain theory. In the other papers pointfree

topology is used in an approach to constructive analysis. The continuum is de�ned as a formal

space from a base of rational intervals. Then the closed rational interval [a; b] is de�ned as

a formal space, in terms of the continuum, and the Heine-Borel covering theorem is proved

constructively. The basic de�nitions for a pointfree approach to functional analysis are given

in such a way that the linear functionals from a seminormed linear space to the reals are

points of a particular formal space, and in this setting the Alaoglu and the Hahn-Banach

theorems are proved in an entirely constructive way. The proofs have been carried out in

intensional Martin-Löf type theory with one universe and �nitary inductive de�nitions, and

the proofs have also been mechanically checked in an implementation of that system.



Acknowledgements

First I want to thank my supervisor Jan Smith. A few years ago he suggested to me that I

start studying pointfree topology as an approach to constructive mathematics. Since then he

has repeatedly encouraged me to continue investigating this area. The suggestions and the

response I have got from him during our discussions have been valuable for me. But most

importantly, he has always shown enthusiasm in my work.

Two more people have in�uenced my work considerably. Many ideas that I have used are

due to Thierry Coquand. Thierry also invented the logical framework Half that was suitable

for my kind of formalisation. The last two years I have also had an inspiring collaboration

with Sara Negri, one that I hope to continue.

Dan Synek is worthy a great praise for implementing a type-checker and an emacs-interface

to Half. He made the system fast enough that my formalisations could be carried through.

I am grateful to Giovanni Sambin for generously inviting me to Padova. Giovanni has

developed the particular notion of formal space that I have been using. His papers and

lectures during his visits in Gothenburg have also contributed to my work.

On the invitation of Jan von Plato, I have paid two very pleasant visits to the Department

of Philosophy in Helsinki. Both times I had interesting discussions with Jan and his colleagues.

The programming methodology group in Gothenburg has o�ered a creative atmosphere

and I have had fruitful discussions with many of its members. I would in particular like to

thank Michael Hedberg, Henrik Persson, Mary Sheeran and Martin Weichert for interesting

discussions and useful comments.

1



Introduction

The papers in this thesis all have pointfree topology in common. Some of them also describe

machine assisted formalisations in type theory. I will here brie�y describe what the papers

contain. But in order to make this introduction self-contained, I �rst say a few words about

type theory and pointfree topology, followed by brief descriptions of the two proof checkers,

ALF and Half, that have been used and the speci�c type theory that each proof checker is

based on. In [Mag95] there is a detailed description of ALF, and Half is described in more

detail in the third paper in this thesis.

Type theory

Martin-Löf's type theory [Mar72, NPS90] is a typed functional programming language with

dependent types. But in type theory, unlike the usual functional programming languages,

there is also the possibility of developing proofs. The aim of type theory was originally to

serve as a foundation for constructive mathematics. However, because of the close relation

between constructive proofs and computations, it may also be suitable as a foundation for

ordinary programming.

In constructive mathematics the notion of function is primitive and a function from a

set A to a set B is a method that, when given an element in A produces an element in B.

So functions in constructive mathematics are computable and can be seen as programs. To

prove a proposition constructively means to have a method of proving it. For instance to prove

(8x 2 A)(9y 2 B)(P (x; y)) constructively means to give a function f that when applied to an

element a in A gives an element b in B such P (a; b) holds. For a presentation of the ideas of

constructive mathematics we refer to [Bis67, Dum77, TvD88]. A constructive proof can thus

be seen as a program (cf. [Con82, Bis70, Mar82, Moh86, NS84]), and in type theory execution

of the program corresponds to normalisation of the proof.

The basic idea behind using type theory for developing proofs and programs is the Curry-

Howard isomorphism [How80], where propositions (speci�cations) are identi�ed with types

and proofs of a proposition (programs satisfying a speci�cation) are identi�ed with objects of

the corresponding type. Proof checking is then the same as type checking.

In type theory we have the possibility of introducing new types, which makes type theory

into an open theory, and a type is formed by prescribing what has to be done in order to

construct an object of that type. There are basically two ways of introducing new types in

Martin-Löf's type theory: by inductive de�nitions and (dependent) function types. Proofs

in Martin-Löf's type theory are represented by proof objects. They are formed by natural

deduction, which re�ects the ways the types are introduced.

Expressions in type theory �live� at di�erent levels. For instance, we distinguish between

sets and types; if we denote the type of sets by Set then Set is a proper type. Martin-Löf's

type theory is predicative. For instance, when de�ning a set (or type) inductively, we do not

quantify over objects of the set (type) we are de�ning and we do not compress one level into a

lower level. This means, in particular that, given a set X 2 Set, the power set P(X) cannot,

in general, be formed as an object of Set.

The type theory used here is called intensional ; by this we mean that the equality used is

the de�nitional equality. Intensional type theory should be compared to extensional, which

uses a weaker propositional equality. In Martin-Löf's intensional type theory, equality and

type checking are decidable; whereas extensionality leads to undecidability.
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Formal spaces

In the usual (set-theoretic) topology we start from a space of points. Given a setX , a topology


X on the space X is a family of subsets of X which is closed under �nite intersection and

arbitrary union. The subsets in 
X are called open sets.

The intuition behind pointfree topology is that points are abstractions: a point is an ideal

object consisting of a non-contradictory collection of pieces of information. So the pointfree

approach is sort of reversal of the usual set-theoretical approach: the notion of open set (or

rather just open) is taken as primitive and what interests us is the algebraic structure (frame)

that a topology forms.

A frame is a lattice (A;�;^;

W

), with arbitrary join (

W

), in which meet (^) distributes

over join:

a ^

_

S =

_

fa_ b : b 2 Sg:

Points are then de�ned as a suitable collections of opens (completely prime �lters). Frames

can thus be seen as �generalised� topological spaces. These spaces may fail to have points

(for non-trivial examples see [FG82, JT84]).

For the early development of this area we refer to [Joh82, Joh83], where Johnstone gives a

comprehensive bibliography over the development of abstract algebra and pointfree topology.

Recently this topic has appeared in locale theory [Joh82], it has also been used in applications

to domain theory [Sco82, Mar83, Vic89].

Below we use the term locale interchangeably with frame. In the literature (see for in-

stance [Joh82, Vic89]), the word locale is often used when there is explicit mention of the

points. Categorically speaking, in the category of frames the morphisms are the frame homo-

morphisms (functions preserving arbitrary join and �nite meet). The category of locales is

the opposite category. Continuous maps between locales are determined by the corresponding

frame homomorphisms, except that they go in the opposite directions. The morphisms in the

category of locales thus correspond exactly to the continuous maps. The word space is also

often used when referring to the points of a frame (locale).

A set-theoretic topology 
X can always be presented using one of its bases. So a more

�basic� way to present a general topological space is to describe the structure of its base.

Moreover, since the de�nition of frame above contains a possibly in�nitary join, it is more

convenient to consider, for instance, semilattices for the development of pointfree topology.

Semilattices are purely algebraic they can be formulated as commutative and idempotent

monoids. When using predicative type theory to formalise topology it is also more general

to start from a base, since the neighbourhoods may form a set (in type theory) whereas the

opens do not.

A problem, that was solved by Johnstone, is whether frames in general can be pre-

sented by semilattices. For �nitary algebraic theories presentations always present algebras.

(For an overview of the method of presenting algebras from a set of generators and rela-

tions see [Man76] or [Vic89].) This is not always the case for in�nitary algebraic theories

(see [Joh82]). For frames, however, it is the case, as shown in [Joh82]. In the �coverage

theorem� Johnstone gives an explicit description of a frame being presented from a set of

generators and relations. In this way, he also gives an explicit description of arbitrary frame

coproduct.

Fourman and Grayson [FG82] introduced the name formal space, for models of a proposi-

tional theory, to be the locale presented by the theory. They gave an e�ective presentation of
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topologies by generating topologies from preorders with conditional meet and closing an entail-

ment relation under the axioms for a Grothendieck topology. A formalisation, in Martin-Löf's

type theory, of this method of generating topologies is however not immediate.

Martin-Löf and Sambin then introduced formal topologies [Sam87] as a constructive ap-

proach to (pointfree) topology, in the tradition of Johnstone's coverages and, Fourman and

Grayson's formal spaces, but using a constructive set theory based on Martin-Löf's type

theory.

A formal topology is a structure (S; �;�), where S is a set (base) of neighbourhoods such

that (S; �) forms a semilattice (or alternatively a commutative monoid). The operation �

corresponds to �nite meet and instead of join we have the cover relation � between elements

and subsets of S satisfying the following rules

� if a 2 U then a � U ,

� if a 2 U and U � V then a � V , where U � V means that x � V for all x 2 U ,

� if a 2 U then a � b � U ,

� if a 2 U and a � V then a � U � V , where U � V is the set of all x � y such that x 2 U

and y 2 V .

In terms of spaces as sets of points, the monoid operation can be understood as intersection

and a � U means a �

S

U .

In the de�nition of formal topology, given in [Sam87], the base monoid has a unit and

there is a positivity predicate for neighbourhoods (the intuition of a positive neighbourhood

is that it is inhabited). In the papers in this thesis we sometimes drop these requirements.

For formal topologies, as for frames, there are notions of point and morphism. Moreover, each

formal topology represents a frame and each frame can be represented by a formal topology.

Generation of formal spaces have also been studied by several authors other than those

already mentioned, see for example [Dra88, Gra83, Sig90].

In this thesis we use formal topology as an approach to pointfree topology and as a step

towards a complete formalisation in Martin-Löf's type theory. Pointfree topology is used here

because of constructiveness; to formulate and prove constructively theorems that in their usual

set-theoretic formulation are not constructively true. In a pointfree formulation of a theorem,

properties of points are replaced by the corresponding properties of their neighbourhoods

(�nite approximations) and sometimes constructions needing the axiom of choice or non-

constructive arguments in terms of points get a constructive proof when stated in a pointfree

way.

An example of such a theorem is Tychono�'s theorem, which says that a product of

compact spaces is compact. This example is perhaps particularly interesting since, in the

usual formulation, Tychono�'s theorem is equivalent to the axiom of choice (see [Kel50]).

Johnstone used his presentation of frames to give a localic proof of Tychono�'s theorem

without the axiom of choice. Other localic proofs of Tychono�'s theorem have also been

given and, because of the similarities to the framework in which the proofs in this thesis are

developed, we mention two of them here. Coquand presents in [Coq92b] an intuitionistic proof

(which besides being constructive only uses inductive de�nitions) and, following Coquand's

idea, Negri and Valentini [NV97] gave a proof in the framework of formal topologies.

Johnstone gives a few more examples of constructive proofs of theorems formulated in a

pointfree way in [Joh83], and for further examples see [Coq92a, Coq95].

4



Implementations of type theory

ALF (Another Logical Framework)

ALF [Mag95] is an implementation of Martin-Löf's monomorphic type theory [NPS90] ex-

tended with pattern matching [Coq92c]. In the type theory used in ALF there are two basic

levels: sets and types. Sets are formed by induction. The types consist of the type Set

(whose objects are the sets), the type of elements of a set (in Set) and function types. Ob-

jects of a type are formed from constants and variables using application and abstraction (as

in ordinary typed �-calculus).

There are three ways of de�ning constants:

1. Inductive de�nitions of sets and families of sets, which consist of a formation rule and

introduction rules prescribing how the canonical elements are formed.

2. Explicit de�nitions, which simply are abbreviations of well typed expressions.

3. Implicit de�nitions, which o�er the possibility of de�ning functions using pattern match-

ing. These may also be recursive.

Judgements are made relative to a context

a : A [�];

where a is an expression of type A and � a context. A context is a dependent list of declara-

tions

[ ] : Context

� : Context � : type [�]

[�; x : �] : Context

where x does not occur free in � and [�; x : �] is the extension of � with the clause x : �.

Using a context we can represent an abstract algebraic structure. This is used in the

�rst paper in this thesis. Betarte also gives a more detailed discussions about this approach

in [Bet93]. A concrete structure can then be proved to be an instance of the abstract structure

using a substitution, that is, an assignment of objects of appropriate types to the variables in

the context. Substitutions are introduced by the rules

f g : [ ] [�]


 : � [�] � : type [�] a : �
 [�]

f
; x := ag : [�; x : �] [�]

where f g is the empty substitution, 
 : � [�] means that the substitution 
 �ts the context

� in the context �, �
 is the substitution 
 applied to the expression � and f
; x := ag is

the extension of the substitution 
 with the assignment x := a. Using a substitution 
 �tting

the context �, propositions stated relative to � can be instantiated:

a : A [�] 
 : � [�]

a
 : A
 [�]

Tasistro explains substitutions in detail in [Tas93].
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Half

The Half system, developed by Thierry Coquand, is a successor to ALF. It is a logical frame-

work based on Martin-Löf's polymorphic type theory with one universe [Mar72], extended by

a theory mechanism (similar to the theory mechanism in PVS [OSR93]) and let-expressions

(see [Bar92, Bru91, Coq96]).

The system has three levels; Set, Type and Kind. Set is an element and a subset of

Type. Elements can be formed in both Set and Type; both Set and Type are closed under

function types (�-types) and disjoint union (�-types) and allow recursive de�nitions. There

is also a type Theory for theories. Kind consists of the types Set, Type and Theory, and

function types.

The recursive de�nitions in Half are linear inductive de�nitions, that is dependencies

between the parameters cannot be introduced in a recursive de�nition. It turned out that

pattern matching together with non-linear inductive de�nitions is a non-conservative exten-

sion of Martin-Löf's type theory (see [Hof93]).

Theories are used to collect de�nitions and lemmas that logically belong together. They

are often used together with the function type. By de�ning functions giving theories as result,

a notion of parametrised theory is obtained.

Compared to ALF, Half has some features that make proof development easier and the

resulting proofs more readable. The presence of both Set and Type, where Set corresponds

to a universe, allows more abstract reasoning than is possible in ALF. For instance, Half

allows type abbreviations. Furthermore, �-types and theories for grouping de�nitions and

proofs simplify the structure of an implementation. Then, for local lemmas and abbreviations,

Half have let-expressions.

There is a more detailed description of Half in the third paper below.

The Papers in the thesis

The thesis consists of the following papers:

1. J. Cederquist. A machine assisted formalization of pointfree topology in type theory,

Chalmers University of Technology and University of Göteborg, Sweden, 1994.

2. J. Cederquist, S. Negri. A constructive proof of the Heine-Borel covering theorem for

formal reals, In S. Berardi and C. Coppo eds., �Types for Proofs and Programs�, Lecture

Notes in Computer Science 1158, pp. 62�75, 1996.

3. J. Cederquist, An implementation of the Heine-Borel covering theorem in type theory,

Chalmers University of Technology and University of Göteborg, Sweden, 1997.

4. J. Cederquist, T. Coquand, S. Negri The Hahn-Banach Theorem in Type Theory, To

be published in the proceedings of Twenty �ve years of Constructive Type Theory,

G. Sambin and J. Smith eds., Oxford University Press, 1997.

5. J. Cederquist, A Machine Assisted Proof of the Hahn-Banach Theorem, Chalmers Uni-

versity of Technology and University of Göteborg, Sweden, 1997.

The �rst paper is basically my licentiate thesis [Ced94] (the paper was changed slightly due

to minor errors found after the printing and comments during the defence). We describe
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a formalisation of pointfree topology in Martin-Löf's type theory, using ALF. The work

follows closely parts of the work by Sambin in [Sam87], and by Sambin, Valentini and Virgili

in [SVV96].

A general formal topology is de�ned as a context TOP. Here we use a di�erent de�nition

of formal topology from that presented in [Sam87]. Ours is shorter and easier to handle as a

context. To show that a concrete structure is a formal topology, the notion of substitution is

used. By substitution, properties proved for the general topology TOP then also hold for all

the instances.

Relative to the assumptions in TOP, meet and join, for subsets of the base, are de�ned and

we prove that the subsets form a frame.

The formal points form in general a proper type and can therefore not be de�ned as a set

in ALF, instead properties about points are proved by giving the point-rules as parameters

to the proofs.

A Scott topology SCOTTOP is de�ned by extending TOP with some extra rules. Then we

de�ne predicates needed in order to state when a space of points forms a Scott domain and

we prove that the points of a Scott topology form a Scott domain.

The main problem with this formalisation was the lack of a universe. It would, for instance,

have been desirable to form a type of formal topologies and also, given a topology, to form the

type of its points. This was not possible, so to de�ne abstract formal topologies we instead

used contexts. But note that the context TOP is one arbitrary formal topology and not a

template for formal topologies.

This formalisation of pointfree topology was used by Persson [Per96]. Following a proof

by Sambin [Sam95], Persson developed a machine assisted, constructive completeness proof

for intuitionistic predicate logic, using models based on formal topology.

In the second paper the continuum is de�ned as a formal topology from a base of rational

intervals, using only �nitary inductive de�nitions. Then a localic version of the Heine-Borel

covering theorem is constructively proved. Given two rational numbers a and b we de�ne the

closed interval [a; b] as a formal space, i.e. a space whose points are the formal real numbers

between a and b (the reals corresponding to a and b included). Then we show that this space

is compact.

We also give a proof that the formal real numbers are in a 1-1 correspondence to the real

numbers as Cauchy sequences à la Bishop [Bis67], which is interesting since Bishop's real

numbers form a set in type theory. The continuum as a formal topology is further explored

by Negri and Soravia in [NS96]; the formal reals are here also compared to axiomatisations

of the reals as Dedekind cuts and Martin-Löf's maximal approximations [Mar70].

In the third paper we describe an implementation in type theory, using Half, of the proof of

the Heine-Borel covering theorem above.

The notion of formal space is here de�ned as a �-type space(A;=; �;�). An element of

space(A;=; �;�) is thus a structure containing proofs that the base set A with the equality

relation =, the operation � and the cover relation � satis�es the rules of formal topologies.

Properties of a general formal space are then collected in a theory, theory space, parametrised

over a set A, an equality =, a binary operation �, a relation � between elements and subsets

of A, and an element of space(A;=; �;�). In this theory we also de�ne what it means for this

formal space to be compact.

The continuum is de�ned and proved to be a formal topology, i.e. we form an element R

of type space(Q�Q;=

Q�Q

; �

R

;�

R

), where Q is the rational numbers, =

Q�Q

is the equality
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on intervals, �

R

is the particular dot-operation on intervals and �

R

is the particular cover

relation used on rational intervals. Having R we also get access to the de�nitions and lemmas

in theory space.

For the formal space [a; b]we use the same base, equality and dot-operation. The cover�

[a;b]

is de�ned in terms of �

R

and is easily proved to be a cover relation. [a; b] is thus a formal

topology and we get access to the de�nition of compactness in theory space.

The rational numbers are de�ned as an object of an abstract data type, using a sigma set,

as a general linear ordering. In fact the continuum, the de�nition of [a; b] and their properties

are proved under the assumption that there is an element in this sigma set.

In the fourth paper the basic de�nitions for a formal approach to functional analysis are

given and in this setting the Alaoglu and the Hahn-Banach theorems are proved entirely

constructively.

Given a seminormed linear space A we de�ne a formal space whose formal points corre-

spond to the linear functionals of norm � 1 from A to the reals. Let M be a subspace A and

F a linear functional on A of norm � 1. Then, in terms of points, the Hahn-Banach theorem

says that the restriction function

F 7�! F

jM

is surjective. To state the theorem in a pointfree way, we use the usual de�nition of surjectivity

on points as formal injectivity (see for example [MM92]).

In this work we were in�uenced by earlier pointfree proofs of the Hahn-Banach theorem

by Mulvey and Pelletier in [MP91] and Vermeulen in [Ver86]. The proof in [MP91] shows

the theorem in any Grothendieck topos and the argument relies on Barr's theorem (which is

not justi�ed constructively) and the proof in [Ver86] is done in topos theory with a natural

number object (and thus relies on impredicative quanti�cation). Our proof, on the other

hand, is developed using only �nitary inductive de�nitions. It follows also rather closely the

standard proof of the Hahn-Banach theorem.

Bishop gave a constructive proof of the Hahn-Banach theorem, based on points, in [Bis67].

In his formulation of the theorem, the norm of a linear functional can be preserved to an

arbitrary degree by an extension. Bishop also gave a counterexample that shows that the

norm, in general, is not preserved exactly. In the pointfree formulation, one works with

�nite approximations of functionals rather than with the functionals themselves (and classical

arguments are of course needed to show the existence of an extended linear functional).

In the last paper the proof of the Hahn-Banach theorem is formalised in Half. A slightly more

general de�nition of the formal space of linear functionals than that given in [4] is used here.

This does not a�ect the informal proof in [4], but it greatly simpli�es the implementation.

The implementation was partially developed simultaneously with [4] and this, in fact,

in�uenced the informal proof. Quite important steps in the original development were changed

due to errors found during the implementation.

The rational numbers are here de�ned abstractly, as in [3].

Conclusions and related work

We have used the formal topology introduced by Martin-Löf and Sambin to prove some

theorems in constructive analysis. To de�ne the formal topologies we have used only �nite

inductive de�nitions. The proofs have also been implemented using a logical framework based
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on Martin-Löf's intensional type theory with one universe and inductive de�nitions. For the

implementation we have de�ned both the abstract notion of formal topology, as a type, and

proved properties of formal topologies in general, as well as concrete formal topologies as

instances.

Bishop [Bis67] had the traditional approach with points to constructive mathematics. He

not only showed that fundamental parts of classical mathematics can be rebuilt constructively,

he also demonstrated that constructive mathematics can be formulated as elegantly as classical

mathematics.

In [Mar70] Martin-Löf presented another approach to constructive analysis, which is more

similar to the pointfree one. Spaces are here represented by sets of neighbourhoods (which

are assumed to be positive), approximations are certain well behaved recursively enumerated

sets of neighbourhoods and constructive points are de�ned asmaximal approximations. Open

and closed sets are certain sets of neighbourhoods and recursive functionals between spaces

are mappings of neighbourhoods.

We have taken a pointfree approach and chosen to develop our proofs in a predicative ver-

sion of type theory using inductive de�nitions. We have also shown that, using this approach,

rather substantial proofs can be developed using a proof assistant.

Let us now draw the attention to some related computer aided formalisations. Consider-

able parts of mathematics have been formalised in the systems Coq [Dow91] and LEGO [Pol94],

which are both based on the calculus of constructions [CG88], and in the Nuprl system [Con86],

which is based on an extensional version of Martin-Löf's type theory. Jones [Jon93] uses

LEGO for some theorems of constructive analysis in the extended calculus of construc-

tions [Luo89]. She considers the construction of the reals from the rationals and the existence

of a completion of a metric space. Chirimar and Howe describe in [CH92] a formalisation, in

Nuprl, of parts of constructive real analysis. They follow Bishop in the development of real

numbers, which are represented by Cauchy sequences. The main theorem is the completeness

theorem for reals. Jackson [Jac94] presents some steps taken in implementing abstract data

types in Nuprl, and he uses Nuprl to explore how well suited constructive type theory is for

reasoning about abstract data types. Harrison [Har96] uses the HOL system [GM93] in a

discussion about real numbers in theorem proving. The reals are constructed using a version

of Cantor's method (Cauchy sequences where the terms are scaled up and everything is done

using naturals). Harrison describes a formalisation of signi�cant parts of real analysis.

References

[Bar92] H. Barendregt. Lamda calculi with types, In S. Abramsky, D.M. Gabbay and T.S.E.

Maibaum eds., �Handbook of Logic in Computer Science, Vol. 2�, Oxford University

Press, Oxford, 1992.

[Bet93] G. Betarte. �A case study in machine-assisted proofs: The Integers form an Integral

Domain�, Licentiate Thesis, Chalmers University of Technology and University of

Göteborg, 1993.

[Bis67] E. Bishop. �Foundations of Constructive Analysis�, McGraw-Hill, New York, 1967.

[Bis70] E. Bishop. Mathematics as a numerical language, In Myhill, Kino, and Vesley eds.,

�Intuitionism and Proof Theory�, pp. 53�71, North-Holland, Amsterdam, 1970.

9



[Bru91] N.G. de Bruijn. A plea for weaker frameworks, In G. Huet and G. Plotkin eds.,

�Logical Frameworks�, pp. 40�68, Cambridge University Press, Cambridge, 1991.

[Ced94] J. Cederquist. �A machine assisted formalization of pointfree topology in type the-

ory", Licentiate Thesis, Chalmers University of Technology and University of Göte-

borg, 1994.

[CH92] J. Chirimar, D.J. Howe. Implementing constructive real analysis: Preliminary re-

port, In J.P. Myers Jr. and M.J O'Donnell eds., �Constructivity in Computer Sci-

ence�, Lecture Notes in Computer Science 613, pp. 165�178, Springer-Verlag, 1992.

[Con82] R.L. Constable. Programs as Proofs, Technical report 82-532, Dept. of Computer

Science, Cornell University, 1982.

[Con86] R.L. Constable, et al. �Implementing Mathematics with the Nuprl Development

System�, Prentice-Hall, Englewood Cli�s, New Jersey, 1986.

[Coq92a] T. Coquand. Constructive Topology and Combinatorics, In J.P. Myers Jr. and

M.J. O'Donnell eds., �Constructivity in Computer Science�, Lecture Notes in Com-

puter Science 613, pp. 159�164, 1992.

[Coq92b] T. Coquand. An Intuitionistic Proof of Tychono�'s Theorem, The Journal of Sym-

bolic Logic 57, pp. 28�32, 1992.

[Coq92c] T. Coquand. Pattern Matching with Dependent Types, �Proceeding from the logical

framework workshop at Båstad�, 1992.

[Coq95] T. Coquand. A constructive topological proof of Van der Waerden's theorem, Journal

of Pure and Applied Algebra 105(3), pp. 251�259, 1995.

[Coq96] T. Coquand. An algorithm for type-checking dependent types, Science of Computer

Programming 26, pp. 167�177, Elsevier, 1996.

[CG88] T. Coquand, G. Huet. The Calculus of Constructions, Information and Computa-

tion 76 (2/3), pp. 95�120, 1988.

[Dow91] G. Dowek, A. Felty, H. Herbelin, H. Huet, G.P. Murthy, C. Parent, C. Paulin-

Mohring, B. Werner, The Coq Proof Assistant User's Guide Version 5.6, Rapport

Technique 134, INRIA, 1991.

[Dra88] A.G. Dragalin. �Mathematical Intuitionism : Introduction to Proof Theory�, Trans-

lations of Mathematical Monographs 67, AMS, 1988.

[Dum77] M. Dummet. �Elements of Intuitionism�, Clarendon Press, Oxford, 1977.

[FG82] M.P. Fourman, R.J. Grayson. Formal spaces, In A. S. Troelstra and D. van Dalen

eds., �The L. E. J. Brouwer Centenary Symposium�, pp. 107�122, North-Holland,

Amsterdam, 1982.

[GM93] M.J.C. Gordon and T.F. Melham eds. �Introduction to HOL: a theorem proving

environment for higher order logic�, Cambridge University Press, 1993.

10



[Gra83] R.J. Grayson. Forcing in intuitionistic systems without power-set, The Journal of

Symbolic Logic 48, pp. 670�682, 1983.

[Har96] J.R. Harrison. �Theorem Proving with Real Numbers�, University of Cambridge,

PhD Thesis, 1996.

[Hof93] M. Hofmann. A model of intensional Martin-Löf type theory in which unicity of

identity proofs does not hold, Technical report, Dept. of Computer Science, Univer-

sity of Edinburgh, 1993.

[How80] W.A. Howard.The Formulae-as-types notion of construction, In J.P. Seldin and J.R.

Hindley eds., �To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism� pp. 479�490, Academic Press, London, 1980.

[Jac94] P. Jackson. Exploring Abstract Algebra in Constructive Type Theory, A. Bundy, ed.,

�Automated Deduction CADE-12�, Lecture Notes in Arti�cial Intelligence 814, pp.

590�604, Springer-Verlag, New York, 1994.

[Joh82] P.T. Johnstone. �Stone Spaces�, Cambridge University Press, 1982.

[Joh83] P.T. Johnstone. The point of pointless topology, Bull. Amer. Math. Soc. vol. 8, pp.

41�53, 1983.

[Jon93] C. Jones. Completing the rationals and metric spaces in LEGO, In G. Huet, G.

Plotkin and C. Jones eds., �Logical Frameworks�, pp. 209�222, Cambridge Univer-

sity Press, 1991.

[JT84] A. Joyal, M. Tierney. �Extension of the Galois Theory of Grothendieck�, Memoirs

of the AMS 309, Providence, 1984.

[Kel50] J.L. Kelley. The Tychono� product theorem implies the axiom of choice, Fundamenta

Mathematicae 37, pp. 75�76, 1950.

[Luo89] Z. Luo. ECC, an extended calculus of constrution, In �Proceedings of the Fourth

Annual Conference on Logic in Computer Science�, Asilomar, California, 1989.

[MM92] S. MacLane, L. Moerdijk. �Sheaves in Geometry and Logic : A First Introduction

to Topos Theory�, Springer-Verlag, New York, 1992.

[Mag95] L. Magnusson. �The Implementation of ALF - a Proof Editor based on Martin-

Löf's Monomorphic Type Theory with Explicit Substitution�, Chalmers University

of Technology and University of Göteborg, PhD Thesis, 1995.

[Man76] E.G. Manes. �Algebraic Theories�, Graduate Texts in Mathematics 26, Springer-

Verlag, 1976.

[Mar70] P. Martin-Löf. �Notes on Constructive Mathematics", Almqvist & Wiksell, Stock-

holm, 1970.

[Mar72] P. Martin-Löf. An Intuitionistic Theory of Types (1972), To be published in the pro-

ceedings of Twenty�ve years of Constructive Type Theory, G. Sambin and J. Smith

eds., Oxford University Press.

11



[Mar82] P. Martin-Löf. Constructive Mathematics and Computer Programming, In �Logic,

Methodology and Philosophy of Science VI�, L.J. Cohen, J. Lo±, H. Pfei�er and

K. Podewski eds., pp. 153�175, North-Holland, 1982.

[Mar83] P. Martin-Löf. The Domain Interpretation of Type Theory, In K. Karlsson and

K. Petersson eds., �Proceedings of Workshop on Semantics of Programming Lan-

guages�, Chalmers University of Technology and University of Göteborg, 1983.

[Moh86] C. Mohring.Algorithm Delvelopment in the Calculus of Constructions, �Proceedings

Symposium on Logic in Computer Science�, Cambridge, Mass., pp. 84�91, 1986.

[MP91] C.J. Mulvey, J.W. Pelletier. A globalization of the Hahn-Banach theorem, Advances

in Mathematics 89, pp. 1�60, 1991.

[NS96] S. Negri, D. Soravia. The continuum as a formal space, submitted for publication,

1996.

[NV97] S. Negri, S. Valentini. Tychono�'s theorem in the framework of formal topologies,

The Journal of Symbolic Logic, in press.

[NPS90] B. Nordström, K. Petersson, J. Smith. �Programming in Martin-Löf's Type Theo-

ry�, Oxford University Press, 1990.

[NS84] B. Nordström, J. Smith. Propositions, Types and Speci�cations in Martin-Löf 's

Type Theory, BIT 24(3), pp. 288�301, 1984.

[OSR93] S. Owre, N. Shankar, J. M. Rushby. The PVS Speci�cation Language (Beta Release),

Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA,

1993.

[Per96] H. Persson. �A Formalization of a Constructive Completeness Proof for Intuition-

istic Predicate logic�, Licentiate Thesis, Chalmers University of Technology, 1996.

[Pol94] R. Pollack. �The Theory of LEGO, A Proof Checker for the Extended Calculus of

Constructions�, PhD Thesis, University of Edinburgh, 1994.

[Sam87] G. Sambin, Intuitionistic formal spaces � a �rst communication, In D. Skordev ed.,

�Mathematical Logic and its Applications�, pp. 187�204, Plenum Press, New York,

1987.

[Sam95] G. Sambin. Pretopologies and completeness proofs, The Journal of Symbolic Logic

60, pp. 861�878, 1995.

[SVV96] G. Sambin, S. Valentini, P. Virgili, Constructive domain theory as a branch of

intuitionistic pointfree topology, Theoretical Computer Science 159, pp. 319�341,

1996.

[Sig90] I. Sigstam. �On Formal Spaces and their E�ective Presentations�, Uppsala Univer-

sity, PhD Thesis, 1990.

[Sco82] D. Scott. Domains for Denotational Semantics, �20th International Colloquium on

Automata, Languages and Programming�, Lecture Notes in Computer Science 140,

pp. 577�613, Springer-Verlag, 1982.

12



[Tas93] A. Tasistro. �Formulation of Martin-Löf's Theory of Types with Explicit Substi-

tution�, Licentiate Thesis, Chalmers University of Technology and University of

Göteborg, 1993.

[TvD88] A.S. Troelstra, D. van Dalen, � Constructivism in Mathematics. An introduction�,

Volume I and II, North-Holland, 1988.

[Ver86] J.J.C. Vermeulen. �Constructive Techniques in Functional Analysis�, PhD Thesis,

University of Sussex, 1986.

[Vic89] S. Vickers. �Topology Via Logic�, Cambridge University Press, 1989.

13





A machine assisted formalization

of pointfree topology in type theory

Jan Cederquist

Department of Computing Science

University of Göteborg

S-412 96 Göteborg, Sweden

email: ceder@cs.chalmers.se

Abstract

We will present a formalization of pointfree topology in Martin-Löf's type theory. A

notion of point will be introduced and we will show that the points of a Scott topology

form a Scott domain. This work follows closely the intuitionistic approach to pointfree

topology and domain theory, developed mainly by Martin-Löf and Sambin. The important

di�erence is that the de�nitions and proofs are machine checked by the proof assistant

ALF.
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1 Introduction

The traditional motivation for topology relies on abstracting �rst from Euclidean spaces to

metric spaces, and then abstracting out certain properties of their open sets.

A topology 
X for a set X is a family of subsets of X which is closed under �nite

intersection and arbitrary union. X is the space of the topology and hX;
Xi is a topological

space. The elements in X are called points and the sets in 
X are called open sets. For the

development of general topology see for instance Kelley [8].

In pointfree topology (locale theory), Johnstone [7], one considers the open sets, and not

the points, as primitive entities and studies those properties of a topological space that can

be expressed without any mention of points. By abstracting from the fact that open sets are

subsets of points one only looks at the algebraic structure, called a frame, that the open sets

form.

A frame is a partially ordered set A with two operations meet ^ and join _, operating on

subsets of A, corresponding to intersection and union, respectively. Meet gives to each �nite

subset the in�mum and join gives to each subset the supremum. In particular, A contains

two elements true and false which correspond to empty meet and join, respectively. Binary

meets must also distribute over join. We call the elements in a frame for opens.

On the computer science side the motivation for topology relies on connections to domain

theory. Scott [14] has showed that by describing only the elements that contain a �nite amount

of information, the computational content of a domain can be described topologically. This

emphasis makes the open sets independent of the points of the topological space, leading to

pointfree topology.

Given a frame, points can be de�ned uniquely from the opens as completely prime �lters

[16]. As an example, take the special case when the opens are open sets (and true, ^, _ and �

are the whole space,

T

,

S

and �, respectively). A completely prime �lter F then corresponds

to the points in the intersection of the open sets in F . In other words, given a point x the

corresponding completely prime �lter is the set of all open sets containing x. Let hA;^;_i be

a frame and let F � A be upper closed, that is if a 2 F and a � b then b 2 F , then

F is a �lter i� it is closed under �nite meets:

true 2 F and if a; b 2 F then a ^ b 2 F ,

a �lter F is completely prime i� it is inaccessible by joins:

if S � A and

W

S 2 F then s 2 F for some s 2 S.

Another motivation for pointfree topology is constructiveness; sometimes the use of point-

free topology makes it possible to replace non constructive reasoning using the axiom of choice

by constructive proofs, see for instance Coquand [2, 4].

This work is a machine assisted formalization, in type theory [11], of (a part of) the

intuitionistic approach to pointfree topology and domain theory, developed by Martin-Löf

[10], Sambin [12], and by Sambin, Valentini and Virgili in [13]. All de�nitions and proofs are

checked by the proof assistant ALF [9]. In [12, 13] the constructivity is guaranteed by adopting

Martin-Löf's type theory, but in this paper we will by type theory mean the formalization

in ALF. We will prove that this formalization really de�nes a frame, where the opens are

de�ned as equivalence classes of subsets. A closure operator will be de�ned and we will prove

that each equivalence class contains exactly one closed subset. As a concrete example of a

pointfree topology we will look at the neighbourhoods of the natural numbers. A notion of
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point equivalent to completely prime �lter will be introduced. Then we will look at a pointfree

version of Scott topology, and show that the points of this topology form a Scott domain.

Another formalization of constructive domain theory, in ALF, is presented in Hedberg[6].

Hedberg has implemented a cartesian closed category of semilattices and approximable map-

pings.

In Martin-Löf's type theory, which is implemented in ALF, there are two basic levels:

types and sets. The sets are inductively de�ned and correspond to what is usually called

types in a programming language. The types are formed by the type Set, the types of

elements of sets in Set, and function types. In type theory propositions are identi�ed with

sets and proofs of propositions are identi�ed with elements of sets; in order to prove that a

proposition is true we need to �nd an element in the corresponding set. Three di�erent forms

of de�nitions (apart from de�nitions of contexts and substitutions, which will be explained

later) will be used in this paper:

1. Inductive de�nitions of sets or families of sets, which consist of a formation rule and

introduction rules prescribing how its canonical elements are formed.

2. Explicit de�nitions, which are names for well typed expressions.

3. Implicit de�nitions, which provide the possibility of de�ning functions using pattern

matching [3]. These may be recursive.

All type theory expressions will be written in ALF-syntax and in typewriter font. For example,

the set of natural numbers is inductively de�ned by

N : Set

zero : N

succ : (n:N)N

Addition can then be implicitly de�ned, using pattern matching:

add : (n:N;m:N)N

add(zero,m) = m

add(succ(n1),m) = succ(add(n1,m))

And a function that doubles its argument can be explicitly de�ned:

double = [n]add(n,n) : (n:N)N

In this paper, we will often refer to appendices about proofs. However, most proof

terms are too long for a comprehensible presentation, so we have decided to omit many

of them entirely and only present their types. Instead all proofs can be obtained by ftp;

ftp.cs.chalmers.se: /pub/users/ceder/formtop/�.

2 Formalization of pointfree topology in ALF

2.1 Formal topology

Following Sambin [12, 13], a structure hS;^; 1; /; posi is called a formal topology if it satis�es

the following requirements:
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1. S is a formal base, that is, a set with the binary operation ^ and element 1 such

that hS;^; 1i forms a meet semilattice (that is, an algebra with a unit element and

a binary operator satisfying commutativity, associativity, unit law and idempotence).

The elements in S are called formal basic neighbourhoods.

2. / is a covering relation, that is, a relation between elements of S and subsets of S which

for arbitrary a; b 2 S and U; V � S satis�es:

a 2 U

a / U

re�exivity

a / U (8b 2 U)(b / V )

a / V

transitivity

a / U

a ^ b / U

^-left1

a / U a / V

a / fb ^ c : b 2 U; c 2 V g

^-right

3. pos is a consistency predicate, that is, a predicate on the elements of S which for

arbitrary a 2 S and U � S satis�es:

pos(a) a / U

(9b 2 U) pos(b)

monotonicity

pos(a)! a / U

a / U

positivity

If we extend ^, / and pos for arbitrary U; V � S by the de�nitions

U

V

V � fa ^ b : a 2 U; b 2 V g

U � V � (8a 2 U)(a / V )

POS(U) � (9a 2 U)pos(a)

then transitivity, ^-right, and monotonicity can be written

a / U U � V

a / V

transitivity

a / U a / V

a / U

V

V

^-right

pos(a) a / U

POS(U)

monotonicity

which are also closer to the forthcoming de�nitions in type theory. (Observe the introduction

of the new symbols

V

, � and POS. The reason not to let ^, / and pos be overloaded is that

all of them will be de�ned in ALF and ALF does not support overloading.)
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In order to de�ne hS;^; 1i to be a semilattice, an ordering or equality between the elements

in S is needed. To avoid that, one can notice that if (2) in the de�nition above holds then

hS;^; 1i is a semilattice i� for arbitrary a 2 S and U � S

b / U

a ^ b / U

^-left2

and

a / f1g

^-1

hold.

Proof: First, assume that hS;^; 1i is a semilattice with equality =

S

, ^-left2 then follows

from ^-left1 and commutativity of ^, and ^-1 is proved by

1 2 f1g

1 / f1g

re�exivity

a ^ 1 / f1g

^-left2

a ^ 1 =

S

a

unit

a / f1g

/ must respect =

S

Second, if ^-left2 and ^-1 hold then, then we can de�ne an equality between elements in S such

that two element are equal if they are covered by each other's singleton sets. Commutativity,

associativity, unit law and idempotence for ^, with respect to that equality are then easily

proved; so hS;^; 1i form a semilattice with 1 as top element (for more details see appendix

D, that hS;^; 1i form a semilattice is proved in ALF after the notion of formal topology is

de�ned in type theory).

By exchanging the requirement that hS;^; 1i should form a semilattice for the two new

rules, we get a de�nition which is equivalent to the standard de�nition of formal topology.

The reason for this exchange is that it makes the formalization shorter; it is easier to state

the new rules than to de�ne a semilattice.

In the de�nition of formal topology, a subset of S is a propositional function with argument

ranging over S. For instance, a is considered as an element in U i� a 2 S and U(a) holds. In

section 2.3 there is a little theory of these subsets.

2.2 Explanations of the de�nition of formal topology

We can think of the elements of S as containing information represented by regions, in such

a way that a neighbourhood corresponding to a subregion of another is more informative (it

contains more speci�c information). By a ^ b we mean the conjunction of the information

represented by the intersection of the corresponding regions

(

(

(

(

(

(

#

"

 

!

�

�

�

�

a

b

a ^ b

and a subset U of S as the disjunction of the information in its elements, represented by the

union of the regions of its elements. Then the covering can be understood by a picture: a/U
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i� the region of a is covered by the region of U .
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a / U

where U = fb

1

; b

2

; b

3

g

Transitivity, ^-left and ^-right can now be understood by the pictures

L

L

L

�

�

�

�

�

�

�

�

'

&

$

%

^-left1

a ^ b

a b

U

'

&

$

%

��

��

'

&

$

%

^-right

a

VU

U

V

V

'

&

$

%

l

'

&

$

%

transitivity

aUV

Thinking of the neighbourhoods in terms of information we can understand the infor-

mation in a positive neighbourhood as meaningful or not contradictory. Monotonicity then

says that if a is positive and a is covered by U , then U must contain something meaningful.

Positivity says exactly that only positive elements contribute to the covering since positivity

is equivalent to

a / U

a / U

+

openness

where U

+

� fb 2 U : pos(b)g

Proof: We �rst assume positivity and show openness:

a / U

[b 2 U ] [pos(b)]

b 2 U

+

def of U

+

b / U

+

re�exivity

pos(b)! b / U

+

!-intro

b / U

+

positivity

(8b 2 U)(b / U

+

)

8-intro

U � U

+

def

a / U

+

transitivity

Then by assuming openness, positivity is proved by

a 2 fag

a / fag

re�exivity

a / fag

+

openness

pos(a)! a / U

[b 2 fag

+

]

b = a & pos(b)

def

b / U

subst,!-elim

(8b 2 fag

+

)(b / U)

8-intro

fag

+

� U

def

a / U

transitivity
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For the moment, regard the elements in S as being neighbourhoods of concrete points;

x�a will be used here to mean that a is a neighbourhood of the point x. Then 1 corresponds

to the whole space, ^ corresponds to intersection, a /U means �the set of points forming a is

included in the union of U�, and pos(a) means that a is inhabited. For this special case, we

can actually prove monotonicity and positivity. For monotonicity: pos(a) implies that there is

a point, say x, in a and since a/U there exists a b in U such that x�b, that is (9b 2 U) pos(b).

For positivity:

[x�a]

[x�a]

pos(a)

pos-intro

pos(a)! a / U

a / U

!-elim

a �

S

U

def

x�

S

U

�-elim

a �

S

U

�-intro

a / U

def

2.3 Subsets as propositional functions

As mentioned before, we use propositional functions over the base set S as subsets of S. If

U is a propositional function over S and a an element in S, then a is considered to be an

element in U i� U(a) holds. We extend this to explain when a subset (propositional function)

is a subset of another subset of S. Let U and V be propositional functions over S, then U

is a subset of V i� for all a in S, U(a) implies V (a). This can be de�ned by an introduction

rule:

subset : (S:Set;U:(S)Set;V:(S)Set)Set

subsetintro : (S:Set;

U:(S)Set;

V:(S)Set;

(a:S;U(a))V(a))

subset(S,U,V)

U and V are considered equal (as sets) i� they are subsets of each other:

eqsubset = [S,U,V]Product(subset(S,U,V),subset(S,V,U)) :

(S:Set;U:(S)Set;V:(S)Set)Set

where Product is conjunction.

2.4 Using a context to formalize pointfree topology

We will now represent a formal topology by a list of assumptions (type declarations), in

which we assume sets and functions ranging over these sets as well as express the axioms that

describe the properties of the formal topology. Lists of type declarations are formalized as

contexts, constructions which are governed by the following rules

[ ] : Context

� : Context � : type [�]

[�; x : �] : Context

8



where x does not occur free in � and [�; x : �] is the extension of � with the clause x : �.

In the implementation one will be used for 1, meet and MEET for ^ and

V

, respectively,

cov and COV for / and �, respectively.

First, MEET, COV and POS must be de�ned since they will be used inside the context

de�ning the topology. They depend on S, meet, cov and pos, so S, meet, cov and pos occur

as parameters in MEET, COV and POS. By this way MEET, COV and POS can be used to di�erent

contexts de�ning formal topologies. But standing for themselves, without such a context,

they have of course not the intended meaning. MEET, COV and POS could be explicitly de�ned,

using quanti�ers, but introduction rules makes the proofs easier:

MEET : (S:Set;meet:(S;S)S;U:(S)Set;V:(S)Set;S)Set

MEETintro : (S:Set;meet:(S;S)S;U:(S)Set;V:(S)Set;a:S;b:S;U(a);V(b))

MEET(S,meet,U,V,meet(a,b))

COV : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set)Set

COVintro : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set;(a:S;U(a))cov(a,V))

COV(S,cov,U,V)

POS : (S:Set;pos:(S)Set;U:(S)Set)Set

POSintro : (S:Set;pos:(S)Set;U:(S)Set;b:S;U(b);pos(b))POS(S,pos,U)

Our context also makes use of singleton sets, which are explicitly de�ned using proposi-

tional equality:

Sing = Id : (S:Set;S;S)Set

Finally, the formal topology TOP is de�ned as a context which contains the following

assumptions: S is a set with a particular element 1 and a binary operator meet, cov is a

relation between elements and subsets of S and pos is a predicate on the elements of S, followed

by the list of properties (corresponding to the rules in the de�nition of formal topology in

section 2.1) that S, 1, meet, cov and pos must have.

TOP is [S:Set; one:S; meet:(S;S)S; cov:(S;(S)Set)Set; pos:(S)Set;

covmeet1:(a:S)cov(a,Sing(S,one));

covrefl:(a:S;U:(S)Set;U(a))cov(a,U);

covtrans:(a:S;

U:(S)Set;

V:(S)Set;

cov(a,U);

f:COV(S,cov,U,V))cov(a,V);

covmeetl1:(a:S;b:S;U:(S)Set;cov(a,U))cov(meet(a,b),U);

covmeetl2:(a:S;b:S;U:(S)Set;cov(b,U))cov(meet(a,b),U);
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covmeetr:(a:S;

U:(S)Set;

V:(S)Set;

cov(a,U);

cov(a,V))cov(a,MEET(S,meet,U,V));

mono:(a:S;U:(S)Set;pos(a);cov(a,U))POS(S,pos,U);

posi:(a:S;U:(S)Set;(pos(a))cov(a,U))cov(a,U)]

However, using contexts to represent algebraic structures have some drawbacks. For

instance, the de�nition above gives us no template for making new topologies; a proof or

de�nition that involve several algebraic structures require as many contexts. That means

that reasoning using many algebraic structures is tedious. In Betarte [1] there is a more

detailed discussion about this.

2.4.1 Concrete topology as substitution

We also want to express that some structure is an instance of the de�nition of formal topology.

For that we use the notion of substitution, that is an assignment of objects of appropriate

types to the variables in a context. Substitutions are introduced by the following rules

f g : [ ] [�]


 : � [�] � : type [�] a : �
 [�]

f
; x := ag : [�; x : �] [�]

where f g is the empty substitution and f
; x := ag is the extension of the substitution 
 with

the assignment x := a. This will be used in the example below. In Tasistro [15], substitutions

are explained in more detail.

2.4.2 Example: Neighbourhoods of the natural numbers

As an example, given by Sambin [12], of a concrete pointfree topology we take the set SN of

neighbourhoods of the natural numbers given by the rules

N 2 SN

0 2 SN

a 2 SN

s(a) 2 SN

� 2 SN

and if a and b are two neighbourhoods of a number then, their intersection, a ^

nat

b is a

neighbourhood of the same number. Furthermore, a neighbourhood is positive if it is a

neighbourhood of a number.

The intended meaning is that s

n

(N), where n 2 N , is a neighbourhood of all numbers

in fn; n + 1; n + 2; :::g, s

n

(0) is a neighbourhood only of s

n

(0), and no number has � as

neighbourhood (� is needed to make sure that given two neighbourhoods a and b, a^

nat

b is
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a neighbourhood). The �gure illustrates the structure that the neighbourhoods form:
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.

.

.
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N

0

s(N)

s(0) s(s(N))

s(s(0))

�

The �gure is not complete, there are also an in�nite number of empty neighbourhoods of the

form s(:::s(� ):::), which are not identical to � but are equal to � in the sense that they are

all non positive and therefore also covered by each other's singleton sets.

Formalized in type theory, SN is a set with four constructors:

SN : Set

onenat : SN

zero : SN

s : (SN)SN

ff : SN

where onenat and zero correspond toN and 0, respectively. ^

nat

(meetnat) can be implicitly

de�ned, using pattern matching:

meetnat : (a:SN;b:SN)SN

meetnat(onenat,b) = b

meetnat(zero,onenat) = zero

meetnat(zero,zero) = zero

meetnat(zero,s(h)) = ff

meetnat(zero,ff) = ff

meetnat(s(h),onenat) = s(h)

meetnat(s(h),zero) = ff

meetnat(s(h),s(h1)) = s(meetnat(h,h1))

meetnat(s(h),ff) = ff

meetnat(ff,b) = ff

We de�ne a neighbourhood to be positive if it is a neighbourhood of a number, thus � , s(� ),

s(s(� )), ... are the only non-positive neighbourhoods:

posnat : (a:SN)Set

posnat(onenat) = N1

posnat(zero) = N1

posnat(s(h)) = posnat(h)

posnat(ff) = Empty

11



where N1 is the set containing tt as only element, that is, a true proposition and Empty is

the empty set, that is, a false proposition.

Before de�ning the covering relation we de�ne a partial order �

nat

on the neighbourhoods

by

a �

nat

b i� a ^

nat

b = a

This is the same ordering as in a semilattice (and in the �gure above), which the neighbour-

hoods in fact form even though we have not proved it yet. In type theory �

nat

is explicitly

de�ned using propositional equality:

leqnat = [a,b]Id(SN,meetnat(a,b),a) : (a:SN;b:SN)Set

Now we can de�ne the covering relation, for arbitrary a 2 S and U � S, by

a / U i� a is not positive or (9b 2 U)(a �

nat

b)

But instead the following de�nition by introduction rules will be used

covnat : (a:SN;U:(SN)Set)Set

covnati1 : (a:SN;U:(SN)Set;(posnat(a))Empty)covnat(a,U)

covnati2 : (a:SN;U:(SN)Set;b:SN;U(b);leqnat(a,b))covnat(a,U)

It is easy to see that the two de�nitions of covering above (/ and covnat) are equivalent. The

reason not to de�ne covnat explicitly, using existential quanti�cation, is that the de�nition

by introduction rules makes the proofs easier and shorter.

In order to show that SN, onenat, meetnat, covnat and posnat is a formal topology one

must prove that all the properties of formal topology (the properties listed in the de�nition

of TOP) are satis�ed. Consult appendix C for more details.

The proof that the neighbourhoods of the natural numbers is a formal topology is then

completed by the substitution TOPNAT:

TOPNAT is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;

covmeet1:=covmeetnat1; covrefl:=covreflnat;

covtrans:=covtransnat; covmeetl1:=covmeetnatl1;

covmeetl2:=covmeetnatl2; covmeetr:=covmeetnatr;

mono:=mononat; posi:=posinat} : TOP []

2.5 Properties of a formal topology

In this section we will concentrate on de�nitions and types, not on the proofs. The proof

terms of the types are too long for a readable presentation, they can however be obtained by

ftp (see the introduction). For a description of the proofs see Sambin [12]. The de�nitions

and results of this section are not used in the rest of the paper.

2.5.1 Frames and complete Heyting algebras

Here we show that a formal topology de�nes a frame in such a way that equivalence classes

of subsets (the equality will soon be de�ned) are the opens, COV corresponds to the partial

order and MEET corresponds to the meet operation.

First we de�ne the equality relation between subsets such that two subsets are equal i�

they cover each other:
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EQS = [U,V]Product(COV(S,cov,U,V),COV(S,cov,V,U)) :

(U:(S)Set;V:(S)Set)Set TOP

Note here that we are doing all this in the context TOP. That EQS is an equivalence relation

is easily proved (see appendix E: EQSsymm, EQSrefl, EQStrans).

The opens (equivalence classes of subsets) are di�cult to de�ne in ALF and so are ordering,

meet- and join-operations for opens, instead we will rely on the fact that the ordering respects

EQS and that EQS respects meet and join, which are de�ned on subsets. Of course that has to

be proved, the types of the proof is in appendix E: COVrespEQS, EQSrespMEET, EQSrespJOIN.

For the ordering COV is used, which is a partial order on the family of subsets of S (appendix

E: COVtrans, COVrefl, antisymmetry follows directly from the de�nition of the equality EQS).

For the meet operation we use MEET, which gives the in�mum (appendix E: MEETisinfl1,

MEETisinfl2, MEETisinfr).

Join is de�ned as a union:

JOIN = [T,I,U]union(S,T,I,U) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP

We postpone the de�nition of union to section 3.4. JOIN gives the supremum (appendix E:

JOINissup1, JOINissup2).

Finally the in�nite distributivity

(T:Set;I:(T)Set;V:(S)Set;U:(T;S)Set)

EQS(MEET(S,meet,V,JOIN(T,I,U)),

JOIN(T,I,[i]MEET(S,meet,V,U(i)))) TOP

holds (appendix E: infdistr).

This far we have proved that a formal topology de�nes a frame. Implication can then be

de�ned in the frame so it becomes a complete Heyting algebra.

A complete Heyting algebra is a complete lattice A where, for every a; b 2 A, there is an

element a! b satisfying

c � a! b i� c ^ a � b.

In a frame ! is de�ned by

a! b �

W

fc : c ^ a � bg.

For a proof that this de�nition of implication gives a complete Heyting algebra see for in-

stance [16].

The de�nition of implication translated to our case becomes

cHaimply = [U,V,a]COV(S,cov,MEET(S,meet,U,Sing(S,a)),V) :

(U:(S)Set;V:(S)Set;a:S)Set TOP

cHaimply respects EQS and satis�es the implication property (see appendix E: cHaimplyrespEQS,

cHaimplyprop1, cHaimplyprop2). This completes the proof that a formal topology de�nes a

complete Heyting algebra.

2.5.2 Closure operator

In the previous subsection it was shown that the equivalence classes of subsets form a frame.

Now we will de�ne a closure operator, that is an operator that given a subset U returns its

downward closure. The downward closure of a subset U is the subset of all neighbourhoods

which are covered by U .
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We will show that each equivalence class contains a closed set and that the closed sets

form a frame which is isomorphic to the frame formed by the equivalence classes in such way

that each equivalence class is represented by its closed set.

A closure operator, Cl, is an operator acting on subsets and satisfying the following

properties

U � Cl(U)

U � V ! Cl(U) � Cl(V )

Cl(Cl(U)) = Cl(U)

Here Cl is explicitly de�ned by

Cl = [U,a]cov(a,U) : (U:(S)Set;a:S)Set TOP

Cl satisfy the closure operator properties (appendix F: Clprop1,2,3).

We then say that a subset is closed or saturated if it is equal, as a subset, to its closure:

sat = [U]eqsubset(S,U,Cl(U)) : (U:(S)Set)Set TOP

Since

(U:(S)Set)EQS(U,Cl(U)) TOP

holds, any equivalence class contains a closed subset. Given two subsets in the same equiva-

lence class, their closures are equal

(U:(S)Set;V:(S)Set;EQS(U,V))eqsubset(S,Cl(U),Cl(V)) TOP,

so any equivalence class contains exactly one closed subset. Thus the closed subsets form a

frame which is isomorphic to the frame formed by the equivalence classes.

(U:(S)Set;V:(S)Set;COV(S,cov,U,V))subset(S,Cl(U),Cl(V)) TOP

and

(U:(S)Set;V:(S)Set;subset(S,Cl(U),Cl(V)))COV(S,cov,U,V) TOP

hold, so the order in this frame is the subset order.

cHaimply(U,V) is closed for any two subsets U and V, and Cl preserves implication, so

the closed sets form a cHa which is isomorphic to the one formed by the equivalence classes

(appendix F: satcHaimply, ClprescHaimply).

In appendix F meet- and join-operations are also de�ned. In appendix F there are also

proofs of that Cl is a cHa isomorphism.

2.6 Points

A formal point (Sambin [13]) of a formal topology hS;^; 1; /; posi is a subset p of S which,

for arbitrary a; b 2 S, satis�es

1.

1 2 p
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2.

a 2 p b 2 p

a ^ b 2 p

3.

a 2 p a / U

(9b 2 U)(b 2 p)

4.

a 2 p

pos(a)

Even though a point is a subset, the intuition of a subset as an open and a subset as a point

are not the same. A subset (recall section 2.2) we regard as union of the regions of its elements,

while we can understand a point as something in the intersection of all neighbourhoods in it.

So an informal understanding of a 2 p (where a is a neighbourhood and p a point) might be

�p is a point in a�. Then we can understand the de�nition of points in the following way.

1. Any point p is in the space (since 1 corresponds to the whole space).

2. If p is in both a and b, then p is in the intersection of a and b.
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3. If p is in a and a is covered by U , then U must contain a neighbourhood containing p.

P

P

P

�

�

�

�

#

"

 

!

'

&

$

%

�

�

�

�

'

&

$

%

s

b

1

b

2

b

3

a

p

a / U

where U = fb

1

; b

2

; b

3

g

4. If p is in a then a is meaningful.

To avoid the existential quanti�cation, in rule 3 of the de�nition of formal point, we make

the following de�nition

P : (p:(S)Set;U:(S)Set)Set TOP

Pintro : (p:(S)Set;U:(S)Set;b:S;U(b);p(b))P(p,U) TOP

Informally: P (p; U) holds i� (9b 2 U)(b 2 p).

From rule (3) one can see that a de�nition by introduction rules of points impossible:
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point : (p:(S)Set)Set TOP

pointintro : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a))

point(p) TOP

For instance it does not follow the general scheme (given in [5]) of an inductive de�nition: U

is of function type and is not a parameter to the de�nition. So a neat de�nition of formal

points in type theory seems to be impossible. Instead we can do the following: in order to

prove that a subset p is a point we prove

p(one) ,

(a,b:S;p(a);p(b))p(meet(a,b)) ,

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U)

and

(a:S;p(a))pos(a).

And in order to prove that, given a point p, some property C(p) holds, we assume all prop-

erties a point must have:

(p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a))

C(p) TOP

The above de�nition of points corresponds exactly to the de�nition of points as completely

prime �lters. For details see appendix G.

3 The points of a Scott topology form a Scott domain

In this section we will show that the formal points of a Scott topology form a Scott domain.

3.1 Scott domain

By a Scott domain we mean an algebraic cpo in which every family of elements which is

bounded above has a least upper bound. Observe that we use the word family and not

subset: in general the points do not form a proper set in the type theoretic sense. In the

following de�nitions, which are adopted from Sambin [13], there is a distinction between sets,
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collections and families. Sets are inductively de�ned and families are subcollections indexed

by sets or subsets (propositional functions).

Let D = hD;vi be a partially ordered collection. A family (x

i

)

i2I

of elements in D is

bounded whenever there exist an element x 2 D such that (8i 2 I)(x

i

v x) and directed if

I is inhabited and (8i; j 2 I)(9k 2 I)(x

i

v x

k

& x

j

v x

k

). D is called a complete partial

order (cpo) if D has a minimum element ? and every directed family has a supremum. The

supremum of a directed family (x

i

)

i2I

will be denoted

F

i2I

x

i

.

An element a of a cpo D is called compact if, for any directed family (x

i

)

i2I

of elements

in D, a v

F

i2I

x

i

implies that (9k 2 I)(a v x

k

). We will write K(D) for the collection of

compact elements of D.

A cpo D is called algebraic if, for every x 2 D, the collection fa 2 K(D) : a v xg of

compact lower bounds of x is a directed family of elements (a

i

)

i2I

, for a suitable index set

I , such that x =

F

i2I

a

i

. This de�nition is stronger than the traditional, normally it is only

required that x =

F

fa 2 K(D) : a v xg since fa 2 K(D) : a v xg is directed. But here we

also require that the compact elements of a domain must form a family.

From Sambin [13] it follows that any algebraic cpo such that any bounded pair of compact

elements has a supremum is a Scott domain. This is the property that we will show that the

points satisfy.

3.2 Scott topology

In the following de�nition we mean by set, set in classical set theory. Let hX;vi be a poset

of points. The Scott topology on hX;vi consists of all sets U � X that satisfy

� U is upward closed, that is if x 2 U and x v y then y 2 U .

� U is inaccessible by directed joins, that is if V � X is directed and

W

V 2 U then

(9x 2 V )(x 2 U).

Now let hX;vi be a Scott domain and consider its Scott topology. It can be shown

(Sambin [13]) that the subsets O

U

= fx 2 X : (8a 2 U)(a v x)g, for U �

f

K(X) (�

f

means

�nite subset), form a base for this topology. Moreover if O

U

is inhabited and O

U

�

S

i2I

O

U

i

then (9i 2 I)(O

U

� O

U

i

).

Proof: Assume O

U

is inhabited and O

U

�

S

i2I

O

U

i

. From O

U

inhabited it follows that

U is bounded above and since X is a Scott domain U has a supremum

F

U , for which

(8a 2 U)(a v

F

U) holds, that is

F

U 2 O

U

. Now

O

U

�

[

i2I

O

U

i

)

G

U 2

[

i2I

O

U

i

, (9i 2 I)(

G

U 2 O

U

i

)

, (9i 2 I)(8a 2 U

i

)(a v

G

U):

Then take an arbitrary x 2 O

U

. Since hX;vi is algebraic, x is equal to the supremum of its

compact lower bounds, hence

F

U v x. By transitivity of v, (8a 2 U

i

)(a v x) for some i 2 I ,

that is x 2 O

U

i

for some i 2 I . So (9i 2 I)(O

U

� O

U

i

).

This property of Scott topologies is taken as de�nition in the pointfree approach, thinking

of the base fO

U

: U �

f

K(X)g as a formal base. A formal topology is called Scott if it

satis�es
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a / U pos(a)

(9b 2 U)(a / fbg)

scott

By the de�nition

SCOTTOP is TOP + [scott:(a:S;

U:(S)Set;

cov(a,U);

pos(a))

Exists(S,[b]Product(U(b),cov(a,Sing(S,b))))]

SCOTTOP is the context TOP extended with the scott property.

3.2.1 Example: Neighbourhoods of the natural numbers

Recall the example in section 2.4.2. It is easy to see that the Scott property is also satis�ed,

so SN, onenat, meetnat, covnat and posnat actually form a Scott topology. For a full proof

in ALF see appendix I.

3.3 Points of a Scott topology

If the Scott property holds then the covering relation / can be replaced by the simpler relation

� de�ned by

a � b � a / fbg

A formal point is the same as a subset p satisfying

1.

1 2 p

2.

a 2 p b 2 p

a ^ b 2 p

3.

a 2 p a � b

b 2 p

4.

a 2 p

pos(a)

If we �rst de�ne the new order

leq = [a,b]cov(a,Sing(S,b)) : (a:S;b:S)Set TOP

then the points can be de�ned (there is no longer a quanti�cation over subsets):

scpoint : (p:(S)Set)Set SCOTTOP

scpintro : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;b:S;p(a);leq(a,b))p(b);

(a:S;p(a))pos(a))

scpoint(p) SCOTTOP

It is easy to prove that if the Scott property holds then a subset p is a point i� scpoint(p)

holds. For details see appendix J (point2scpoint, scpoint2point).
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3.4 De�nition of union of subsets, directed families and compactness

Before we present the proof, that the points of a Scott topology form a Scott domain, some

more de�nitions are needed. In the proofs we will look at families of points where the index

set itself is a point (propositional function), so in the de�nitions the index set must be a

general subset. Formally, the family fp

i

g

i2I

consists of three parts:

T:Set

I:(T)Set

p:(T;S)Set

The intended meaning is: if i:T then p(i) is a member of the family i� I(i) holds.

Union of subsets:

union : (S:Set;T:Set;I:(T)Set;U:(T;S)Set;S)Set

unionintro : (S:Set;

T:Set;

I:(T)Set;

U:(T;S)Set;

i:T;

I(i);

a:S;

U(i,a))

union(S,T,I,U,a)

The order in the domain is the subset order, so in the de�nition of directed families and

compactness we use subset.

Directed families:

directed : (S:Set;T:Set;I:(T)Set;p:(T;S)Set)Set

directedintro : (S:Set;

T:Set;

I:(T)Set;

p:(T;S)Set;

i0:T;

I(i0);

(i:T;j:T;I(i);I(j))

Exists(T,[k]Product(I(k),

Product(subset(S,p(i),p(k)),

subset(S,p(j),p(k))))))

directed(S,T,I,p)

As was the case with the points (section 2.6), a de�nition by introduction rules of com-

pactness is impossible. It would contain quanti�cations over function types:
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compact : ((S)Set)Set

compactintro : (q:(S)Set;

(T:Set;

I:(T)Set;

p:(T;S)Set;

directed(S,T,I,p);

subset(S,q,union(S,T,I,p)))

Exists(T,[i]Product(I(i),subset(S,q,p(i)))))

compact(q)

In order to prove that a point q in a cpo is compact, one has to show that the function type

(T:Set;

I:(T)Set;

p:(T;S)Set;

directed(S,T,I,p);

subset(S,q,union(S,T,I,p)))

Exists(T,[i]Product(I(i),subset(S,q,p(i))))

is inhabited. And in order to prove that, given a compact point q, some property C(q) holds

then all the properties of a compact point has to be assumed:

(q:(S)Set;

scpoint(q);

(T:Set;

I:(T)Set;

p:(T;S)Set;

directed(S,T,I,p);

subset(S,q,union(S,T,I,p)))Exists(S,[i]Product(I(i),subset(S,q,p(i)))))

C(q)

3.5 The points of a Scott topology form a Scott domain

Unless otherwise stated, the types for the propositions in this section can be found in ap-

pendix L. The formal proofs can be obtained by ftp.

3.5.1 The points form an algebraic cpo

In order to show that the points of a Scott topology form a cpo, which we denote by Pt(S)

(where S is the formal base), we need the extra property that 1 is positive. Points are subsets

of positive neighbourhoods and 1 is contained in all points, so without the knowledge that 1

is positive we cannot show that there are any points at all, particularly no bottom element,

and consequently no cpo.

The order is the subset order (subset) which, of course, is re�exive (subsetrefl in

appendix A), transitive (subsettrans in appendix A) and antisymmetric (by de�nition of

the equality, eqsubset).

Next we need a bottom element, a point which is a subset of all other points. Given a

positive element a 2 S, its upper closure "a = fc 2 S : a � cg can easily be shown to be
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a point. In our type theoretic notation, the upper closure of a neighbourhood a is leq(a).

genscp is a proof that given an arbitrary positive neighbourhood a, leq(a) is a point; in

particular if pos(one) holds then leq(one) is a point. Intuitively, since all points contains

1 and all points are upper closed, the upper closure of 1 is a least element; leqonemin is a

formal proof of that.

The union of a family of subsets is, of course, an upper bound of the family (unionsup1),

it is less than or equal to all upper bounds (unionsup2) and the union of a directed family

of points is a point itself (unionpoint). So given a directed family of points its supremum is

formed by taking the union of all points in the family.

That Pt(S) is algebraic is proved as follows. Given two arbitrary points p and q, we have

("a)

a2p

is directed (1)

and

q � p & q compact, (9a 2 p)(q ="a) (2)

which implies that the family of compact lower bounds to p is ("a)

a2p

. Finally the union of

("a)

a2p

(which is the supremum) is equal to p:

[

a2p

"a = p (3)

Proof of 1: 1 2 p so p is inhabited. If a; b 2 p then a ^ b 2 p and "a; "b �"(a ^ b).

Proof of 2): Assume that q � p and q is compact. The family ("a)

a2q

is directed (follows

from 1). Clearly q �

S

a2q

"a, so by the de�nition of compactness (9a 2 q)(q �"a) follows.

But if a 2 q then "a � q, so we have (9a 2 q)(q ="a) and from the assumption q � p we get

(9a 2 p)(q ="a).

(: Assume that (9a 2 p)(q ="a). Clearly q � p holds. By existential elimination q ="a,

for some a 2 p. Let (r

i

)

i2I

be a directed family such that q �

S

i2I

r

i

. By substitution we

have "a �

S

i2I

r

i

. Now

"a �

[

i2I

r

i

, a 2

[

i2I

r

i

, (9i 2 I)(a 2 r

i

)

, (9i 2 I)("a � r

i

):

And by substituting back (9i 2 I)(q � r

i

) follows. So q is compact.

Proof of 3: It is easy to see that p �

S

a2p

"a. Let b 2

S

a2p

"a then (9a 2 p)(b 2"a). But

if a 2 p then "a � p so b 2 p. Thus

S

a2p

"a � p.

Again, the proof terms are too long so we only present the types. 1 is proved by

genscpdir : (p:(S)Set;scpoint(p))directed(S,S,p,leq) SCOTTOP

The implication from left to right in 2 follows from
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scpcomplb1 : (q:(S)Set;

scpoint(q);

(T:Set;

I:(T)Set;

r:(T;S)Set;

directed(S,T,I,r);

subset(S,q,union(S,T,I,r)))

Exists(T,[x]Product(I(x),subset(S,q,r(x))));

p:(S)Set;

subset(S,q,p))

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a)))) SCOTTOP

The �rst conjunct in the implication from right to left follows from

scpcomplb2a : (p:(S)Set;

q:(S)Set;

scpoint(p);

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a)))))

subset(S,q,p) SCOTTOP

and the second conjunct from

scpcomplb2b : (p:(S)Set;

q:(S)Set;

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a))));

T:Set;

I:(T)Set;

r:(T;S)Set;

(i:T;I(i))scpoint(r(i));

subset(S,q,union(S,T,I,r)))

Exists(T,[x]Product(I(x),subset(S,q,r(x)))) SCOTTOP

3 is proved by

supcompscp : (p:(S)Set;scpoint(p))eqsubset(S,p,union(S,S,p,leq)) SCOTTOP

3.5.2 Every bounded pair of compact points has a supremum

In order to prove that every bounded pair of compact points has a supremum we �rst notice

that

if a point p is compact then (9a 2 p)(p ="a) (4)

The proof of this is similar to the proof of 2. (In fact the converse also holds). Now take two

arbitrary compact points p

1

and p

2

, we then know that there exists positive a and b such that

p

1

="a and p

2

="b. If p

1

and p

2

are bounded, by say the point r, then a; b 2 r and since r is a

point a^b 2 r. Again, since r is a point, a^b is positive so "(a^b) is a point. "a; "b �"(a^b)

and if "a; "b � q then "(a ^ b) � q. Hence the supremum of p

1

and p

2

is "(a ^ b), provided

they are bounded.

4 follows from

22



gencompscp : (p:(S)Set;

scpoint(p);

(T:Set;

I:(T)Set;

p2:(T;S)Set;

directed(S,T,I,p2);

subset(S,p,union(S,T,I,p2)))

Exists(T,[h]Product(I(h),subset(S,p,p2(h)))))

Exists(S,[h]Product(p(h),eqsubset(S,p,leq(h))))

Now the fact that every two compact points, which are bounded above, have a supremum is

proved by

psuptoleqp : (p1:(S)Set;

p2:(S)Set;

scpoint(p1);

scpoint(p2);

(T:Set;

I:(T)Set;

q:(T;S)Set;

directed(S,T,I,q);

subset(S,p1,union(S,T,I,q)))

Exists(T,[h]Product(I(h),subset(S,p1,q(h))));

(T:Set;

I:(T)Set;

q:(T;S)Set;

directed(S,T,I,q);

subset(S,p2,union(S,T,I,q)))

Exists(T,[h]Product(I(h),subset(S,p2,q(h))));

r:(S)Set;

scpoint(r);

subset(S,p1,r);

subset(S,p2,r);

q:(S)Set;

scpoint(q))

Exists(S,[x]Product(Product(scpoint(leq(x)),

Product(subset(S,p1,leq(x)),

subset(S,p2,leq(x)))),

Imply(Product(subset(S,p1,q),

subset(S,p2,q)),

subset(S,leq(x),q)))) SCOTTOP

The meaning of the type above is the following: if p

1

, p

2

and q are compact points, such that

p

1

and p

2

are bounded above, then

(9x 2 S)("x is a point & p

1

; p

2

� "x & (p

1

; p

2

� q ! "x � q)):
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3.5.3 Example: Natural numbers

Recall again the example in section 2.4.2 and 3.2.1, on formal neighbourhoods of the natural

numbers. From the de�nition of points in a Scott topology it is easy to see that the domain

formed by the points in our case is

�

�

@

@

�

�

@

@

.

.

.

.

.

.

.

.

@

@

0

s(0)

?

s(?)

s(s(?))

s(s(0))

s

!

(?)

where

? is fNg

0 is fN; 0g

s(?) is fN; s(N)g

s(0) is fN; s(N); s(0)g

s(s(?)) is fN; s(N); s(s(N))g

. .

. .

s

!

(?) is fN; s(N); s(s(N)); :::g

and all points except of s

!

(?) are �nite.

4 Discussion

4.1 Subsets as propositional functions

By using propositional functions to represent subsets we can form subsets that cannot be

constructed by using sets of type Set as subsets: if P is a predicate over the set S then we

also have the subset fx 2 S : P (x)g, in general there is no way to e�ectively produce the

elements of this subset, and the same element can occur in several subsets.

Another possibility is to use

P

-sets: let a 2

P

(S; U) i� there exist some b : U(a) such

that ha; bi :

P

(S; U). But to create

P

(S; U) we need the predicate U and when we use an

element a of a subset we �rst have to pick out a from the pair ha; bi.

4.2 The consistency predicate

The rule of positivity,

pos(a)! a / U

a / U ,

has not been used in any formal proof. The rule of monotonicity,
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pos(a) a / U

(9b 2 U) pos(b) ,

has been used to show: if a is a positive neighbourhood in a Scott topology, then the upper

closure of a, "a, is a point. This, in turn, is frequently used in the proof that the points of a

Scott topology form a Scott domain, but the reason for that is that the points, by de�nition,

consist of positive neighbourhoods.

By simply removing the consistency predicate and its rules, we can still show that �any

formal topology de�nes a frame� and �the points of a Scott topology form a Scott domain�.

For Scott topologies, however, the Scott property,

a / U pos(a)

(9b 2 U)(a / fbg) ,

must be changed; if a is the least element then a /U even if U is empty. A new condition for

a Scott topology might be

a / U $ (8b 2 S)(a / fbg)

W

(9b 2 U)(a / fbg)

or, even better, remove the old condition and replace the covering / by � (de�ned by a � b �

a / fbg) in all the other rules. So one might ask whether the consistency predicate is needed.

The category of Scott topologies (with consistency predicate) is equivalent to the category of

Scott domains (for a proof see [13]), we cannot expect that this equivalence still holds if we

remove some rules from the de�nition of formal topology.

4.3 Problems

One of the main problems that occured when formalizing pointfree topology and domain

theory in ALF, was that we did not �nd any internal de�nition of points (section 2.6) and

compactness (section 3.4). As a consequence many types have become long and hard to read;

it is cumbersome to say that something is a point/compact element, both as assumption

and as result of a proposition. Another consequence is that the proof terms, even for trivial

lemmas, have become unreadable; they contain many variables and several of them are of

function type.

Another problem is that some properties are di�cult to express inside the theory. To show

the statements �the equivalence classes of subsets form a frame� and �the points of a Scott

topology form a Scott domain� we have proved a lot of properties, which together implies

that one can understand, outside the theory, that the statements are correct.
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A Subsets as propositional functions

subset : (S:Set;U:(S)Set;V:(S)Set)Set [] C

subsetintro : (S:Set;

U:(S)Set;

V:(S)Set;

(a:S;U(a))V(a))

subset(S,U,V) [] C

eqsubset = [S,U,V]Product(subset(S,U,V),subset(S,V,U)) :

(S:Set;U:(S)Set;V:(S)Set)Set []

subsetrefl : (S:Set;U:(S)Set)subset(S,U,U) [] I

subsetrefl(S,U) = subsetintro(S,U,U,[a,h]h)

subsettrans : (S:Set;

U:(S)Set;

V:(S)Set;

W:(S)Set;

subset(S,U,V);

subset(S,V,W))

subset(S,U,W) [] I

subsettrans(S,U,V,W,subsetintro(_,_,_,h2),subsetintro(_,_,_,h)) =

subsetintro(S,U,W,[a,h1]h(a,h2(a,h1)))

B Formal topology

COV : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set)Set [] C

COVintro : (S:Set;

cov:(S;(S)Set)Set;

U:(S)Set;

V:(S)Set;

(a:S;U(a))cov(a,V))

COV(S,cov,U,V) [] C
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MEET : (S:Set;meet:(S;S)S;U:(S)Set;V:(S)Set;S)Set [] C

MEETintro : (S:Set;

meet:(S;S)S;

U:(S)Set;

V:(S)Set;

a:S;

b:S;

U(a);

V(b))

MEET(S,meet,U,V,meet(a,b)) [] C

POS : (S:Set;pos:(S)Set;U:(S)Set)Set [] C

POSintro : (S:Set;

pos:(S)Set;

U:(S)Set;

b:S;

U(b);

pos(b))

POS(S,pos,U) [] C

Sing = Id : (S:Set;S;S)Set []

TOP is [S:Set; one:S; meet:(S;S)S; cov:(S;(S)Set)Set; pos:(S)Set;

covmeet1:(a:S)cov(a,Sing(S,one));

covrefl:(a:S;U:(S)Set;U(a))cov(a,U);

covtrans:(a:S;U:(S)Set;V:(S)Set;cov(a,U);f:COV(S,cov,U,V))cov(a,V);

covmeetl1:(a:S;b:S;U:(S)Set;cov(a,U))cov(meet(a,b),U);

covmeetl2:(a:S;b:S;U:(S)Set;cov(b,U))cov(meet(a,b),U);

covmeetr:(a:S;

U:(S)Set;

V:(S)Set;

cov(a,U);

cov(a,V))

cov(a,MEET(S,meet,U,V));

mono:(a:S;U:(S)Set;pos(a);cov(a,U))POS(S,pos,U);

posi:(a:S;U:(S)Set;(pos(a))cov(a,U))cov(a,U)]
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C A concrete topology: Neighbourhoods of the natural num-

bers

SN : Set [] C

onenat : SN [] C

zero : SN [] C

s : (SN)SN [] C

ff : SN [] C

meetnat : (a:SN;b:SN)SN [] I

meetnat(onenat,b) = b

meetnat(zero,onenat) = zero

meetnat(zero,zero) = zero

meetnat(zero,s(h)) = ff

meetnat(zero,ff) = ff

meetnat(s(h),onenat) = s(h)

meetnat(s(h),zero) = ff

meetnat(s(h),s(h1)) = s(meetnat(h,h1))

meetnat(s(h),ff) = ff

meetnat(ff,b) = ff

leqnat = [a,b]Id(SN,meetnat(a,b),a) : (a:SN;b:SN)Set []

posnat : (a:SN)Set [] I

posnat(onenat) = N1

posnat(zero) = N1

posnat(s(h)) = posnat(h)

posnat(ff) = Empty

covnat : (a:SN;U:(SN)Set)Set [] C

covnati1 : (a:SN;U:(SN)Set;(posnat(a))Empty)covnat(a,U) [] C

covnati2 : (a:SN;U:(SN)Set;b:SN;U(b);leqnat(a,b))covnat(a,U) [] C

We present only the types, because of the length of the proofs:

covmeetnat1 : (a:SN)covnat(a,Sing(SN,onenat)) []

covreflnat : (a:SN;U:(SN)Set;U(a))covnat(a,U) []

covmeetnatl1 : (a:SN;b:SN;U:(SN)Set;covnat(a,U))covnat(meetnat(a,b),U) []
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covmeetnatl2 : (a:SN;b:SN;U:(SN)Set;covnat(b,U))covnat(meetnat(a,b),U) []

covmeetnatr : (a:SN;

U:(SN)Set;

V:(SN)Set;

covnat(a,U);

covnat(a,V))

covnat(a,MEET(SN,meetnat,U,V)) []

covtransnat : (a:SN;

U:(SN)Set;

V:(SN)Set;

covnat(a,U);

f:COV(SN,covnat,U,V))

covnat(a,V) []

mononat : (a:SN;U:(SN)Set;posnat(a);covnat(a,U))POS(SN,posnat,U) []

posinat : (a:SN;U:(SN)Set;(posnat(a))covnat(a,U))covnat(a,U) []

TOPNAT is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;

covmeet1:=covmeetnat1; covrefl:=covreflnat;

covtrans:=covtransnat; covmeetl1:=covmeetnatl1;

covmeetl2:=covmeetnatl2; covmeetr:=covmeetnatr;

mono:=mononat;posi:=posinat} : TOP []

D Semilattice

Order between the formal neighbourhoods:

leq = [a,b]cov(a,Sing(S,b)) : (a:S;b:S)Set TOP

Equality between the formal neighbourhoods:

eqs = [a,b]Product(leq(a,b),leq(b,a)) : (S;S)Set TOP

hS,meet,onei with order leq form a semilattice. We only present the types, since the proofs

are too long:

meetcomm : (a:S;b:S)eqs(meet(a,b),meet(b,a)) TOP

meetassoc : (a:S;b:S;c:S)eqs(meet(a,meet(b,c)),meet(meet(a,b),c)) TOP

meetunit : (a:S)eqs(meet(one,a),a) TOP

meetidem : (a:S)eqs(meet(a,a),a) TOP
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E A formal topology de�nes a frame/complete Heyting alge-

bra

Equivalence between subsets:

EQS = [U,V]Product(COV(S,cov,U,V),COV(S,cov,V,U)) : (U:(S)Set;V:(S)Set)Set TOP

Join in the formal topology:

JOIN = [T,I,U]union(S,T,I,U) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP

(union is de�ned in appendix K).

Implication in complete Heyting algebra:

cHaimply = [U,V,a]COV(S,cov,MEET(S,meet,U,Sing(S,a)),V) :

(U:(S)Set;V:(S)Set;a:S)Set TOP

A formal topology de�nes a frame/complete Heyting algebra. We only present the types,

because of the length of the proof terms.

EQS is an equivalence relation:

EQSrefl : (U:(S)Set)EQS(U,U) TOP

EQSsymm : (U:(S)Set;V:(S)Set;EQS(U,V))EQS(V,U) TOP

EQStrans : (U:(S)Set;V:(S)Set;W:(S)Set;EQS(U,V);EQS(V,W))EQS(U,W) TOP

COV is a partial order on the subsets of S (antisymmetri is direct from the de�nition of EQS):

COVrefl : (U:(S)Set)COV(S,cov,U,U) TOP

COVtrans : (U:(S)Set;

V:(S)Set;

W:(S)Set;

COV(S,cov,U,V);

COV(S,cov,V,W))

COV(S,cov,U,W) TOP

COV respects EQS:

COVrespEQS : (U:(S)Set;

V:(S)Set;

U':(S)Set;

V':(S)Set;

COV(S,cov,U,V);

EQS(U,U');

EQS(V,V'))

COV(S,cov,U',V') TOP
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EQS respects MEET:

EQSrespMEET : (U:(S)Set;

U':(S)Set;

V:(S)Set;

V':(S)Set;

EQS(U,U');

EQS(V,V'))

EQS(MEET(S,meet,U,V),MEET(S,meet,U',V')) TOP

EQS respects JOIN:

EQSrespJOIN : (T:Set;

I:(T)Set;

U:(T;S)Set;

U':(T;S)Set;

(i:T;I(i))EQS(U(i),U'(i)))

EQS(JOIN(T,I,U),JOIN(T,I,U')) TOP

The following proofs show that MEET, JOIN and cHaimply have the correct properties:

MEETisinfl1 : (U:(S)Set;V:(S)Set)COV(S,cov,MEET(S,meet,U,V),U) TOP

MEETisinfl2 : (U:(S)Set;V:(S)Set)COV(S,cov,MEET(S,meet,U,V),V) TOP

MEETisinfr : (W:(S)Set;

U:(S)Set;

V:(S)Set;

COV(S,cov,W,U);

COV(S,cov,W,V))

COV(S,cov,W,MEET(S,meet,U,V)) TOP

MEETempty : (U:(S)Set)COV(S,cov,U,Sing(S,one)) TOP

JOINissup1 : (T:Set;I:(T)Set;U:(T;S)Set;i:T;I(i))

COV(S,cov,U(i),JOIN(T,I,U)) TOP

JOINissup2 : (T:Set;

I:(T)Set;

U:(T;S)Set;

V:(S)Set;

(i:T;I(i))COV(S,cov,U(i),V))

COV(S,cov,JOIN(T,I,U),V) TOP

infdistr : (T:Set;

I:(T)Set;

V:(S)Set;

U:(T;S)Set)EQS(MEET(S,meet,V,JOIN(T,I,U)),

JOIN(T,I,[i]MEET(S,meet,V,U(i)))) TOP
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cHaimplyrespEQS : (U:(S)Set;

U':(S)Set;

V:(S)Set;

V':(S)Set;

EQS(U,U');

EQS(V,V'))

EQS(cHaimply(U,V),cHaimply(U',V')) TOP

cHAimplyprop1 : (W:(S)Set;

U:(S)Set;

V:(S)Set;

COV(S,cov,W,cHaimply(U,V)))

COV(S,cov,MEET(S,meet,W,U),V) TOP

cHaimplyprop2 : (W:(S)Set;

U:(S)Set;

V:(S)Set;

COV(S,cov,MEET(S,meet,W,U),V))

COV(S,cov,W,cHaimply(U,V)) TOP

F Closure operator

Closure operator:

Cl = [U,a]cov(a,U) : (U:(S)Set;a:S)Set TOP

Meet for the closed sets:

MEETsat = [U,V,a]Product(U(a),V(a)) : (U:(S)Set;V:(S)Set;a:S)Set TOP

Join for the closed sets:

JOINsat = [T,I,U]Cl(JOIN(T,I,U)) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP

Predicate for closed sets:

sat = [U]eqsubset(S,U,Cl(U)) : (U:(S)Set)Set TOP

We only present the types, because of the length of the proofs.

The covering order between closed subsets is the subset order:

Cllemma1a : (U:(S)Set;V:(S)Set;COV(S,cov,U,V))subset(S,U,Cl(V)) TOP

Cllemma1b : (U:(S)Set;V:(S)Set;subset(S,U,Cl(V)))COV(S,cov,U,V) TOP

Each equivalence class contains exactly one closed subset:

Cllemma2 : (U:(S)Set)EQS(U,Cl(U)) TOP

Cllemma3 : (U:(S)Set;V:(S)Set;EQS(U,V))eqsubset(S,Cl(U),Cl(V)) TOP
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Cl is a closure operator:

Clprop1 : (U:(S)Set)subset(S,U,Cl(U)) TOP

Clprop2 : (U:(S)Set;V:(S)Set;subset(S,U,V))subset(S,Cl(U),Cl(V)) TOP

Clprop3 : (U:(S)Set)eqsubset(S,Cl(Cl(U)),Cl(U)) TOP

The closed subsets form a frame which is isomorphic to the frame formed by the equivalence

classes and Cl is a cHa isomorphism:

ClJOIN2JOINsat : (T:Set;

I:(T)Set;

U:(T;S)Set)

eqsubset(S,

Cl(JOIN(T,I,U)),

JOINsat(T,I,[i]Cl(U(i)))) TOP

ClMEET2MEETsatempty : (a:S)Cl(Sing(S,one),a) TOP

ClMEET2MEETsatbin : (U:(S)Set;

V:(S)Set)

eqsubset(S,

Cl(MEET(S,meet,U,V)),

MEETsat(Cl(U),Cl(V))) TOP

satcHaimply : (U:(S)Set;V:(S)Set)sat(cHaimply(U,V)) TOP

ClprescHaimply : (U:(S)Set;

V:(S)Set)

eqsubset(S,Cl(cHaimply(U,V)),cHaimply(Cl(U),Cl(V))) TOP

G Points of a formal topology

P is a function that given a point returns a completely prime �lter:

P : (p:(S)Set;U:(S)Set)Set TOP C

Pintro : (p:(S)Set;U:(S)Set;b:S;U(b);p(b))P(p,U) TOP C

We only present the types, because of the length of the proof terms.

Any point de�nes a completely prime �lter:
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point2filter1 : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

U:(S)Set;

V:(S)Set;

COV(S,cov,U,V);

P(p,U))

P(p,V) TOP

point2filter2 : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a))

P(p,Sing(S,one)) TOP

point2filter3 : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

U:(S)Set;

V:(S)Set;

P(p,U);

P(p,V))

P(p,MEET(S,meet,U,V)) TOP

point2filter4 : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

T:Set;

I:(T)Set;

U:(T;S)Set;

P(p,JOIN(T,I,U)))

Exists(T,[i]Product(I(i),P(p,U(i)))) TOP
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point2filter5 : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

U:(S)Set;

P(p,U))

POS(S,pos,U) TOP

Any completely prime �lter de�nes a point:

filter2point1 : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U))

F(Sing(S,one)) TOP

filter2point2 : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U);

a:S;

b:S;

F(Sing(S,a));

F(Sing(S,b)))

F(Sing(S,meet(a,b))) TOP

filter2point3 : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U);

a:S;

U:(S)Set;

cov(a,U);

F(Sing(S,a)))

P([x]F(Sing(S,x)),U) TOP
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filter2point4 : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U);

a:S;

F(Sing(S,a)))

pos(a) TOP

P is a bijection:

pfbij1a : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

a:S;

p(a))

P(p,Sing(S,a)) TOP

pfbij1b : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);

(a:S;p(a))pos(a);

a:S;

P(p,Sing(S,a)))

p(a) TOP

pfbij2a : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U);

U:(S)Set;

F(U))

P([a]F(Sing(S,a)),U) TOP
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pfbij2b : (F:((S)Set)Set;

(U:(S)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);

F(Sing(S,one));

(U:(S)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));

(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))

Exists(T,[i]Product(I(i),F(U(i))));

(U:(S)Set;F(U))POS(S,pos,U);

U:(S)Set;

P([a]F(Sing(S,a)),U))

F(U) TOP

H Scott topology

SCOTTOP is TOP + [scott:(a:S;

U:(S)Set;

cov(a,U);

pos(a))

Exists(S,[b]Product(U(b),cov(a,Sing(S,b))))]

SCOTTOP1 is SCOTTOP + [pos1:pos(one)]

I A concrete Scott topology: Neighbourhoods of the natural

numbers

Here the example from appendix C continues.

scottnat : (a:SN;

U:(SN)Set;

covnat(a,U);

posnat(a))

Exists(SN,[b]Product(U(b),covnat(a,Sing(SN,b)))) [] I

scottnat(a,U,covnati1(_,_,h2),h1) =

case0([h]Exists(SN,[b]Product(U(b),covnat(a,Sing(SN,b)))),h2(h1))

scottnat(a,U,covnati2(_,_,b,h2,h3),h1) =

Exists_intro(SN,

[b']Product(U(b'),covnat(a,Sing(SN,b'))),

b,

pair(U(b),

covnat(a,Sing(SN,b)),

h2,

covnati2(a,Sing(SN,b),b,id(SN,b),h3)))
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TOPNAT2 is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;

covmeet1:=covmeetnat1; covrefl:=covreflnat; covtrans:=covtransnat;

covmeetl1:=covmeetnatl1; covmeetl2:=covmeetnatl2;

covmeetr:=covmeetnatr; mono:=mononat; posi:=posinat;

scott:=scottnat} : SCOTTOP []

J Points of a Scott topology

Points of a Scott topology:

scpoint : (p:(S)Set)Set SCOTTOP C

scpintro : (p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;b:S;p(a);leq(a,b))p(b);

(a:S;p(a))pos(a))

scpoint(p) SCOTTOP C

In a Scott topology, scpoint is the same as point:

point2scpoint = [p,h,h1,h2,h3]

scpintro(p,

h,

h1,

[a,b,h4,h5]Exists_elim(S,

[x]Product(Sing(S,b,x),

p(x)),

[h6]p(b),

[a',b']idsubst'(S,

[b1]p(b1),

b,

a',

proj1(Id(S,b,a'),p(a'),b'),

proj2(Sing(S,b,a'),p(a'),b')),

h2(a,Sing(S,b),h4,h5)),

h3) :

(p:(S)Set;

p(one);

(a:S;b:S;p(a);p(b))p(meet(a,b));

(a:S;U:(S)Set;p(a);cov(a,U))Exists(S,[x]Product(U(x),p(x)));

(a:S;p(a))pos(a))

scpoint(p) SCOTTOP I
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scpoint2point : (p:(S)Set;

scpoint(p);

a:S;

U:(S)Set;

p(a);

cov(a,U))

Exists(S,[h]Product(U(h),p(h))) SCOTTOP I

scpoint2point(p,scpintro(_,h3,h4,h5,h6),a,U,h1,h2) =

Exists_elim(S,

[b]Product(U(b),cov(a,Sing(S,b))),

[z]Exists(S,[h]Product(U(h),p(h))),

[a',b]Exists_intro(S,

[h]Product(U(h),p(h)),

a',

pair(U(a'),

p(a'),

proj1(U(a'),cov(a,Sing(S,a')),b),

h5(a,a',h1,proj2(U(a'),leq(a,a'),b)))),

scott(a,U,h2,h6(a,h1)))

K Union of subsets and directed families

Union of subsets, where the index set itself is a subset:

union : (S:Set;T:Set;I:(T)Set;U:(T;S)Set;S)Set [] C

unionintro : (S:Set;

T:Set;

I:(T)Set;

U:(T;S)Set;

i:T;

I(i);

a:S;

U(i,a))

union(S,T,I,U,a) [] C
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Directed families, where the index set is a subset:

directed : (S:Set;T:Set;I:(T)Set;p:(T;S)Set)Set [] C

directedintro : (S:Set;

T:Set;

I:(T)Set;

p:(T;S)Set;

i0:T;

I(i0);

(i:T;j:T;I(i);I(j))

Exists(T,[k]Product(I(k),

Product(subset(S,p(i),p(k)),

subset(S,p(j),p(k))))))

directed(S,T,I,p) [] C

L The points in a Scott topology form a Scott domain

We only present the types, since the proofs are too long.

The points in a Scott topology form a cpo:

leqonemin : (p:(S)Set;scpoint(p))subset(S,leq(one),p) SCOTTOP

unionpoint : (T:Set;

I:(T)Set;

p:(T;S)Set;

(i:T;I(i))scpoint(p(i));

directed(S,T,I,p))

scpoint(union(S,T,I,p)) SCOTTOP

unionsup1 : (T:Set;

I:(T)Set;

p:(T;S)Set;

i:T;

I(i))

subset(S,p(i),union(S,T,I,p)) TOP

unionsup2 : (T:Set;

I:(T)Set;

p:(T;S)Set;

q:(S)Set;

(i:T;I(i))subset(S,p(i),q))

subset(S,union(S,T,I,p),q) TOP

which is algebraic and every two points has a least upper bound:

genscp : (a:S;pos(a))scpoint(leq(a)) SCOTTOP
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genscpdir : (p:(S)Set;scpoint(p))directed(S,S,p,leq) SCOTTOP

gencompscp : (p:(S)Set;

scpoint(p);

(T:Set;

I:(T)Set;

p2:(T;S)Set;

directed(S,T,I,p2);

subset(S,p,union(S,T,I,p2)))

Exists(T,[h]Product(I(h),subset(S,p,p2(h)))))

Exists(S,[h]Product(p(h),eqsubset(S,p,leq(h)))) SCOTTOP

scpcomplb1 : (q:(S)Set;

scpoint(q);

(T:Set;

I:(T)Set;

r:(T;S)Set;

directed(S,T,I,r);

subset(S,q,union(S,T,I,r)))

Exists(T,[x]Product(I(x),subset(S,q,r(x))));

p:(S)Set;

subset(S,q,p))

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a)))) SCOTTOP

scpcomplb2a : (p:(S)Set;

q:(S)Set;

scpoint(p);

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a)))))

subset(S,q,p) SCOTTOP

scpcomplb2b : (p:(S)Set;

q:(S)Set;

Exists(S,[a]Product(p(a),eqsubset(S,q,leq(a))));

T:Set;

I:(T)Set;

r:(T;S)Set;

(i:T;I(i))scpoint(r(i));

subset(S,q,union(S,T,I,r)))

Exists(T,[x]Product(I(x),subset(S,q,r(x)))) SCOTTOP

supcompscp : (p:(S)Set;scpoint(p))eqsubset(S,p,union(S,S,p,leq)) SCOTTOP
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psuptoleqp : (p1:(S)Set;

p2:(S)Set;

scpoint(p1);

scpoint(p2);

(T:Set;

I:(T)Set;

q:(T;S)Set;

directed(S,T,I,q);

subset(S,p1,union(S,T,I,q)))

Exists(T,[h]Product(I(h),subset(S,p1,q(h))));

(T:Set;

I:(T)Set;

q:(T;S)Set;

directed(S,T,I,q);

subset(S,p2,union(S,T,I,q)))

Exists(T,[h]Product(I(h),subset(S,p2,q(h))));

r:(S)Set;

scpoint(r);

subset(S,p1,r);

subset(S,p2,r);

q:(S)Set;

scpoint(q))

Exists(S,[x]Product(Product(scpoint(leq(x)),

Product(subset(S,p1,leq(x)),

subset(S,p2,leq(x)))),

Imply(Product(subset(S,p1,q),

subset(S,p2,q)),

subset(S,leq(x),q)))) SCOTTOP
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Abstract

The continuum is here presented as a formal space by means of a �nitary inductive

de�nition. In this setting a constructive proof of the Heine-Borel covering theorem is

given.

1 Introduction

It is well known that the usual classical proofs of the Heine-Borel covering theorem are not

acceptable from a constructive point of view (cf. [vS, F]). An intuitionistic alternative

proof that relies on the fan theorem was given by Brouwer (cf. [B, H]). In view of the

relevance of constructive mathematics for computer science, relying on the connection between

constructive proofs and computations, it is natural to look for a completely constructive proof

of the theorem in its most general form, namely for intervals with real-valued endpoints.

By using formal topology the continuum, as well as the closed intervals of the real line,

can be de�ned by means of �nitary inductive de�nitions. This approach allows a proof of the

Heine-Borel theorem that, besides being constructive, can also be completely formalized and

implemented on a computer. Formal topology can be expressed in terms of Martin-L�of's type

theory; a complete formalization of formal topology in the ALF proof editor has been given

in [JC]. A development of mathematical results in formal topology will then be a preliminary

work for a complete formalization of these results. On the basis of the present work, the �rst

author has implemented the proof of the Heine-Borel theorem for rational intervals.

Moreover, here as elsewhere (see for instance [C, C2, N, NV]), the use of a pointfree

approach allows to replace non-constructive reasoning by constructive proofs.

We point out that a proof similar in spirit to our work was given by Martin-L�of in [ML].

The paper is organized as follows: in Section 2 we provide all the preliminary de�nitions on

formal topology to make the exposition self-contained; in Section 3 the continuum is de�ned

as a formal space by means of an inductive de�nition, equivalent to the one given in [NS] but
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more suitable for our purpose. As an aside, the de�nition provides an explicit description

of its Stone compacti�cation (cf. [N]). Formal reals are also proved to be equivalent to real

numbers �a la Bishop. In the following section, the formal space of a closed interval with

rational endpoints is de�ned. Formal intervals are then proved to coincide, when considered

in the extensional way as sets of points, with the usual intervals of the real line. Finally,

the Heine-Borel covering theorem is proved and the same is done, without any substantial

di�erence, for intervals with real-valued endpoints.

2 Preliminaries

We recall here the basic theoretical background concerning formal topology. Further general

information can be found in [S, SVV], whereas in [N, NV] the constructive character of this

approach to topology is testi�ed by applications to constructive pointfree proofs. In [NS], the

theory of real numbers in the framework of formal topology is developed, but we also provide

here all the de�nitions needed.

Formal topologies were introduced by Per Martin-L�of and Giovanni Sambin ([S, S1]) as

a constructive approach to (pointfree) topology, in the tradition of Johnstone's version of

the Grothendieck topologies [J] and Fourman and Grayson's Formal Spaces [FG], but using

simpler technical devices and a constructive set theory based on Martin L�of's constructive

type theory.

The de�nition of a formal topology is obtained by abstracting from the de�nition of a

topological space hX;
(X)i, without mentioning the points. Since a point-set topology can

always be presented using one of its bases, the abstract structure that we will consider is

a commutative monoid hS; �

S

; 1

S

i where the set S corresponds to the base of the point-set

topology 
(X), �

S

corresponds to the operation of intersection between basic subsets, and 1

S

corresponds to the whole collection X .

In a point-set topology any open set is obtained as a union of elements of the base, but

union does not make sense if we refuse reference to points; hence we are naturally led to

think that an open set may directly correspond to a subset of the set S. Let c

�

denote the

element of the base which corresponds to the formal basic open c. Since there may be many

di�erent subsets of basic elements whose union is the same open set, we need an equivalence

relation

�

=

S

between two subsets U and V of S such that U

�

=

S

V holds if and only if the

opens U

�

� [

a2U

a

�

and V

�

� [

b2V

b

�

are equal. For this purpose we introduce an in�nitary

relation �

S

, called cover, between a basic element a of S and a subset U of S whose intended

meaning is that a �

S

U when a

�

� U

�

. The conditions we require of this relation are a

straightforward rephrasing of the analogous set-theoretic situation.

Besides the notion of cover, we introduce a predicate Pos

S

(a) [a 2 S] to express positively

(that is without using negation) the fact that a basic open is not empty.

De�nition 2.1 (Formal topology) A formal topology over a set S is a structure

S � hS; �

S

; 1

S

;�

S

; Pos

S

i

where hS; �

S

; 1

S

i is a commutative monoid with unit, �

S

is a relation, called cover, between

elements and subsets of S such that, for any a; b 2 S and U; V � S, the following conditions

hold:
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(re
exivity)

a 2 U

a �

S

U

(transitivity)

a �

S

U U �

S

V

a �

S

V

where U �

S

V � (8u 2 U) u �

S

V

(� - left)

a �

S

U

a �

S

b �

S

U

(� - right)

a �

S

U a �

S

V

a �

S

U �

S

V

where U �

S

V � fu �

S

v j u 2 U; v 2 V g

and Pos

S

is a predicate on S, called positivity predicate, satisfying:

(monotonicity)

Pos

S

(a) a �

S

U

(9b 2 U) Pos

S

(b)

(positivity) a �

S

fag

+

where U

+

� fb 2 U jPos

S

(b)g :

All the conditions, except positivity, are a straightforward rephrasing of the preceding intuitive

considerations. One reason to introduce positivity is that any non-positive basic open is

covered by everything. Indeed, when Pos

S

is a decidable predicate, positivity is equivalent

to

:Pos

S

(a)

a �

S

;

and this will be the case both for the topology of formal reals and for the topology of intervals

with rational endpoint. Technically, positivity also allows proof by cases on Pos

S

(a) for

deductions involving covers (for a detailed discussion cf. [SVV]).

We point out that we can dispense with the unit in the de�nition of formal topology

without any substantial di�erence in the development of the theory. This choice will be

pursued in the sequel.

In order to connect our pointfree approach to classical point-set topology, the notion of

point has to be recovered. Since we reverse the usual conceptual order between points and

opens, and take the opens as primitive, points will be de�ned as particular, well behaved,

collections of opens. We recall here the de�nition of a (formal) point of a formal topology:

De�nition 2.2 Let A � hS; �; 1;�; Posi be a formal topology. A subset � of S is said to be

a formal point if for all a; b 2 S, U � S the following conditions hold:

1. 1 2 � ;

2.

a 2 � b 2 �

a � b 2 �

;

3.

a 2 � a � U

(9b 2 U)(b 2 �)

;

4.

a 2 �

Pos(a)

.

In order to maintain the usual intuition on points, in the sequel we will write � 
 a (� forces

a, or � is a point in a) in place of a 2 �. Moreover, when a singleton set occurs we will

sometimes omit curly brackets, and write a � b for a � fbg, and U � b for U � fbg.
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3 The Continuum as a Formal Space

Formal real numbers can be obtained as formal points of a suitable formal topology based on

the rationals (cf. [NS]). We are adopting here a somewhat di�erent approach to formal reals

in comparison with the one given in [NS]. We have the same monoid operation and positivity

predicate, and the covering relations are equivalent, but we dispense with the unit. By this

approach we avoid adding top and bottom to the rational numbers. The following de�nition

was proposed by Thierry Coquand in order to make inductive arguments easier. Technically,

it is a �nitary inductive de�nition, since each rule involved has only �nitely many premises

(cf. [A]). In fact, we do not need to close under the cover rules. Moreover, as we will see, the

de�nition provides a simple presentation of the Stone compacti�cation for the cover (cf. [N]).

De�nition 3.1 The formal topology of formal reals is the structure

R � hQ�Q; �;�; Posi ;

where Q is the set of rational numbers, S � Q � Q is the Cartesian product. The monoid

operation is de�ned by (p; q) � (r; s) � (max(p; r); min(q; s)); the cover � is de�ned by

(p; q) � U � (8p

0

; q

0

)(p < p

0

< q

0

< q ! (p

0

; q

0

) �

f

U) ;

where the relation �

f

is inductively de�ned by

1.

q � p

(p; q) �

f

U

;

2.

(p; q) 2 U

(p; q) �

f

U

;

3.

(p; s) �

f

U (r; q)�

f

U p � r < s � q

(p; q) �

f

U

;

4.

(p

0

; q

0

) �

f

U p

0

� p < q � q

0

(p; q) �

f

U

.

The positivity predicate is de�ned by

Pos(p; q) � p < q :

According to the intuitive set-theoretic reading of the de�nition of formal topology, the above

de�nition amounts to the following: A basic open (p; q) is covered by a family U of basic

opens if and only if all (p

0

; q

0

) strictly included in (p; q) are included in the union of a �nite

subfamily of U . The rest of this section will be devoted to proving that the above de�nition

really de�nes a formal topology whose formal points correspond to constructive real numbers.

The usual de�nition of formal point of a formal topology, given in Section 2, specializes

to the following one when considering the formal topology of formal reals R.

De�nition 3.2 A subset � of S is a formal point of R if it satis�es

1. (9p; q)(� 
 (p; q)) ;
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2.

� 
 (p; q) � 
 (p

0

; q

0

)

� 
 (p; q) � (p

0

; q

0

)

;

3.

� 
 (p; q) (p; q) � U

(9(p

0

; q

0

) 2 U)(� 
 (p

0

; q

0

))

;

4.

� 
 (p; q)

Pos(p; q)

.

We observe here that, since Pos(p; q) is decidable, the fourth rule is provable from the third.

Let Pt(R) denote the formal points of R, called formal reals.

We will now prove that both � and �

f

are covers, the latter being the Stone compacti�-

cation of the former.

Proposition 3.3 The relation �

f

is a cover.

Proof. Before proving the cover rules for �

f

, we observe that the rule of � - right follows from

the rule of localization

a�U

a�b�U �b

since the base is a semilattice.

Re
exivity: By de�nition.

Transitivity: Suppose (p; q) �

f

U and U �

f

V . Then it is straightforward by induction

on the derivation of (p; q) �

f

U that (p; q) �

f

V .

� - Left: By the fourth axiom since p � max(p; r) and min(q; s) � q.

Localization: Suppose (p; q) �

f

U . Then we prove, by induction on the derivation of

(p; q) �

f

U , that (p; q) �(r; s)�

f

U �(r; s). We �rst observe that we can assume r < s, because

if s � r the claim follows trivially by the �rst rule. If (p; q) �

f

U is derived by the �rst

or the second axiom the claim is trivial. Suppose it is derived by the third axiom with the

assumptions p � t < v � q, (p; v) �

f

U and (t; q) �

f

U . If s � t then min(v; s) = min(q; s)

and therefore (p; v) � (r; s) = (p; q) � (r; s). From (p; v) �

f

U , by induction hypothesis, we have

(p; v) �(r; s)�

f

U �(r; s) thus (p; q) �(r; s)�

f

U �(r; s). If v � r thenmax(t; r) = max(p; s) and

the conclusion follows as above by applying inductive hypothesis to the premiss (t; q) �

f

U .

Otherwise max(t; r) < min(v; s) and we have, by induction hypothesis and the same rule,

(p; q) � (r; s) �

f

U � (r; s). If it comes from (p

0

; q

0

) �

f

U , with p

0

� p < q � q

0

, then by

induction hypothesis we get (p

0

; q

0

) � (r; s) �

f

U � (r; s) and since max(p

0

; r) � max(p; r) and

min(q; s) � min(q

0

; s) we obtain by the same rule (p; q) � (r; s) �

f

U � (r; s). 2

Moreover we have the following essential result:

Proposition 3.4 The relation �

f

is a Stone cover, i.e., a cover with the property that, for

arbitrary (p; q) 2 S and U � S, (p; q) �

f

U implies the existence of a �nite subset U

0

of U

such that (p; q) �

f

U

0

.

Proof. Suppose (p; q) �

f

U . Then we can �nd a �nite subset U

0

of U such that (p; q) �

f

U

0

by induction on the derivation of (p; q) �

f

U . 2

The following lemma is used to prove that � is a cover.

Lemma 3.5 Suppose (p; q) �

f

U , U � V and let p < p

0

< q

0

< q. Then (p

0

; q

0

) �

f

V .

Proof. By induction on the derivation of (p; q) �

f

U . If p � q and p < p

0

< q

0

< q we

have (p

0

; q

0

) �

f

U by axioms 1 and 4. If (p; q) 2 U then by the assumption U � V we have

(p; q) � V and therefore if p < p

0

< q

0

< q, (p

0

; q

0

) �

f

V . If p � r < s � q, (p; s) �

f

U

5



and (r; q) �

f

U we distinguish two cases according to the position of r; s with respect to

p

0

; q

0

. In the �rst case r < p

0

or q

0

< s, in the second p

0

� r < s � q

0

. Suppose r < p

0

,

then r < p

0

< q

0

< q so from the assumptions (r; q) �

f

U and U � V we get, by induction

hypothesis, (p

0

; q

0

) �

f

V . If q

0

< s we conclude symmetrically. If p

0

� r < s � q

0

we can �nd

r

0

; s

0

such that r < r

0

< s

0

< s. Therefore we have p < p

0

< s

0

< s and r < r

0

< q

0

< q. By

induction hypothesis the former, together with (p; s) �

f

U and U � V gives (p

0

; s

0

) �

f

V and

the latter together with (r; q) �

f

U and U � V gives (r

0

; q

0

) �

f

V . Since p

0

� r

0

< s � q

0

we get the conclusion (p

0

; q

0

) �

f

V . If (p; q) �

f

U is derived by the fourth rule we just apply

induction hypothesis to the premiss and the fourth rule again. 2

Proposition 3.6 The relation � is a cover.

Proof. Re
exivity: Let (p; q) 2 U , then (p; q) �

f

U and so if p < p

0

< q

0

< q we have

(p

0

; q

0

) �

f

U . Therefore (p; q) � U .

Transitivity: Let p < p

0

< q

0

< q. Then there exist p

00

and q

00

such that p < p

00

< p

0

<

q

0

< q

00

< q and (p

00

; q

00

) �

f

U . By the lemma above we have (p

0

; q

0

) �

f

V and therefore

(p; q) � V .

� - Left: Suppose (p; q) � U , then (p; q) � (r; s) � U follows directly from the de�nitions

since max(p; r) < p

0

< q

0

< min(q; s) implies p < p

0

< q

0

< q.

� - Right: Straightforward from the validity of � - right for �

f

. 2

Finally, it is straightforward to prove monotonicity and positivity for Pos, thus completing

the proof that R is a formal topology.

We will now prove that the cover �

f

is the Stone compacti�cation of the cover �. We

point out that this result is not needed in the proof of the Heine-Borel theorem.

Proposition 3.7 If (p; q) � U and U is �nite, then (p; q) �

f

U .

Before proving Proposition 3.7, observe we can assume that, for all (r; s) 2 U , Pos((p; q)�(r; s))

holds. In fact, if this is not the case, from (p; q) � U we have (p; q) � ((p; q) � U)

+

, and from

(p; q) �

f

((p; q) �U)

+

, by � - left and transitivity, (p; q) �

f

U . The following lemmas will allow

a proof of Proposition 3.7 by induction on the number of elements of U .

Lemma 3.8 For positive (p; q), (p; q) �

f

(r; s) implies r � p < q � s.

Proof. By induction on the derivation of (p; q) �

f

(r; s). If (p; q) �

f

(r; s) is derived by

the �rst or the second axiom, the claim holds trivially. If it is derived by the third axiom

from p � u < v � q, (p; v) �

f

(r; s), (u; q) �

f

(r; s), then by induction hypothesis we have

r � p < v � s, r � u < q � s and therefore r � p < q � s. If it follows from p

0

� p < q � q

0

and (p

0

; q

0

) �

f

(r; s) by the fourth axiom, then by induction hypothesis r � p

0

< q

0

� s and

therefore r � p < q � s. 2

Corollary 3.9 (p; q) � (r; s) implies (p; q) �

f

(r; s).

Proof. Let (p; q) � (r; s). Then, for all p

0

; q

0

such that p < p

0

< q

0

< q, we have r � p

0

< q

0

� s,

and therefore r � p < q � s, hence (p; q)�

f

(r; s). 2

Lemma 3.10 Suppose that p < q and (p; q) � U , where U is �nite and for all (r; s) 2 U ,

Pos((p; q); (r; s)) holds. Then there exists (p

1

; q

1

) 2 U such that p

1

� p < q

1

.
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Proof. Let (p

1

; q

1

) be an element of U such that p

1

is the smallest (with respect to the usual

order of the rational numbers) of all the �rst projections of elements of U . Then p

1

� p. In

fact, for all (p

0

; q

0

) 2 U , p

1

� max(p

0

; p) < min(q

0

; q) � q, that implies U � (p; q) �

f

(p

1

; q).

Since (p; q) � U �(p; q), we have by transitivity (p; q) � (p

1

; q), and therefore, by Corollary 3.9

and Lemma 3.8, we get p

1

� p < q. Then, by the assumption that for, all (r; s) 2 U ,

Pos((p; q) � (r; s)) holds, we have p

1

� p < q

1

. 2

Lemma 3.11 Suppose that (p; q) �

f

U , and let p < u < q. Then there exists (r; s) 2 U such

that r < u < s.

Proof. Straightforward by induction on the derivation of (p; q) �

f

U . 2

Corollary 3.12 Suppose that (p; q) � U , and let p < u < q. Then there exists (r; s) 2 U

such that r < u < s.

Proof. If p < u < q, there exist p

0

; q

0

such that p < p

0

< u < q

0

< q and therefore (p

0

; q

0

) �

f

U .

Then the conclusion follows by Lemma 3.11. 2

Lemma 3.13 Suppose that (p; q) � U , and let (r; s) 2 U with :Pos((p; q) � (r; s)). Then

(p; q) � U n f(r; s)g.

Proof. From (p; q) � U we have, by positivity and � - right, (p; q) � (U � (p; q))

+

. Since

:Pos((p; q) � (r; s)) holds, we have (U � (p; q))

+

� (U n f(r; s)g) � (p; q) and therefore (p; q) �

(U n f(r; s)g) � (p; q), thus a fortiori (p; q) � U n f(r; s)g. 2

Proof of Proposition 3.7. The proof is by induction on the number of elements of U . If

U = f(r; s)g the claim follows by Corollary 3.9. Suppose the result holds for jU j = n and

suppose that (p; q) � U

n+1

, where jU

n+1

j = n+1. By Lemma 3.10 there exists (p

1

; q

1

) 2 U

n+1

such that p

1

� p < q

1

. If q � q

1

then p

1

� p < q � q

1

and therefore (p; q) �

f

(p

1

; q

1

), so by

re
exivity and transitivity (p; q) �

f

U

n+1

. Otherwise q

1

< q , hence by Corollary 3.12 there

exists (p

2

; q

2

) 2 U

n+1

such that p

2

< q

1

< q

2

. So we can �nd r; s such that q

1

< r < s < q

2

.

Since p � r and (p; q) � U

n+1

, (r; q) � U

n+1

. From q

1

< r, we have :Pos((r; q) � (p

1

; q

1

)) and

therefore, by Lemma 3.13, we have (r; q) � U

n+1

n f(p

1

; q

1

)g, so that by induction hypothesis

(r; q) �

f

U

n+1

n f(p

1

; q

1

)g. Then a fortiori (r; q) �

f

U

n+1

. Since (p; s) �

f

f(p

1

; q

1

); (p

2

; q

2

)g,

we also have (p; s) �

f

U

n+1

and therefore (p; q) �

f

U

n+1

. 2

We conclude this section with observing that formal reals o�er an alternative approach to

constructive analysis; they have been used in the treatment of the Hahn-Banach theorem (cf.

[CCN]) and of the Cantor and Baire theorems (cf. [N1], [NS]). Moreover, we can show that

they are equivalent to real numbers �a la Bishop. First we recall the following (cf. [Bi]):

De�nition 3.14 A real number is a sequence of rational numbers (x

n

)

n

such that

jx

m

� x

n

j � m

�1

+ n

�1

(m;n 2 N

+

) :

Two real numbers, (x

n

)

n

and (y

n

)

n

, are equal if

jx

n

� y

n

j � 2n

�1

(n 2 N

+

) :

We have:
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Proposition 3.15 There exists a bijective correspondence between formal reals and real num-

bers �a la Bishop.

Proof. Let � be a formal real. By the rules in De�nition 3.2, � contains arbitrarily small

intervals, in particular (p; q) with q � p � 2=3. Since

2x+y

3

<

x+2y

3

again by the rules in

De�nition 3.2, � 
 (x; y) implies � 
 (x;

x+2x

3

) _ � 
 (

2x+y

3

; y). Now we can recursively

generate a sequence of intervals ((x

n

; y

n

))

n

, by case-analysis:

(x

1

; y

1

) � (p; q)

(x

i+1

; y

i+1

) �

�

(x

i

;

x

i

+2y

i

3

) if � 
 (x

i

;

x

i

+2y

i

3

)

(

2x

i

+y

i

3

; y

i

) if � 
 (

2x

i

+y

i

3

; y

i

) .

It can be veri�ed that the sequences (x

n

)

n

and (y

n

)

n

are real numbers according to De�ni-

tion 3.14.

Conversely, if (x

n

)

n

is a real number �a la Bishop, then the set de�ned by

� �

[

n2N

+

f(p; q) : p < x

n

� 2=n < x

n

+ 2=n < qg

is a formal real.

Moreover the correspondence thus established is bijective. 2

4 The Formal Space [a; b]

Given two rational numbers a; b such that a < b, we will de�ne a formal space whose formal

points are the formal points of R between a and b. We will follow the standard way to build,

from an open U of a space X , a space classically corresponding to the closed subspace XnU .

Indeed, we will de�ne a cover relation �

[a;b]

and the intended meaning of (p; q) �

[a;b]

U is that

the part of (p; q) inside the closed interval [a; b] is covered by U . By classical set-theoretic

reasoning we have that (p; q) \ [a; b] � [U is the same as

(p; q) � ([U) [ f(r; a) j r < ag [ f(b; s) j b < sg :

An interval (p; q) is then positive in the space [a; b] i� the part of (p; q) inside [a; b] is positive.

This justi�es the following:

De�nition 4.1 Let R � hQ�Q; �;�; Posi be the formal topology of formal reals and let [a; b]

be de�ned by

[a; b] � hQ� Q; �;�

[a;b]

; Pos

[a;b]

i

where the relation �

[a;b]

is de�ned by

(p; q) �

[a;b]

U � (p; q)� U [ f(r; a) j r < ag [ f(b; s) j b < sg ;

and the predicate Pos

[a;b]

is de�ned by

Pos

[a;b]

(p; q) � Pos((p; q) � (a; b)) :

In the sequel we will use the notation C[a; b] for f(r; a) j r < ag [ f(b; s) j b < sg and we will

understand C[a; b] as the complement of [a; b].

By the following proposition and by the immediate veri�cation that Pos

[a;b]

is a positivity

predicate, the above does indeed de�ne a formal topology.
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Proposition 4.2 The relation �

[a;b]

is a cover.

The proposition follows from the following lemma:

Lemma 4.3 Let � be a cover on the base S and let V � S. Then the relation �

V

de�ned by

a �

V

U � a � U [ V

is a cover.

Proof. Re
exivity, transitivity, � - left are straightforward, and � - right follows from the fact

that in general (U [ V ) � (W [ V ) � (U �W ) [ V . 2

As in Section 3, the general de�nition of formal point of a formal topology can be special-

ized to [a; b]:

De�nition 4.4 A subset � of S is a formal point of [a; b] if it satis�es

1. (9p; q)(� 
 (p; q)) ;

2.

� 
 (p; q) � 
 (p

0

; q

0

)

� 
 (p; q) � (p

0

; q

0

)

;

3.

� 
 (p; q) (p; q) �

[a;b]

U

(9(p

0

; q

0

) 2 U)(� 
 (p

0

; q

0

))

;

4.

� 
 (p; q)

Pos

[a;b]

(p; q)

:

As was the case in De�nition 3.2 the fourth rule is provable from the third, since Pos

[a;b]

(p; q)

is decidable. We will denote with Pt([a; b]) the collection of formal points of [a; b], called

formal reals of the interval [a; b].

We recall here the de�nition of order for Pt(R) (cf. [NS]):

� < � � (9(p; q); (r; s) 2 S)(� 
 (p; q) & � 
 (r; s) & q < r) ;

� � � � :(� < �) :

Let �a denote the formal point f(p; q) j p < a < qg, corresponding to the rational a. Then

we have � < �a, (9(p; q) 2 S)(� 
 (p; q) & q < a).

The following proposition says that the formal space [a; b] really corresponds to the closed

interval [a; b], i.e., the de�nition of the formal space [a; b] is correct:

Proposition 4.5 � 2 Pt([a; b]), � 2 Pt(R) & �a � � �

�

b.

Proof. ): Let � 2 Pt([a; b]). It is immediate that � 2 Pt(R) since (p; q) � U implies

(p; q) �

[a;b]

U . To show that �a � �, suppose � < �a. Then by de�nition (9(p; q) 2 S)(� 


(p; q) & q < a) and therefore :Pos

[a;b]

(p; q), against the assumption. Hence �a � �. The

inequality � �

�

b is proved symmetrically.

(: Let � 2 Pt(R) & �a � � �

�

b. Clauses 1 and 2 are obvious.

3. Let � 
 (p; q) and (p; q) �

[a;b]

U . Then there exists (r; s) 2 U [ C[a; b] such that

� 
 (r; s). Since Pos

[a;b]

(r; s) holds, it cannot be (r; s) = (r; a) or (r; s) = (b; s) and therefore

(r; s) 2 U . 2
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5 The Heine-Borel Covering Theorem for [a; b]

Here we will prove the Heine-Borel covering theorem asserting that any open cover of a closed

and bounded interval has a �nite sub-cover. We will use the notation [a; b] �

[a;b]

U for

(8p; q)((p; q)�

[a;b]

U), meaning that U covers the whole space [a; b].

Theorem 5.1 The formal space [a; b] is compact, i.e.

[a; b] �

[a;b]

U ) (9U

0

�

!

U)([a; b]�

[a;b]

U

0

) :

The proof uses the following lemma:

Lemma 5.2 [a; b] �

[a;b]

U , (9r; s)(r < a < b < s & (r; s) �

f

U [ C[a; b]) :

Proof. ): By the hypothesis [a; b] �

[a;b]

U , in particular there exist p; q such that p < a <

b < q and (p; q) �

[a;b]

U . Then by de�nition

(8p

0

; q

0

)(p < p

0

< q

0

< q ! (p

0

; q

0

) �

f

U [ C[a; b]) :

By choosing r and s such that p < r < a < b < s < q, we can thus conclude (9r; s)(r < a <

b < s & (r; s)�

f

U [ C[a; b]).

(: Observe that (r; s) �

f

U [ C[a; b] implies (r; s) � U [ C[a; b], that is (r; s) �

[a;b]

U .

If r < a < b < s, for all (p; q), (p; q) � f(p; a); (r; s); (b; q)g holds, and therefore (p; q) �

[a;b]

f(r; s)g. The claim follows by transitivity of �

[a;b]

. 2

Proof of Theorem 5.1. Suppose [a; b] �

[a;b]

U . Then by Lemma 5.2 there exists r and s

such that r < a < b < s & (r; s) �

f

U [ C[a; b] and by Proposition 3.4 there exists a �nite

subset W

0

of U [C[a; b] such that (r; s)�

f

W

0

. Now, since W

0

is a �nite subset of U [C[a; b],

we can �nd a �nite subset U

0

of U such that W

0

�

!

U

0

[C[a; b]. We get (r; s) �

f

U

0

[C[a; b].

So, by Lemma 5.2 again, [a; b]�

[a;b]

U

0

. 2

6 The Formal Space [�; �]

Generalizing the formal space [a; b] that corresponds to an interval with rational endpoints,

we will de�ne the formal space [�; �], with � and � formal reals with � < �, that corresponds

to an interval with real endpoints. The cover for the formal space [�; �] is de�ned starting

from �, similarly to the cover for [a; b]:

De�nition 6.1 Let �

[�;�]

be the relation de�ned by

(p; q) �

[�;�]

U � (p; q) � U [ C[�; �] ;

where C[�; �] � f(r; a) j r < a < �g [ f(b; s) j � < b < sg.

Proposition 6.2 The relation �

[�;�]

is a cover.

The proof is immediate by Lemma 4.3.

De�nition 6.3 A subset 
 of S is a formal point of [�; �] if it satis�es

1. (9p; q)(
 
 (p; q)) ;
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2.


 
 (p; q) 
 
 (p

0

; q

0

)


 
 (p; q) � (p

0

; q

0

)

;

3.


 
 (p; q) (p; q) �

[�;�]

U

(9(p

0

; q

0

) 2 U)(
 
 (p

0

; q

0

))

;

4.


 
 (p; q)

p < q & � < �q & �p < �

.

We remark that the property p < q & � < �q & �p < � of the basic neighbourhood (p; q)

expresses the fact that (p; q) has positive intersection with the interval [�; �]. Nevertheless,

we do not call it a positivity predicate, since the property of positivity does not seem to be

constructively valid for this predicate.

The collection of formal points of [�; �] will be denoted Pt([�; �]). As in the case of the

formal space [a; b] we have:

Proposition 6.4 
 2 Pt([�; �]) , 
 2 Pt(R) & � � 
 � � :

Proof. ): If 
 2 Pt([�; �]) it is immediate to show 
 2 Pt(R) since (p; q) � U implies

(p; q) �

[�;�]

U . Now suppose 
 < �. Then by de�nition

(9(p




; q




); (p

�

; q

�

) 2 S)(
 
 (p




; q




) & � 
 (p

�

; q

�

) & q




< p

�

) :

From 
 
 (p




; q




), by the fourth rule, we obtain that � < �q




which contradicts �q




< �p

�

< �.

Hence � � 
. We obtain 
 � � symmetrically.

(: 1 and 2 are direct.

3. Let 
 
 (p; q) and (p; q) �

[�;�]

U . By de�nition we have (p; q) � U [C[�; �] and by the

third rule for Pt(R) we get (9(p

0

; q

0

) 2 U [ C[�; �])(
 
 (p

0

; q

0

)). If 
 
 (p

0

; q

0

), by the fourth

rule for Pt([�; �]) (which is proved below), � <

�

q

0

and

�

p

0

< � and therefore (p

0

; q

0

) 2 U .

Hence (9(p

0

; q

0

) 2 U)(
 
 (p

0

; q

0

)).

4. Let 
 
 (p; q). Then by the fourth rule for Pt(R) we have p < q. If 
 
 (p; q) we also

have 
 < �q and since � < 
 we get � < �q. The inequality �p < � is proved symmetrically. 2

7 The Heine-Borel Covering Theorem for [�; �]

Here we will prove the Heine-Borel covering theorem for closed intervals with real-valued

endpoints. We introduce the notation:

[�; �] �

[�;�]

U � (8p; q)((p; q)�

[�;�]

U) :

Theorem 7.1 The formal space [�; �] is compact, i.e.

[�; �] �

[�;�]

U ) (9U

0

�

!

U)([a; b]�

[�;�]

U

0

) :

The proof uses the following lemma:

Lemma 7.2 [�; �] �

[�;�]

U , (9r; s)(�r < � < � < �s & (r; s) �

f

U [ C[�; �]) :

11



Proof. ): Given [�; �] �

[�;�]

U , there exist p; q such that �p < � < � < �q and (p; q) �

[�;�]

U .

By de�nition

(8p

0

; q

0

)(p < p

0

< q

0

< q ! (p

0

; q

0

) �

f

U [ C[�; �]) :

Now we can choose r; s such that �p < �r < � < � < �s < �q. Hence we obtain (9r; s)(�r < � <

� < �s & (r; s) �

f

U [ C[�; �]).

(: Choose (r; s) such that �r < � < � < �s and (r; s) �

f

U [ C[�; �]. For any a; b with

�r < �a < � < � <

�

b < �s we get, for all (p; q), (p; q) �

f

f(p; a); (r; s); (b; q)g. We have (p; a) �

f

U [C[�; �] because if p < a then (p; a) 2 U [C[�; �] otherwise (p; a) �

f

U [C[�; �] by axiom.

By symmetry we have (b; q)�

f

U[C[�; �], and therefore, by transitivity, (p; q) �

f

U[C[�; �].

This also means that (p; q) �

[�;�]

U and, since (p; q) is arbitrary, [�; �] �

[�;�]

U . 2

Proof of Theorem 7.1. Suppose [�; �] �

[�;�]

U . Then, by Lemma 7.2, there exist r and

s such that �r < � < � < �s & (r; s) �

f

U [ C[�; �] and by Proposition 3.3 there exists a

�nite subset W

0

of U [ C[a; b] such that (r; s) �

f

W

0

. Then we can �nd a �nite subset U

0

of

U such that W

0

�

!

U

0

[ C[�; �] and we get (r; s) �

f

U

0

[ C[�; �]. Using Lemma 7.2 again,

[�; �] �

[�;�]

U

0

. 2
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An implementation of the Heine-Borel covering theorem in

Type Theory

Jan Cederquist
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Abstract

We describe an implementation, in type theory, of a pointfree proof of the Heine-Borel

covering theorem for intervals with rational endpoints.

1 Introduction

The proof presented here is a complete formalisation of the proof presented in \A constructive

proof of the Heine-Borel covering theorem for formal reals" [CN]. We describe an implemen-

tation, in type theory, of a pointfree proof of the Heine-Borel covering theorem for intervals

with rational endpoints. The implementations also contain a de�nition of formal spaces as

a type, and de�nitions of the continuum and the closed rational interval as instances of that

type.

The paper is organised as follows: in section 2 we describe the proof-checker Half, in

which the implementation has been done, and the type theory it is based on. The rest of the

paper is devoted to formal de�nitions and the proof of the Heine-Borel covering theorem. In

section 3 some general de�nitions are given. In section 4 we de�ne a general formal topology,

we also de�ne the notion of compact space and Stone space. Then the rational numbers are

are de�ned as an object of an abstract data type. In section 6 the continuum is de�ned as a

formal space and some of its properties are proved. Then the closed rational interval [a,b] is

de�ned as a formal space and compactness of this space is proved.

In order to make this paper readable, we concentrate on the de�nitions and many proofs

(or lemmas and de�nitions used in these proofs) are left out. In the code these omitted proofs

are replaced by the ellipsis ....

1

However, all identi�ers used in the proofs presented are

de�ned and the main theorem is given with all details.

2 Description of the proof-checker Half

The implementation has been done in the proof-checker Half, developed by Thierry Coquand,

using a type-checker and an emacs-interface implemented by Dan Synek.

1

The complete proofs are obtainable from the URL:

ftp://ftp.cs.chalmers.se/pub/users/ceder/heineb/hb.tar.
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The Half system is a successor to ALF [M]. It is a logical framework based on Martin-L�of's

polymorphic type theory with one universe [ML], extended by a theory mechanism (similar

to the theory mechanism in PVS [OSR]) and let-expressions (cf. [C, Br, Ba]).

The system has three levels; Set, Type and Kind. Set is an element and a subset of

Type. Elements can be formed in both Set and Type; both Set and Type are closed under

function types (�-types) and disjoint union (�-types) and allow recursive de�nitions. There

is also a type Theory for theories. Kind consists of the types Set, Type and Theory, and

function types.

A proof (program) in Half consists of a list of de�nitions and proofs, having the form

f(x

1

: T

1

; : : : ; x

n

: T

n

) = e : T , where the type T

i

may depend on the parameters x

1

; : : : ; x

i�1

and e is an expression of type T .

The �-type is used for expressing dependent function spaces. Given two types A and B,

the �-type for functions from A to B is written (x : A) ! B. Elements of (x : A) ! B

are functions �x ! e, where the abstracted variable x has type A and e is an expression of

type B. The elimination form for elements of �-types is application.

A recursive data type is de�ned using the reserved word data:

dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g;

where A

ij

is an arbitrary type. Elements are introduced using the constructors c

i

c

i

a

i1

� � �a

ij

and the elimination form, for objects of a recursively de�ned data type, is the case-expression

case x of f

c

1

a

11

� � �a

1m

! e

1

;

.

.

.

c

n

a

n1

� � �a

nn

! e

n

g;

where e

1

; : : : ; e

n

are expressions of the same type (the type of the case-expression). For

example, the set of �nite lists may be de�ned by

list(A : Set) = datafNil; Cons(x : A; xs : list A)g : Set

and a list can then be analysed using a case-expression as in the following de�nition of append:

append(A : Set; l

1

: list A; l

2

: list A) =

case l

1

of f

Nil! l

2

;

Cons x xs! Cons x (append A xs l

2

)g : list A:

Note that, using these recursive de�nitions on functional form, non-linear inductive types

cannot be de�ned, i.e. dependencies between the parameters cannot be introduced. It turned

out that pattern matching together with non-linear inductive de�nitions is a non-conservative

2



extension of Martin-L�of's type theory (see [H]). The approach taken in Half is to allow only

linear inductive de�nitions. As a consequense, the Id -type

a 2 A

id(A; a) 2 Id(A; a; a)

is not de�nable: without dependencies between the parameters there is no way of saying that

the two elements are the same. Therefore, for abstract sets, instead of working with sets

and the Id -type, we work in a more general setting using setoids, i.e. sets with equivalence

relations. For concrete sets, equalities are explicitly de�ned. This is also closer to the usual

mathematical approach where a set comes together with an equality relation.

A �-type is a dependent record sigft

1

: T

1

; : : : ; t

n

: T

n

g, where the type T

i

may depend

on t

1

; : : : ; t

i�1

. An object of a �-type is formed by constructing objects of the types T

i

,

structft

1

= e

1

; : : : ; t

n

= e

n

g, where e

i

is an expression of type T

i

. The elimination rule for

�-types is projection; if M is of type sigft

1

: T

1

; : : : ; t

n

: T

n

g, the value of its i'th component

is accessed by M:t

i

.

Adding �-types to the system is a conservative extension of the system; it does not

a�ect the strength of the theory, equivalent de�nitions can always be obtained using recursive

de�nitions with one constructor. However, to analyse objects of a recursively de�ned set,

case-analysis is required, even if there is only one case to consider.

Theories are lists of de�nitions and proofs:

th = theoryf

f

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

) = e

1

: T

1

;

.

.

.

f

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

) = e

n

: T

n

g

: Theory

Theories are used to collect de�nitions and lemmas that logically belong together. Identi�ers

de�ned in a theory can be accessed from outside: if th is a theory and f

i

an identi�er de�ned

in th, then the value of f

i

is reached by th:f

i

.

By de�ning functions giving theories as result, a notion of parametrised theory is obtained.

Identi�ers de�ned in a parametrised theory can then be accessed from outside, provided they

are given proper parameters. Also the notion of (parametrised) theory is a conservative exten-

sion of the system: functions occuring in a parametrised theory can always be parametrised

themselves and de�ned outside the theory.

The let-expressions are used for local lemmas and abbreviations:

let x = e

1

: T in e

2

In the environment �, the expression above computes to e

2

(�; x = e

1

�), i.e. the value of e

2

in

the environment � extended with x = e

1

�.

Expressions of this language are thus formed by

sorts Set;Type and Theory

�-types (x : A)! B

3



abstractions �x! e

applications a b

�-types sigfa

1

: A

1

; : : : ; a

n

: A

n

g

structures structfa

1

= e

1

; : : : ; a

n

= e

n

g

projections b:a

i

rec. def. types dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g

constructors c

i

case expressions case x of f

c

1

a

11

� � �a

1m

! e

1

;

.

.

.

c

n

a

n1

� � �a

nn

! e

n

g

let expressions let x = e

1

: T in e

2

theories theoryf

f

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

) = e

1

: T

1

;

.

.

.

f

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

) = e

n

: T

n

g

projections th:f

i

variables x

The system also allow mutual recursive de�nitions. But this has not been used in the

proofs in this paper, we have also avoided mutual recursion between a function f and functions

locally de�ned in f .

There is a \size check" for inductively de�ned types. The type

dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g

lives in Set or Type if all A

ij

's live in Set or Type, respectively.

The de�nitional equality is a combination of structural equality and equal by name; for

checking equality of \complex" structures, i.e. data, sig, struct and case, comparision \by
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name" is used. This means for instance that in

Bool = datafFalse; Trueg : Set;

Bool

0

= datafFalse; Trueg : Set;

Bool

00

= Bool : Set

Bool and Bool' are not equal, but Bool and Bool" are. This is the approach taken for several

strongly typed languages.

The presence of both Set and Type in Half, where Set corresponds to a universe, allows

a more abstract reasoning than is possible in a system without a universe. We show this by

a small example with subsets of a set represented as propositional functions. First we give a

name for the type of predicates over a type A:

pred(A : Type) = (x : A)! Set : Type:

The predicates over A are objects in the function space from A to Set. This function space

does not form a set in predicative type theory (it has the type Type). In the same way, given

a type A, we form the type for relations on A:

rel(A : Type) = (x : A; y : A)! Set : Type:

Now we represent subsets of a set A as predicates over A. We say that U is a subset of A

if U is a propositional function ranging over A and an element a of A is a member of U i�

U(a) holds. A propositional function U is then a subset of another propositional function V

provided that Ux implies V x for all x of type A:

subset(A : Set) = �U V ! (x : A; h : Ux)! V x : rel (pred A):

Note that in the type we can see that, given a set A, subset A is a relation on predicates

of A. Also note that, in the last de�nition, A must be a set, since by the de�nition of rel,

(x : A; h : Ux)! V x has to be a set. The system checks this for us.

3 Preliminary de�nitions

From now on, Half-code in typewriter font is mixed with comments, motivations and less

formal de�nitions and proofs.

First some de�nitions about relations, predicates and operations:

rel(A:Type) = (x:A,y:A) -> Set : Type,

pred(A:Type) = (x:A) -> Set : Type,

bin(A:Type) = (x:A,y:A) -> A : Type,

op(A:Type) = (x:A) -> A : Type,

ref(A:Set,R:rel A) = (x:A) -> R x x : Set,

sym(A:Set,R:rel A) = (x:A,y:A,p:R x y) -> R y x : Set,

trans(A:Set,R:rel A) = (x:A,y:A,z:A,p:R x y,q:R y z) -> R x z : Set,

Note that rel, pred, bin and op also are applicable to elements of type Set.

The propositions false and true are de�ned as the empty set and a singleton set, respec-

tively:

n0 = data{} : Set,

n1 = data{$True} : Set,
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(In Half-code the constructors start with $). The connectives are de�ned by

not (A:Set) = (x:A) -> n0 : Set,

and (A:Set,B:Set) = sig{fst:A,snd:B} : Set,

or (A:Set,B:Set) = data{$Inl (x:A),$Inr (y:B)} : Set,

The de�nition of and should be compared to the equivalent de�nition using a pair-constructor,

and2(A:Set,B:Set) = data{$pair(a:A,b:B)} : Set.

However, a case-expression is required in order to analyse an object of type and2 A B, whereas

for and, the proofs of A and B are obtained directly using the names fst and snd, respectively.

The existential quanti�er is here de�ned using a �-set and, as was the case with and, the

elimination rules are �rst and second projection:

exists(A:Set,B:pred A) = sig{fst:A,snd:B fst} : Set,

A set A is dense with respect to a relation R, if for all related x and y in A, there exists a

z in A such that R x z and R z y. (If e is an expression then \x -> e is the notation for a

lambda abstraction.)

dense(A:Set,R:rel A) =

(x:A,y:A,h:R x y) -> exists A (\z -> and (R x z) (R z y)) : Set,

A set A is decidable if A _ :A holds, and a relation R on A is decidable, if for all x and y,

R x y is decidable:

dec(A:Set) = or A (not A) : Set,

dec_rel(A:Set,R:rel A) = (x:A,y:A) -> dec (R x y) : Set,

A setoid is a set with an equivalence relation:

setoid(A:Set,R:rel A) =

sig{isref:ref A R,issym:sym A R,istrans:trans A R} : Set,

A monoid is a setoid with a binary operation satisfying congruence, commutativity and as-

sociativity:

monoid(A:Set,eq:rel A,add:bin A) =

sig{issetoid:setoid A eq,

iscong:(x:A,y:A,z:A,t:A,h1:eq x z,h2:eq y t) ->

eq (add x y) (add z t),

iscom:(x:A,y:A) -> eq (add x y) (add y x),

isassoc:(x:A,y:A,z:A) -> eq (add x (add y z)) (add (add x y) z)}

: Set,

In the de�nition of formal space (section 4), propositional functions are used as subsets. Below

we de�ne what it means for a propositional function to be a subset of another propositional

function. In general predicates do not respect equality, therefore the second (weaker) de�-

nition, that takes the equality relation as parameter, is used at some places. To justify the

second subset relation, consider the following example: let = be an equality de�ned on a set

containing the elements x and y, and let U and V be predicates over that set; then using the

�rst de�nition we do not in general have x = y & Ux & U � V ) V x. Moreover, in a formal

topology the cover relation respects the equality relation. So, the second de�nition below is

just as strong as it needs to be.
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Subset(A:Set) = \U V -> (x:A,h:U x) -> V x : rel (pred A),

Subset2(A:Set,eq:rel A) =

\U V -> (x:A,h:U x) -> exists A (\y -> and (eq x y) (V y))

: rel (pred A),

Binary union for subsets as predicates is de�ned using disjunction:

Union(A:Set) = \U V -> \x -> or (U x) (V x) : bin (pred A),

We now de�ne �nite lists and use the concept of parametrised theory to collect some de�nitions

and lemmas for lists.

list(A:Set) = data{$Nil,$Cons (x:A,xs:list A)} : Set,

theory_fin_list(A:Set,R:rel A) = theory{

mem_list(x:A) = \xs -> case xs of {

$Nil -> n0,

$Cons y xs1 -> or (R x y) (mem_list x xs1)}

: pred (list A),

...

(Just observe here that several de�nitions and lemmas are left out. We take the liberty of

freely writing text inside theories like this.)

} : Theory {- end of theory_fin_list -}

An easy way to handle �nite subsets is to use lists. But since lists of a type A and predicates

over A have di�erent types, a method for converting lists into predicates is needed when

mixing the two notions. To transform a list into a predicate we simply abstract a variable

belonging to the list (see finset below). The meaning of finsubset l U is \l is a �nite

subset of U". Finally, findpart takes a list X and a proof that X is a subset of a union, and

�nds the sublist Y of X belonging to the �rst subset in the union.

theory_subsets(A:Set,eq:rel A,issetoid:setoid A eq) = theory {

th_fin_list = theory_fin_list A eq : Theory,

finset(l:list A) = \x -> th_fin_list.mem_list x l : pred A,

finsubset(l:list A,U:pred A) =

case l of {

$Nil -> n1,

$Cons x xs -> and (U x) (finsubset xs U)} : Set,

subset2 = Subset2 A eq:rel (pred A),

findpart(X:list A,U:pred A,V:pred A,h:finsubset X (union U V)) = ...

:exists

(list A)

(\Y->and (finsubset Y U) (subset2 (finset X) (union (finset Y) V)))

...

} : Theory,

We conclude this section by giving a type for intervals and a theory for intervals. Given a

set, an interval is simply the pair of its endpoints:
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interval(A:Set) = sig{lp:A,rp:A} : Set,

Given a set A and a relation R on A, we de�ne the corresponding relation S, for intervals of A.

This is used in the de�nition of the continuum (section 6), where =, < and � for rational

intervals are de�ned from the corresponding relations on the rational numbers.

theory_interval(A:Set,R:rel A) = theory{

B = interval A : Set,

S = \I J -> and (R J.lp I.lp) (R I.rp J.rp) : rel B,

...

} : Theory

4 Formal spaces

We recall the de�nition of formal topology given by Giovanni Sambin [S]. A formal topology

over a set A is a structure

hA;=; �;�i

where hA;=; �i is a commutative monoid, � is a relation, called cover, between elements and

subsets of A such that, for any x; y 2 A and U; V � A, the following conditions hold:

(substitutivity)

x = y y � U

x � U

(re
exivity)

x 2 U

x � U

(transitivity)

x � U U � V

x � V

where U � V � (8u 2 U)(u � V )

(dot - left)

x � U

x � y � U

(dot - right)

x � U x � V

x � U � V

where U � V � fu � v j u 2 U; v 2 V g:

Subsets of the base A are represented by propositional functions ranging over A (see the

previous sections).

We point out that, in contrast to the de�nition of formal topology given in [S], we do not

require the base monoid to have a unit, nor do we have the positivity predicate used in [S].

The equality relation on the base set is also explicit here.

A formal topology is here de�ned as a �-type: The set A with the relation =, the binary

operation � and the relation � form a formal space; if A, =, � form a monoid and the rules

of a formal topology (substitutivity, re
exivity, transitivity, dot-left, dot-right) are satis�ed.

In the implementation eq, dot and cov are used for =, � and �, respectively. DOT and COV

are used for the generalisations of � and �, respectively, to subsets. Since DOT and COV are

used both in the de�nition of the formal space and in the theory for formal spaces, they are

de�ned globally; and, since � and � for subsets, depend on � and � for elements, DOT and COV

have A, eq, dot and cov as parameters.
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COV(A:Set,cov:(x:A,U:pred A)->Set)=

\U V -> (x:A,p:U x) -> cov x V:rel (pred A),

DOT(A:Set,eq:rel A,dot:bin A)=

\U V z -> sig{x:A,y:A,px:U x,py:V y,iseq:eq z (dot x y)}

:bin (pred A),

If x and y are elements in U and V , respectively, then, immediate by the de�nition of � for

subsets, x � y is an element in U � V .

lemDOT(A:Set,eq:rel A,isref:ref A eq,dot:bin A,

x:A,y:A,U:pred A,V:pred A,p:U x,q:V y)=

struct{x=x,y=y,px=p,py=q,iseq=isref (dot x y)}

:DOT A eq dot U V (dot x y),

space(A:Set,eq:rel A,dot:bin A,cov:(x:A,U:pred A)->Set)=

sig{ismonoid:monoid A eq dot,

ax0:(x:A,y:A,h2:eq x y,U:pred A,h3:cov y U)->cov x U,

ax1:(x:A,U:pred A,h2:U x)->cov x U,

ax2:(x:A,U:pred A,V:pred A,h2:cov x U,h3:COV A cov U V)->cov x V,

ax3:(x:A,y:A,U:pred A,h2:cov x U)->cov (dot x y) U,

ax4:(x:A,U:pred A,V:pred A,h2:cov x U,h3:cov x V)->

cov x (DOT A eq dot U V)} : Type,

In the theory below some general facts of formal spaces are proved and some de�nitions are

given. Later on we will de�ne concrete formal spaces as instances of this theory.

theory_space (A:Set,eq:rel A,dot:bin A,cov:(x:A,U:pred A)->Set,

s:space A eq dot cov) =

theory{

union=Union A:bin (pred A),

subset2=Subset2 A eq:rel (pred A),

Cov=COV A cov:rel (pred A),

Dot=DOT A eq dot:bin (pred A),

lemDot=lemDOT A eq isref dot

:(x:A,y:A,U:pred A,V:pred A,p:U x,q:V y)->Dot U V (dot x y),

The following lemmas say that U � V ) U � V and (U [ V ) � (W [ V ) � (U �W ) [ V ,

respectively.

lem12(U:pred A,V:pred A)=

\h->\x p->let {h1=h x p:exists A (\y ->and (eq x y) (V y))}

in s.ax0 x h1.fst V h1.snd.fst (s.ax1 h1.fst V h1.snd.snd)

:(h:subset2 U V)->Cov U V,

lem7(U:pred A,V:pred A,W:pred A)=

\x p->s.ax0

x

(dot p.x p.y)

(union (Dot U W) V)

p.iseq

(case p.px of {

$Inl x1->

case p.py of {
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$Inl x2->

s.ax1 (dot p.x p.y) (union (Dot U W) V)

($Inl (lemDot p.x p.y U W x1 x2)),

$Inr y->

ax3l p.x p.y (union (Dot U W) V)

(s.ax1 p.y (union (Dot U W) V) ($Inr y))},

$Inr y->

s.ax3 p.x p.y (union (Dot U W) V)

(s.ax1 p.x (union (Dot U W) V) ($Inr y))})

:Cov (Dot (union U V) (union W V)) (union (Dot U W) V),

Given a formal space (note that we still are inside the theory theory_space), we now

de�ne the space induced by a subset. In our implementation that is achieved by a nested

theory, in which the induced cover is de�ned and the cover-rules are proved.

theory_indspace(V:pred A) = theory{

Let � be a cover. The cover induced by the subset V is de�ned by a �

V

U � a � U [ V :

covind=\x U->cov x (union U V):(x:A,U:pred A)->Set,

In order to prove that the space induced by V really is a formal space, an object of space A

eq dot covind is constructed:

indspace=

struct{

ismonoid=s.ismonoid,

ax0=\x y h2 U h3->s.ax0 x y h2 (union U V) h3,

ax1=\x U h2->s.ax1 x (union U V) ($Inl h2),

ax2=\x U V1 h2 h3->

s.ax2

x

(union U V)

(union V1 V)

h2

(\x1 p->case p of {

$Inl x2->h3 x1 x2,

$Inr y->s.ax1 x1 (union V1 V) ($Inr y)}),

ax3=\x y U h2->s.ax3 x y (union U V) h2,

ax4=\x U V1 h2 h3->

s.ax2

x

(Dot (union U V) (union V1 V))

(union (Dot U V1) V)

(s.ax4 x (union U V) (union V1 V) h2 h3)

(lem7 U V V1)}

:space A eq dot covind

}:Theory, {- end of theory_indspace -}

In order to de�ne compactness and Stone spaces, a notion of �nite subset is needed. For

that purpose �nite lists are used. Given a list, the function finset returns the corresponding

subset, and the meaning of finsubset l U is \l is a �nite subset of U".

th_subs=theory_subsets A eq issetoid:Theory,

finset=th_subs.finset:(l:list A)->pred A,

finsubset=th_subs.finsubset:(l:list A,U:pred A)->Set,
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The following predicate says that, given a subset U and predicate P for subsets, there exists a

�nite subset of U for which P holds.

existsFin(U:pred A,P:pred (pred A))=

exists (list A) (\l->and (finsubset l U) (P (finset l))):Set,

isCover U is an abbreviation for \U covers the whole space":

isCover=\U->(x:A)->cov x U:pred (pred A),

Now compactness, saying that if a subset U covers the whole space then there exists a �nite

subset of U that covers the whole space, and Stone cover (see [S]), saying that if the element x

is covered by U then there exists a �nite subset of U that covers x, are easily de�ned:

compact=(U:pred A)->(h:isCover U)->existsFin U isCover:Type,

stone=(x:A,U:pred A,h:cov x U)->existsFin U (\U0->cov x U0):Type

}:Theory, {- end of theory_space -}

We conclude this section by \covering" the de�nitions above with one more level of abstrac-

tion.

SPACE = sig{A:Set,eq:rel A,dot:bin A,cov:(x:A,U:pred A)->Set,

is_a_space:space A eq dot cov} : Type,

Given a space s, Token s returns the base of s

Token(s:SPACE) = s.A : Set,

and Open s returns the subsets of the space s.

Open(s:SPACE) = pred (Token s) : Type,

Given a space s and a subset U in s, indSpace U s forms the space where the cover in s is

induced by U.

indSpace(s:SPACE,U:Open s) =

let {th1=theory_space s.A s.eq s.dot s.cov s.is_a_space:Theory,

th2=th1.theory_indspace U:Theory}

in struct{

A=s.A,

eq=s.eq,

dot=s.dot,

cov=th2.covind,

is_a_space=th2.indspace}:SPACE,

CompactSPACE is a predicate of over all spaces (SPACE), saying that the space is compact.

CompactSPACE(s:SPACE)=

let {th=theory_space s.A s.eq s.dot s.cov s.is_a_space:Theory}

in th.compact:Type,

Using a �-type, a compact space is a space which is compact.

COMPACTSPACE=sig{s:SPACE,iscompact:CompactSPACE s}:Type,

We also de�ne the corresponding for Stone spaces:

StoneSPACE(s:SPACE)=

let {th=theory_space s.A s.eq s.dot s.cov s.is_a_space:Theory}

in th.stone:Type,

STONESPACE=sig{s:SPACE,isstone:StoneSPACE s}:Type
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5 Linear ordering

The rational numbers are formed abstractly as an unbounded, dense, decidable linear ordering.

Following von Plato [vP], we start with the order relation < and state the axioms :(x <

y & y < x) and x < y ) (x < z _ z < y).

islinear(A:Set,lt:rel A) =

sig{LO1:(x:A,y:A,p:lt x y,q:lt y x) -> n0,

LO2:(x:A,y:A,z:A,p:lt x y) -> or (lt x z) (lt z y)}

: Set,

Less-then-or-equal (or rather not-greater-than) is de�ned as x � y � :(y < x). The equality

x = y � x � y & y � x then satisfy re
exivity, symmetry and transitivity.

leq = \x y -> not (lt y x) : rel A,

eq = \x y -> and (leq x y) (leq y x) : rel A,

To this ordering decidability (x < y _ y � x) is added:

isdeclinear(A:Set,lt:rel A)=sig{DLO1:islinear A lt,

DLO2:dec_rel A lt}:Set,

Then max and min can be de�ned by analysing the proof of x < y _ y � x.

The rationals also form an unbounded ((8a)(9x)(x < a) and (8a)(9x)(a < x)) and dense

(x < y ) (9z)(x < z < y)) set.

isdenseunbdeclinear(A:Set,lt:rel A)=

sig{isdeclin:isdeclinear A lt,

nolb:(a:A)->exists A (\x->lt x a),

noub:(a:A)->exists A (\x->lt a x),

isdense:dense A lt}:Set,

Now we collect the de�nitions above in the following theory:

theoryUnboundedDenseDecidableLinear(

A:Set,lt:rel A,isdudl:isdenseunbdeclinear A lt)=theory{

leq=...:rel A,

eq=...:rel A,

min=...:bin A,

max=...bin A,

...

} : Theory

6 The continuum as a formal space

The topology of formal reals is the structure

hQ� Q;=

Q�Q

; �;�i ;

where Q is the set of rational numbers. The monoid operation is de�ned by (p; q) � (r; s) �

(max(p; r); min(q; s)); the cover � is de�ned by

(p; q) � U � (8p

0

; q

0

)(p < p

0

& q

0

< q ) (p

0

; q

0

) �

f

U) ;

where the relation �

f

is inductively de�ned by
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1.

q � p

(p; q) �

f

U

2.

(p; q) 2 U

(p; q) �

f

U

3.

r < s (p; s) �

f

U (r; q)�

f

U

(p; q) �

f

U

4.

(p

0

; q

0

) �

f

U p

0

� p q � q

0

(p; q) �

f

U

.

For properties of this formal space we refer to [CN].

Starting from the linear ordering of the previous section, the continuum is here to be

de�ned as a formal space. In the following theory, �, �

f

and � are de�ned (having the names

dot, covf and cov, respectively). We also prove that �

f

is a Stone cover and that � is a

cover relation.

theory_continuum(Q:Set,ltQ:rel Q,

isdudl:isdenseunbdeclinear Q ltQ)=theory{

th_dudl=theoryUnboundedDenseDecidableLinear Q ltQ isdudl

:Theory,

leqQ=th_dudl.leq:rel Q,

max=th_dudl.max:bin Q,

min=th_dudl.min:bin Q,

eqQ=th_dudl.eq:rel Q,

eqQsym=...:sym Q eqQ,

The base consists of the rational intervals:

QxQ=interval Q:Set,

int(p:Q,q:Q)=struct{lp=p,rp=q}:QxQ,

By instantiating the theory theory_interval with Q and a relation on Q, the corresponding

relation on intervals is obtained.

th_int_eqQ=theory_interval Q eqQ:Theory,

eqQxQ=th_int_eqQ.S:rel QxQ,

th_int_ltQ=theory_interval Q ltQ:Theory,

ltQxQ=th_int_ltQ.S:rel QxQ,

th_int_leqQ=theory_interval Q leqQ:Theory,

leqQxQ=th_int_leqQ.S:rel QxQ,

eqQxQref=...:ref QxQ eqQxQ,

The dot-operation is de�ned as intersection:

dot=\x y -> int (max x.lp y.lp) (min x.rp y.rp):bin QxQ,

The formalised version of �

f

is recursively de�ned by the following:

covf(I:QxQ,U:pred QxQ)=

data{$C1(h:leqQ I.rp I.lp),

$C2(h:U I),

$C3(J:QxQ,h1:ltQ J.lp J.rp,

h2:covf (int I.lp J.rp) U,

h3:covf (int J.lp I.rp) U),

$C4(J:QxQ,h1:leqQxQ I J,h2:covf J U)}:Set,
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(QxQ,eqQxQ,dot) forms a commutative monoid:

ismonoid=struct{

issetoid=struct{

isref=...,

issym=...,

istrans=...},

iscong=...,

iscom=...,

isassoc=...}:monoid QxQ eqQxQ dot,

(QxQ,eqQxQ,dot,covf) is a formal space:

Rf=struct{

ismonoid=ismonoid,

ax0=...,

ax1=\x U h2->$C2 h2,

ax2=...,

ax3=...,

ax4=...}:space QxQ eqQxQ dot covf,

th_Rf=theory_space QxQ eqQxQ dot covf Rf:Theory,

The formalised version of � is explicitly de�ned by the following:

cov(I:QxQ,U:pred QxQ)=(J:QxQ,h:ltQxQ J I)->covf J U:Set,

(QxQ,eqQxQ,dot,cov) forms a formal space:

R=struct{

ismonoid=ismonoid,

ax0=...,

ax1=...,

ax2=...,

ax3=...,

ax4=...}

:space QxQ eqQxQ dot cov,

th_R=theory_space QxQ eqQxQ dot cov R:Theory,

th_subs=theory_subsets QxQ eqQxQ (ismonoid.issetoid):Theory,

finset=th_subs.finset:(l:list QxQ) -> pred QxQ,

finsubset=th_subs.finsubset:(l:list QxQ,U:pred QxQ)->Set,

covf is a Stone cover:

covfSc(I:QxQ,U:pred QxQ)=...

:(h:covf I U)->

exists

(list QxQ)

(\U0->and (finsubset U0 U) (covf I (finset U0))),

isstone=covfSc:th_Rf.stone,

and (QxQ,eqQxQ,dot,covf) form a Stone space:
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isStoneSpace=struct{

s=struct{

A=QxQ,

eq=eqQxQ,

dot=dot,

cov=covf,

is_a_space=Rf},

isstone=covfSc}:STONESPACE

} :Theory {- end of theory_continuum -}

7 The Heine-Borel covering theorem

We now de�ne the closed rational interval [a; b] as a formal space and prove the Heine-Borel

covering theorem, i.e, if U is a subset that covers [a; b] then there exists a �nite subset of U

that covers [a; b].

Let R � hQ� Q;=

Q�Q

; �;�

R

i be the formal topology of formal reals and let

[a; b] � hQ� Q;=

Q�Q

; �;�

[a;b]

i

where the relation �

[a;b]

is de�ned by

(p; q) �

[a;b]

U � (p; q) �

R

U [ f(r; a) j r 2 Qg [ f(b; s) j s 2 Qg:

Intuitively, the interval (p; q) is covered by U in the space [a; b], if (p; q) intersected with the

closed interval [a; b] is covered by U in the space R. In the sequel we will use the notation

C[a; b] for f(r; a) j r 2 Qg [ f(b; s) j s 2 Qg and we understand C[a; b] as the complement of

[a; b].

theory_heineborel(Q:Set,ltQ:rel Q,

isdudl:isdenseunbdeclinear Q ltQ,a:Q,b:Q)=

theory{

th_c=theory_continuum Q ltQ isdudl:Theory,

th_R=th_c.th_R:Theory,

th_Rf=th_c.th_Rf:Theory,

th_subs=th_c.th_subs:Theory,

eqQ=th_c.eqQ:rel Q,

QxQ=th_c.QxQ:Set,

eqQxQ=th_c.eqQxQ:rel QxQ,

int=th_c.int:(p:Q,q:Q)->QxQ,

dot=th_c.dot:bin QxQ,

covR=th_c.cov:(I:QxQ,U:pred QxQ)->Set,

covRf=th_c.covf:(I:QxQ,U:pred QxQ)->Set,

Rf=th_c.Rf:space QxQ eqQxQ dot (th_c.covf),

union=th_R.union:bin (pred QxQ),

finset=th_subs.finset:(l:list QxQ)->pred QxQ,

ltQxQ=th_c.ltQxQ:rel QxQ,
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The cover on [a; b] is de�ned in the following way: I is covered by U in [a; b] if I is covered by

the union of U and the the complement of [a; b] in R. The fact that [a; b] really is a formal

space is immediate, since the cover is an instance of a cover induced by a subset.

Cab=union (\x->(eqQ a x.rp)) (\x->(eqQ b x.lp)):pred QxQ,

covab(I:QxQ,U:pred QxQ)=covR I (union U Cab):Set,

th_ind=th_R.theory_indspace Cab:Theory,

ab=th_ind.indspace:space QxQ eqQxQ dot covab,

th_ab=theory_space QxQ eqQxQ dot covab ab:Theory,

hblem1,2 below prove the equivalence

(8I)(I �

[a;b]

U), (9r; s)(r < a & b < s & (r; s)�

R

f

U [ C[a; b]):

): By the axiomatisation of the rational numbers, there exist p and q such that p < a

and b < q. So given (8I)(I �

[a;b]

U) � (8I)(I �

R

U [ C[a; b]), then in particular (p; q) �

R

U [ C[a; b]). Again by the axioms, there exists r and s such that p < r < a and b < s < q.

Then by the de�nition of �

R

, (r; s)�

R

f

U [ C[a; b].

hblem1(U: pred QxQ)=

\h->let {p=isdudl.no_lb a:exists Q (\x->ltQ x a),

q=isdudl.no_ub b:exists Q (\x->ltQ b x),

r=isdudl.isdense p.fst a p.snd

:exists Q (\x->and (ltQ p.fst x) (ltQ x a)),

s=isdudl.isdense b q.fst q.snd

:exists Q (\x->and (ltQ b x) (ltQ x q.fst))}

in struct{

fst=int r.fst s.fst,

snd=struct{

fst=struct{

fst=r.snd.snd,

snd=s.snd.fst},

snd=h (int p.fst q.fst) (int r.fst s.fst)

(struct{

fst=r.snd.fst,

snd=s.snd.snd})}}

:(h:(I:QxQ)->covab I U)->

exists QxQ (\x->and (ltQxQ (int a b) x) (covRf x (union U Cab))),

(: It is enough to prove (p; q) �

R

f

U [ C[a; b], for arbitrary p and q. Since r < a and b < s,

(p; q) �

R

f

f(p; a); (r; s); (b; q)g. Since (p; a) 2 C[a; b], (r; s)�

R

f

U [ C[a; b] and (b; q) 2 C[a; b],

f(p; a); (r; s); (b; q)g�

R

f

U [ C[a; b]. The claim now follows by transitivity.

hblem2(U:pred QxQ)=

\h->\I->\J->\h1->

let {rs=h.fst:QxQ,

U1=finset

($Cons rs ($Cons (int J.lp a) ($Cons (int b J.rp) $Nil)))

:pred QxQ,

h1=$C3

(int rs.lp a)

h.snd.fst.fst

16



(Rf.ax1 (int J.lp a) U1

($Inr ($Inl (th_c.eqQxQref (int J.lp a)))))

($C3

(int b rs.rp)

h.snd.fst.snd

(Rf.ax1 (int h.fst.lp h.fst.rp) U1

($Inl (th_c.eqQxQref rs)))

(Rf.ax1 (int b J.rp) U1

($Inr ($Inr ($Inl (th_c.eqQxQref (int b J.rp)))))))

:th_c.covf J U1,

h2=\J1->\p->

case p of {

$Inl x -> Rf.ax0 J1 rs (union U Cab) x h.snd.snd,

$Inr y ->

case y of {

$Inl x ->Rf.ax1

J1

(union U Cab)

($Inr ($Inl (th_c.eqQsym J1.rp a x.snd))),

$Inr y ->

case y of {

$Inl x -> Rf.ax1 J1 (union U Cab)

($Inr ($Inr x.fst)),

$Inr y -> case y of {}}}}

:th_c.Covf U1 (union U Cab)}

in (Rf.ax2 J U1 (union U Cab) h1 h2)

:(h:exists QxQ (\rs->and

(ltQxQ (int a b) rs)

(covRf rs (union U Cab))))->

(I:QxQ)->covab I U,

The Heine-Borel covering theorem: [a; b] is compact, i.e.

(8I)(I �

[a;b]

U)) (9U

0

�

f

U)(8I)(I �

[a;b]

U

0

);

where U

0

�

f

U means that U

0

is a �nite subset of U .

The proof goes as follows. Given (8I)(I �

[a;b]

U), by hblem1, (9r; s)(r < a & b <

s & (r; s) �

R

f

U [ C[a; b]). Since �

R

f

is a Stone cover, there exists W

0

�

f

U [ C[a; b] such

that (r; s)�

R

f

W

0

. By findpart, in theory_subsets, the part of W

0

belonging to U can be

extracted, thus (9U

0

�

f

U)(9r; s)(r < a & b < s & (r; s) �

R

f

U

0

[ C[a; b]). The claim then

follows by hblem2.

subset2=Subset2 QxQ eqQxQ:rel (pred QxQ),

heine_borel=\U h->

let {rs=hblem1 U h

:exists

QxQ

(\rs->and (ltQxQ (int a b) rs) (covRf rs (union U Cab))),

W0=th_c.covfSc (rs.fst) (union U Cab) rs.snd.snd

:exists (list QxQ) (\W0->and

(th_subs.finsubset W0 (union U Cab))

(covRf rs.fst (finset W0))),
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U0=th_subs.findpart W0.fst U Cab W0.snd.fst

:exists

(list QxQ)

(\U0->and

(th_subs.finsubset U0 U)

(subset2 (finset W0.fst) (union (finset U0) Cab))),

h1=Rf.ax2

rs.fst

(finset W0.fst)

(union (finset U0.fst) Cab)

W0.snd.snd

(th_Rf.lem12

(finset W0.fst)

(union (finset U0.fst) Cab)

U0.snd.snd)

:covRf rs.fst (union (finset U0.fst) Cab)}

in struct{

fst=U0.fst,

snd=struct{

fst=U0.snd.fst,

snd=hblem2 (finset U0.fst) (struct{

fst=rs.fst,

snd=struct{

fst=rs.snd.fst,

snd=h1}})}}

:th_ab.compact

}:Theory {- end of theory_heineborel -}
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Abstract

We give the basic de�nitions for pointfree functional analysis and present constructive

proofs of the Alaoglu and Hahn-Banach theorems in the setting of formal topology.

1 Introduction

We present the basic concepts and de�nitions needed in a pointfree approach to functional

analysis via formal topology. Our main results are the constructive proofs of localic formula-

tions of the Alaoglu and Helly-Hahn-Banach

1

theorems.

Earlier pointfree formulations of the Hahn-Banach theorem, in a topos-theoretic setting,

were presented by Mulvey and Pelletier in [13, 14] and by Vermeulen in [19]. A constructive

proof based on points was given by Bishop [2]. In the formulation of his proof, the norm of the

linear functional is preserved to an arbitrary degree by the extension and a counterexample

shows that the norm, in general, is not preserved exactly.

As usual in pointfree topology, our guideline is to de�ne the objects under analysis as

formal points of a suitable formal space. After this has been accomplished for the reals, we

consider the formal topology L(A) obtained as follows: To the formal space of mappings from

a normed vector space A to the reals, we add the linearity and norm conditions in the form

of covering axioms. The linear functionals of norm � 1 from A to the reals then correspond

to the formal points of this formal topology.

Given a subspace M of A, the classical Helly-Hahn-Banach theorem says that the re-

striction mapping from the linear functionals on A of norm � 1 to those on M is surjective.

In terms of covers, conceived as deductive systems, it becomes a conservativity statement

(cf. [14]): Whenever a is an element and U is a subset of the base of the formal space L(M)

and we have a derivation in L(A) of a � U , then we can �nd a derivation in L(M) with the

same conclusion.

1

As explained in [11], the main idea in the usual proof of what is called the Hahn-Banach theorem is due

to Helly. Since this is also the key idea in our derivation, we here rename the theorem in this way.

1



With this formulation it is quite natural to look for a proof by induction on covers.

Moreover, as already pointed out in [14], it is possible to simplify the problem greatly, since

it is enough to prove it for coherent spaces of which L(A) and L(M) are retracts. Then, in

a derivation of a cover, we can assume that only �nite subsets occur on the right-hand side

of the cover relation. A global proof transformation makes it possible to change a derivation

in L(A) into a derivation in L(M), since only a �nite-dimensional extension of the space M

has to be taken into account. In consequence, as in the case for the classical proof for the

one-dimensional extension, no use of Zorn's lemma is needed.

There exist already two pointfree proofs of Hahn-Banach's theorem. The proof in [14]

shows Hahn-Banach's theorem in any Grothendieck topos. However, the argument relies on

Barr's theorem, for which no constructive justi�cation has been given so far. The proof of

Vermeulen [19] is done in the framework of topos theory with a natural number object, and

thus, a priori, relies on the use of impredicative quanti�cation.

Here as elsewhere (cf. [7, 8, 9, 16]) the use of formal topology allows for elementary and

constructive proofs of pointfree formulations of classical results.

The two main contributions of this paper are the following:

� Our proof of the pointfree version of the Hahn-Banach theorem, following rather closely

the original proof by Helly.

� This proof can actually be expressed in Martin-Löf's Type Theory (cf. [12]). In fact, on

the basis of our proof, the �rst author has done a formalisation of the Hahn-Banach the-

orem in an implementation of the intensional version of Type Theory with one universe

and �nitary inductive de�nitions (cf. [6]).

2 Preliminaries

We recall here the de�nition of formal topology introduced by Per Martin-Löf and Giovanni

Sambin [18]. We remark that, in contrast to the de�nition given in [18] and without any

substantial di�erence in the development of the theory, we do not require the base monoid to

have a unit. Nor do we have the positivity predicate used in [18].

De�nition 2.1 (Formal topology) A formal topology over a set S is a structure hS; �;�i,

where hS; �i is a commutative monoid, � is a relation, called cover, between elements and

subsets of S such that, for any a; b 2 S and U; V � S, the following conditions hold:

(re�exivity)

a 2 U

a � U

(transitivity)

a � U U � V

a � V

where U � V � (8u 2 U)(u � V )

(dot - left)

a � U

a � b � U

(dot - right)

a � U a � V

a � U � V

where U � V � fu � v j u 2 U; v 2 V g:

2



For readability reasons, when a singleton set occurs we will sometimes omit curly brackets,

and write a � b for a � fbg, and U � b for U � fbg.

Since we dropped the unit element and the positivity predicate in the de�nition of formal

topology, the de�nition of formal points given in [18] has to be revised as follows:

De�nition 2.2 Let hS; �;�i be a formal topology. A subset � of S is said to be a formal

point if for all a; b 2 S, U � S the following conditions hold:

1. (9a 2 S)(a 2 �) ;

2.

a 2 � b 2 �

a � b 2 �

;

3.

a 2 � a � U

(9b 2 U)(b 2 �)

.

In order to maintain the usual intuition on points, in the sequel we will write � 
 a (� forces

a, or � is a point in a) in place of a 2 �.

As an instance of the abstract de�nition of formal topology the continuum can be de�ned

as a formal space. The proofs that this de�nition satis�es the rules of a formal topology can

all be found in [7]. Further properties of the continuum as a formal space can also be found

in [17], where a slightly di�erent de�nition adopting the unit is given.

De�nition 2.3 The formal topology of formal reals is the structure

R � hQ�Q; �;�

R

i;

where Q is the set of rational numbers. The monoid operation is de�ned by (p; q) � (r; s) �

(max(p; r); min(q; s)), the cover �

R

by

(p; q) �

R

U � (8p

0

; q

0

)(p < p

0

< q

0

< q ! (p

0

; q

0

) �

R

f

U)

where the relation �

R

f

is inductively de�ned by

1.

q � p

(p; q) �

R

f

U

;

2.

(p; q) 2 U

(p; q) �

R

f

U

;

3.

p � r < s � q (p; s) �

R

f

U (r; q) �

R

f

U

(p; q) �

R

f

U

;

4.

p

0

� p < q � q

0

(p

0

; q

0

) �

R

f

U

(p; q) �

R

f

U

.

We denote with Pt(R) the collection of formal points of R, called formal reals.

In [7] it is proved that �

R

f

and �

R

are cover relations. Moreover, �

R

f

is a Stone cover,

since we have:

Proposition 2.4 If (p; q) �

R

f

U , then there exists a �nite subset U

0

of U such that

(p; q) �

R

f

U

0

.

Proof: See [7]. 2
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In [7] it is also proved that whenever (p; q) �

R

U and U is �nite then (p; q) �

R

f

U and

therefore �

R

f

is the Stone compacti�cation of �

R

(cf. [18, 15]), but this stronger result will

not be used in the sequel.

With I = (p; q) and J = (r; s), we write I < J (resp. I � J) to express that r < p < q < s

(resp. r � p < q � s). Thus I �

R

U means J �

R

f

U for all J < I . Moreover, we use the

notations I + J for (p+ r; q+ s), and tI for (tp; tq) when t � 0 and for (tq; tp) when t < 0.

The following lemma will be used in section 3.

Lemma 2.5 If J < I and I �

R

f

U , then there exists a subset V of Q�Q such that

(8K 2 V )(9L 2 U)(K < L) and J �

R

f

V .

Proof: Straightforward by induction on the derivation of I �

R

f

U . 2

3 Formal linear functionals

In this section we de�ne the space of linear functionals of norm � 1 from a seminormed space

to the reals. This space is obtained by means of an inductive de�nition giving rise to a formal

topology: Basic neighbourhoods correspond to basic opens in the weak topology (cf. [3]) and

formal points correspond to the linear functionals of norm � 1 from the given seminormed

space to the space of formal reals.

Moreover, the formal cover for this space is de�ned explicitly from a Stone cover, and

therefore a simple proof of Alaoglu's theorem is obtained.

3.1 The dual of a seminormed space as a formal space

We start by de�ning a seminormed space as in [14]. The seminorm is de�ned by means of

formal open balls centred around the origin.

De�nition 3.1 A seminormed space A on the rationals Q is a linear space A on Q together

with a mapping

N : Q

+

�! P(A)

from the positive rationals to the subsets of A satisfying the following conditions for x; x

0

2 A,

q; q

0

2 Q

+

:

N1. x 2 N(q)! (9q

0

< q)(x 2 N(q

0

)) ;

N2. (9q)(x 2 N(q)) ;

N3. x 2 N(q) & x

0

2 N(q

0

)! x+ x

0

2 N(q + q

0

) ;

N4. x 2 N(q

0

)! qx 2 N(qq

0

) ;

N5. x 2 N(q)! �x 2 N(q) ;

N6. 0 2 N(q) .
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We limit ourselves to the presentation of the formal space L(A) of linear functionals of norm

� 1. The basic opens are �nite sets of the form

w � fhx

1

2 I

1

i; : : : ; hx

n

2 I

n

ig ;

where x

1

; : : : ; x

n

2 A and I

1

; : : : ; I

n

are rational intervals. The intuitive reading of a basic

open is that of a neighbourhood of functionals in the weak topology. We will in the sequel

use the notation hx

1

2 I

1

; : : : ; x

n

2 I

n

i for fhx

1

2 I

1

i; : : : ; hx

n

2 I

n

ig.

We obtain with the operation

w

1

w

2

� w

1

[ w

2

a commutative and idempotent monoid with unit given by the empty set. We will denote

with S

L(A)

such a base of L(A).

Let w � hx

1

2 I

1

; : : : ; x

n

2 I

n

i, then de�ne

w � hx 2 Ii � (9hx

i

1

2 I

i

1

i; : : : ; hx

i

p

2 I

i

p

i 2 w)

(x

i

1

= : : := x

i

p

= x & I

i

1

� : : : � I

i

p

� I)

and

w � w

0

� (8hx 2 Ii 2 w

0

)(w � hx 2 Ii):

Then, without assuming decidability of equality in A, � is a re�exive and transitive relation.

Equality between basic neighbourhoods is subset equality

w = w

0

� (8hx 2 Ii)(hx 2 Ii 2 w , hx 2 Ii 2 w

0

) :

Notice that w = w

0

implies w � w

0

. This de�nes an equivalence relation on the type of

basic neighbourhoods. We follow Bishop [2] in working systematically with types with an

equivalence relation. Whenever we de�ne a predicate, we have to be careful to check that

this predicate respects the equivalence relation.

The �nitary cover �

f

for L(A) is inductively de�ned as follows:

C1

w 2 U

w �

f

U

;

C2

w � w

0

w

0

�

f

U

w �

f

U

;

C3

V �nite I �

R

f

V (8J 2 V )(hx 2 Jiw

0

�

f

U)

hx 2 Iiw

0

�

f

U

;

C4

hx+ y 2 I + Jiw

0

�

f

U

hx 2 I; y 2 Jiw

0

�

f

U

;

C5

r 6= 0 hrx 2 rIiw

0

�

f

U

hx 2 Iiw

0

�

f

U

;

C6

x 2 N(1) hx 2 (�1; 1)iw �

f

U

w �

f

U

.
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A motivation for the above de�nition can be given as follows: conditions C1-C3 de�ne formal

functionals from A to the formal reals, C4 and C5 impose linearity and C6 says that we only

consider functionals of norm � 1.

Notice that, by C2, we have w �

f

U whenever w = w

0

and w

0

�

f

U .

In order to get a �nitary inductive de�nition, the subset V in clause C3 has to be �nite.

This however is not a restriction since �

R

f

is a Stone cover and such a �nite set can always

be found.

We have:

Proposition 3.2 The relation �

f

is a cover.

Proof: Re�exivity holds by de�nition, dot-left follows from C2 since w

1

w

2

� w

1

, transitivity

and localization are straightforward by induction on the derivation of w �

f

U . 2

Then � is de�ned by

hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U � (8J

1

< I

1

; : : : ; J

n

< I

n

)(hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

U):

Next, we prove that � is a cover, but before that some lemmas are needed.

Lemma 3.3 If hx

1

2 K

1

; : : : ; x

n

2 K

n

i � hy

1

2 L

1

; : : : ; y

m

2 L

m

i and J

1

< K

1

; : : : ; J

n

< K

n

,

then (9L

0

1

< L

1

; : : : ; L

0

m

< L

m

)(hx

1

2 J

1

; : : : ; x

n

2 J

n

i � hy

1

2 L

0

1

; : : : ; y

m

2 L

0

m

i).

Proof: Starting from the hypotheses hx

1

2 K

1

; : : : ; x

n

2 K

n

i � hy

1

2 L

1

; : : : ; y

m

2 L

m

i and

J

1

< K

1

; : : : ; J

n

< K

n

, the intervals L

0

i

(1 � i � m) are constructed in the following way.

By de�nition, for each i � m there exists p

1

; : : : ; p

k

such that x

p

1

= : : : = x

p

k

= y

i

and

K

p

1

� : : : �K

p

k

� L

i

. Since J

1

< K

1

; : : : ; J

n

< K

n

we have J

p

1

� : : : � J

p

k

< L

i

. Thus we put

L

0

i

= J

p

1

� : : : � J

p

k

. 2

The following lemma makes the de�nition of � legitimate.

Lemma 3.4 The relation � respects equality between basic neighbourhoods.

Proof: We will show that C2 also holds for �. The conclusion then follows since w = w

0

implies w � w

0

.

Suppose hx

1

2 I

1

; : : : ; x

n

2 I

n

i � hy

1

2 J

1

; : : : ; y

m

2 J

m

i and hy

1

2 J

1

; : : : ; y

m

2 J

m

i � U .

Let I

0

1

< I

1

; : : : ; I

0

n

< I

n

. Then, by lemma 3.3, there exist J

0

1

< J

1

; : : : ; J

0

m

< J

m

such

that hx

1

2 I

0

1

; : : : ; x

n

2 I

0

n

i � hy

1

2 J

0

1

; : : : ; y

m

2 J

0

m

i. For such J

0

1

; : : : ; J

0

m

we have hy

1

2

J

0

1

; : : : ; y

m

2 J

0

m

i �

f

U and, by C2, hx

1

2 I

0

1

; : : : ; x

n

2 I

0

n

i �

f

U . Therefore hx

1

2 I

1

; : : : ; x

n

2

I

n

i � U . 2

Lemma 3.5 If w �

f

U then w � U .

Proof: Suppose hx

1

2 I

1

; : : : ; x

n

2 I

n

i �

f

U and let J

1

< I

1

; : : : ; J

n

< I

n

. Then hx

1

2

J

1

; : : : ; x

n

2 J

n

i � hx

1

2 I

1

; : : : ; x

n

2 I

n

i so, by C2, hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

U . Therefore

hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U . 2

The following lemma is used in the proof of transitivity for �.

Lemma 3.6 If hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U , J

1

< K

1

; : : : ; J

n

< K

n

and U � V , then

hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V .

6



Proof: The proof is by induction on the derivation of hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U .

1. If hx

1

2 K

1

; : : : ; x

n

2 K

n

i 2 U then hx

1

2 K

1

; : : : ; x

n

2 K

n

i � V , thus by de�nition,

hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V .

2. If hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U is derived by C2 from hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

hy

1

2 L

1

; : : : ; y

n

2 L

m

i and hy

1

2 L

1

; : : : ; y

n

2 L

m

i �

f

U , then by lemma 3.3 there exist

L

0

1

< L

1

; : : : ; L

0

m

< L

m

such that hx

1

2 J

1

; : : : ; x

n

2 J

n

i � hy

1

2 L

0

1

; : : : ; y

n

2 L

0

m

i. For

such L

0

1

; : : : ; L

0

m

, by induction hypothesis, hy

1

2 L

0

1

; : : : ; y

n

2 L

0

m

i �

f

V . Then, by C2,

hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V .

3. Let hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U be derived by C3 from K

1

�

R

f

V

0

and (8J

0

2

V

0

)(hx

1

2 J

0

; x

2

2 K

2

; : : : ; x

n

2 K

n

i �

f

U), where V

0

is �nite. Since J

1

< K

1

andK

1

�

R

f

V

0

,

by lemma 2.5, we can construct a �nite subset V

00

such that J

1

�

R

f

V

00

and (8J

00

2 V

00

)(9J

0

2

V

0

)(J

00

< J

0

). Then, by induction hypothesis, (8J

00

2 V

00

)(hx

1

2 J

00

; x

2

2 J

2

; : : : ; x

n

2 J

n

i �

f

V ) and, by C3, hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V .

4. Let hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U be derived by C4 from hx

1

+ x

2

2 K

1

+ K

2

; x

3

2

K

3

: : : ; x

n

2 K

n

i �

f

U . Then J

1

+ J

2

< K

1

+ K

2

so, by induction hypothesis, hx

1

+ x

2

2

J

1

+ J

2

; x

3

2 J

3

: : : ; x

n

2 J

n

i �

f

V and, by C4, hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V .

5. Similar to 4.

6. Let hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U be derived by C6 from hx 2 (�1; 1); x

1

2 K

1

: : : ; x

n

2

K

n

i �

f

U and x 2 N(1). By N1 there exists an r < 1 such that x 2 N(r). For such an r, by

induction hypothesis, hx 2 (�r; r); x

1

2 J

1

: : : ; x

n

2 J

n

i �

f

V . Now the claim follows by C6.

2

We are now ready to prove:

Proposition 3.7 The relation � is a cover.

Proof: Re�exivity : Immediate from re�exivity of �

f

and lemma 3.5.

Dot-left, dot-right : Immediate from the de�nition of � and the corresponding properties

of �

f

.

Transitivity: Suppose hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U and U � V . If J

1

< I

1

; : : : ; J

n

< I

n

,

then we can �nd K

1

; : : : ; K

n

such that J

1

< K

1

< I

1

; : : : ; J

n

< K

n

< I

n

and, by de�nition

of hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U , we get hx

1

2 K

1

; : : : ; x

n

2 K

n

i �

f

U . Lemma 3.6 now gives

hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

V . Thus hx

1

2 I

1

; : : : ; x

n

2 I

n

i � V . 2

Finally, the following lemma will be useful in section 4.

Lemma 3.8 The axioms for �

f

are valid rules for �.

Proof: 1: Given w 2 U , w � U is immediate from C1 and lemma 3.5.

2: See the proof of lemma 3.4.

3: Suppose I

1

�

R

V and (8J 2 V )(hx

1

2 Jihx

2

2 I

2

; : : : ; x

n

2 I

n

i � U). Let I

0

1

<

I

1

; : : : ; I

0

n

< I

n

. Then there exists I

00

such that I

0

1

< I

00

< I

1

. For such an I

00

, I

00

�

R

f

V so by

lemma 2.5 there exists a subset V

0

such that I

0

1

�

R

f

V

0

and (8L

0

2 V

0

)(9L 2 V )(L

0

< L). But

then, since �

R

f

is a Stone cover, there exists a �nite subset V

0

0

� V

0

such that I

0

1

�

R

f

V

0

0

and

(8L

0

2 V

0

0

)(9L 2 V )(L

0

< L). Now, by de�nition of �, (8J

0

2 V

0

0

)(hx

1

2 J

0

ihx

2

2 I

0

2

; : : : ; x

n

2

I

0

n

i �

f

U) and, by C3, hx

1

2 I

0

1

; : : : ; x

n

2 I

0

n

i �

f

U . Therefore hx

1

2 I

1

; : : : ; x

n

2 I

n

i �

f

U .

4 and 5 follows easily from the de�nition of �

f

, C4 and C5, respectively.

6: Suppose x 2 N(1) and hx 2 (�1; 1); x

1

2 I

1

; : : : ; x

n

2 I

n

i � U . Let J

1

< I

1

; : : : ; J

n

<

I

n

. By N1, there exists r < 1 such that x 2 N(r). For such an r,

1

r

x 2 N(1). Now,

7



by C5 and the de�nition of �, h

1

r

x 2 (�1; 1); x

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

U and, by C6,

hx

1

2 J

1

; : : : ; x

n

2 J

n

i �

f

U . Therefore hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U . 2

3.2 Linear functionals as formal points

In this section, which is not needed for the proof of the Hahn-Banach theorem, we will

show how linear functionals of norm � 1 from A to the formal space of reals are obtained

in our setting. We denote the collection of formal points of L(A) with Pt(L(A)). Given

F 2 Pt(L(A)) and x 2 A, let

F

�

(x) � f(p; q) 2 Q� Q : F 
 hx 2 (p; q)ig:

The following propositions are easily proved from the de�nitions (see also [13]):

Proposition 3.9 F

�

is a linear functional from A to Pt(R) of norm � 1, that is:

1. For all x 2 A, F

�

(x) 2 Pt(R);

2. F

�

(x+ y) = F

�

(x) + F

�

(y);

3. F

�

(tx) = tF

�

(x);

4. x 2 N(1)) �1 < F

�

(x) < 1.

Conversely, given a linear functional f from A to Pt(R), that is, a map satisfying 1�4 as

in proposition 3.9, let f

�

be the subset of S

L(A)

de�ned by

f

�

� fhx

1

2 I

1

; : : : ; x

n

2 I

n

i : f(x

1

) 
 I

1

; : : : ; f(x

n

) 
 I

n

g:

Then we have:

Proposition 3.10 f

�

2 Pt(L(A)).

The correspondence stated above is biunivocal since we have, with the notation used

above, (f

�

)

�

= f and (F

�

)

�

= F .

3.3 Alaoglu's theorem

The cover �

f

is a Stone cover, since we have:

Proposition 3.11 If w �

f

U , then there exists a �nite subset U

0

of U such that w �

f

U

0

.

Proof: The proof is straightforward by induction on the derivation of w �

f

U . We will

only consider the case when w �

f

U is obtained by C3 from w � hx 2 Iiw

0

, I �

R

f

V and

(8J 2 V )(hx 2 Jiw

0

�

f

U), for a �nite subset V . By induction hypothesis, given an element

J 2 V , there exists a �nite subset U

J

of U such that hx 2 Jiw

0

�

f

U

J

. Let U

0

be the union

of all such U

J

's. Then by C3, w �

f

U

0

. 2

As an immediate consequence of the de�nition of the cover for L(A), we obtain Alaoglu's

theorem, asserting that the unit ball of the space of linear and continuous functionals is

compact in the weak topology.

Corollary 3.12 The formal space L(A) is compact.

Proof: Given h i � U , by de�nition of �, h i �

f

U . Then, since �

f

is a Stone cover, h i �

f

U

0

for some �nite subset U

0

of U . Therefore, by lemma 3.5, h i � U

0

. 2
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4 The Helly-Hahn-Banach theorem

In this section we prove the localic version of the Helly-Hahn-Banach theorem in the form of

a conservativity result of the theory for the cover in L(A) over that in L(M). At the end of

the section we also provide an informal motivation why this result is the localic statement of

the usual point-set theorem.

The de�nition of� in terms of�

f

allows us to replace � with�

f

for proving conservativity.

If M is a linear subspace of A, we say that �

f

for L(A) is conservative over �

f

for L(M) if,

whenever w is an element and U is a subset of the base of L(M) and w �

f

U in L(A), then

w �

f

U in L(M). Conservativity of � for L(A) over � for L(M) is de�ned in the same way.

Then we have:

Proposition 4.1 If �

f

for L(A) is conservative over �

f

for L(M), then � for L(A) is

conservative over � for L(M).

Proof: If hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U in L(A), then, for all J

1

< I

1

; : : : ; J

n

< I

n

, hx

1

2

J

1

; : : : ; x

n

2 J

n

i �

f

U , hence by conservativity for �

f

, for all J

1

< I

1

; : : : ; J

n

< I

n

, hx

1

2

J

1

; : : : ; x

n

2 J

n

i �

f

U in L(M) and hence hx

1

2 I

1

; : : : ; x

n

2 I

n

i � U in L(M). 2

The localic statement of the Helly-Hahn-Banach theorem in the framework of formal

topologies is, �� for L(A) is conservative over � for L(M)". By the above proposition it

thus reduces to the following:

Theorem 4.2 �

f

for L(A) is conservative over �

f

for L(M).

Since �

f

is a Stone cover, we can transform any derivation of a �

f

U in L(A) into one in

which only �nite subsets occur on the right-hand side of the cover relation. Therefore we can

assume that only a �nite number of elements not belonging to the base of L(M) are involved.

Thus, arguing by induction, the problem is reduced to showing that if a �

f

U is derived in

L(M

0

), where M

0

� [M + x] and x is an element in the base of L(A), then there exists also

a derivation of a �

f

U in L(M). The claim of theorem 4.2 thus becomes:

Proposition 4.3 �

f

for L(M

0

) is conservative over �

f

for L(M).

We will use the notations w �

M

f

U and w �

M

0

f

U to express that w �

f

U in L(M) and

L(M

0

), respectively. Before proving the proposition, some auxiliary lemmas will be needed.

Lemma 4.4 hy + z 2 (p; q)i � fhy 2 (r; s); z 2 (r

0

; s

0

)i : p � r+ r

0

< s+ s

0

� qg

Proof: Since (p

00

; q

00

) < (p; q) implies that

hy + z 2 (p

00

; q

00

)i 2 fhy + z 2 (p

0

; q

0

)i : p < p

0

< q

0

< qg ;

we have by de�nition of � that

hy + z 2 (p; q)i � fhy + z 2 (p

0

; q

0

)i : p < p

0

< q

0

< qg:

By N2 and 3.8(6) we have

h i � fhy 2 (r; s)i : r < sg ;

and similarly

h i � fhz 2 (r

0

; s

0

)i : r

0

< s

0

g ;

9



so by stability

hy + z 2 (p; q)i� fhy + z 2 (p

0

; q

0

); y 2 (r; s); z 2 (r

0

; s

0

)i :

p < p

0

< q

0

< q; r < s; r

0

< s

0

g :

Since every interval can be covered by arbitrarily small intervals, using 3.8(3), we get

hy + z 2 (p; q)i � fhy + z 2 (p

0

; q

0

); y 2 (r; s); z 2 (r

0

; s

0

)i :

p < p

0

< q

0

< q; r < s; r

0

< s

0

;

s � r � min(p

0

� p; q � q

0

)=2;

s

0

� r

0

� min(p

0

� p; q � q

0

)=2g

and by 3.8(4)

hy + z 2 (p; q)i� fhy + z 2 (p

0

; q

0

); y 2 (r; s); z 2 (r

0

; s

0

); y + z 2 (r+ r

0

; s+ s

0

)i :

p < p

0

< q

0

< q; r < s; r

0

< s

0

;

s� r � min(p

0

� p; q � q

0

)=2;

s

0

� r

0

� min(p

0

� p; q � q

0

)=2g :

Now, if r + r

0

< p then s + s

0

< p

0

and, by 3.8(2),

hy + z 2 (p

0

; q

0

); y + z 2 (r + r

0

; s+ s

0

)i � hy + z 2 (p

0

; s+ s

0

)i:

Then, since s+s

0

< p

0

, the right-hand side is covered by anything, in particular the empty set.

If q < s+s

0

we obtain symmetrically hy+z 2 (p

0

; q

0

); y+z 2 (r+r

0

; s+s

0

)i � hy+z 2 (r+r

0

; q

0

)i,

where q

0

< r + r

0

. We thus obtain

hy + z 2 (p; q)i � fhy 2 (r; s); z 2 (r

0

; s

0

)i : p � r + r

0

< s+ s

0

� qg: 2

Let I be a �nite index set, fa

n

g and ft

n

g sequences of A and Q, respectively, such that

(8i 2 I)(a

i

2M & a

i

+ t

i

x 2 N(1)). Then, for rational q, de�ne

P

q

= h: : : ; a

i

2 (�1 + t

i

q; 1 + t

i

q); : : :i:

The following lemma is the core of our proof. Intuitively it says that we can �nd a rational

approximation for the value of u(x), where u is a generic linear functional. We observe that

the argument is similar to the one used by Helly.

Lemma 4.5 h i �

M

f

fP

q

: q 2 Qg.

Proof: First observe that for all i 2 I such that t

i

= 0, we can apply C6 and dot-right. So, in

the rest of this proof, we can assume that t

i

6= 0 for all i. For any i; j 2 I , by the rules of N

we have

�

a

i

+ t

i

x 2 N(1)

a

j

+ t

j

x 2 N(1)

)

�

a

i

=t

i

+ x 2 N(1=jt

i

j)

�a

j

=t

j

� x 2 N(1=jt

j

j)

) a

i

=t

i

� a

j

=t

j

2 N(1=jt

i

j+ 1=jt

j

j) :

By the rules for �

M

f

we get

h i �

M

f

ha

i

=t

i

� a

j

=t

j

2 (�1=jt

i

j � 1=jt

j

j; 1=jt

i

j+ 1=jt

j

j)i;
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by the lemmas 3.5 and 4.4

h i �

M

fha

i

=t

i

2 (r

i

; s

i

); a

j

=t

j

2 (r

j

; s

j

)i :

�1=jt

i

j � 1=jt

j

j � r

i

� s

j

< s

i

� r

j

� 1=jt

i

j+ 1=jt

j

jg:

From the de�nition of � we obtain the same for �

f

, and by dot-right

h i �

M

f

fh: : : ; a

i

=t

i

2 (r

i

; s

i

); : : :i :

(8i; j 2 I)(�1=jt

i

j � 1=jt

j

j � r

i

� s

j

< s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j)g

)

h i �

M

f

fh: : : ; a

i

=t

i

2 (r

i

; s

i

); : : :i : (8i; j 2 I)(s

i

� 1=jt

i

j � r

j

+ 1=jt

j

j)g

)

h i �

M

f

fh: : : ; a

i

=t

i

2 (r

i

; s

i

); : : :i :

_

i2I

(s

i

� 1=jt

i

j) �

^

i2I

(r

i

+ 1=jt

i

j)g:

Now there are two cases depending on whether t

i

is positive or negative; we only consider the

case when t

i

is positive.

h i �

M

f

fh: : : ; a

i

2 (t

i

r

i

; t

i

s

i

); : : :i :

_

i2I

(s

i

� 1=jt

i

j) �

^

i2I

(r

i

+ 1=jt

i

j)g:

If q =

W

i2I

(s

i

�1=jt

i

j), then �1+qt

i

� t

i

r

i

< t

i

s

i

� 1+qt

i

, because s

i

�1=jt

i

j � q � r

i

+1=jt

i

j,

so we get

h i �

M

f

fP

q

: q �

_

i2I

(s

i

� 1=jt

i

j) �

^

i2I

(r

i

+ 1=jt

i

j)g:

and a fortiori h i �

M

f

fP

q

: q 2 Qg. 2

Let I be a �nite set as above. We de�ne �

0

M

0

f

as �

M

0

f

, where the axiom C6 is replaced by

C6

0

:

i 2 I ha

i

+ t

i

x 2 (�1; 1)iw �

0

M

0

f

U

w �

0

M

0

f

U

:

Let w � h: : : ; a

i

+ t

i

x 2 (r

i

; s

i

); : : :i be an element in the base of M

0

and let q be a rational

number. Then de�ne

�w � h: : : ; a

i

2 (r

i

+ t

i

q; s

i

+ t

i

q); : : :i;

�

U � f �w : w 2 Ug:

Note that �w depends on the proof of w 2 S

L(M

0

)

, and if x 2M there are many ways of writing

a

i

+ t

i

x and thus many proofs of w 2 S

L(M

0

)

.

We have:

Lemma 4.6 w �

0

M

0

f

U ) x 2M _ (8q 2 Q)(P

q

�w �

M

f

�

U).

Proof: By induction on the derivation of w �

0

M

0

f

U . We only consider the cases C1

0

and C6

0

.

C1

0

: Given w 2 U , since U � S

L(M

0

)

we have two proofs of w 2 S

L(M

0

)

and two possibly

di�erent values of �w, h: : : ; a

i

2 (r

i

+t

i

q; s

i

+t

i

q); : : :i and h: : : ; b

i

2 (r

i

+u

i

q; s

i

+u

i

q); : : :i. Then

11



there are two cases; if (8i)(t

i

= u

i

), then (8i)(a

i

= b

i

) and �w 2

�

U , thus (8q 2 Q)(P

q

�w �

M

f

�

U);

if t

i

6= u

i

, then x =

a

i

�b

i

u

i

�t

i

2M .

C6

0

: By inductive hypothesis we have

x 2M _ (8q 2 Q)(P

q

ha

i

2 (�1 + t

i

q; 1 + t

i

q)i �w �

M

f

�

U)

that gives, since ha

i

2 (�1 + t

i

q; 1 + t

i

q)i 2 P

q

,

x 2M _ (8q 2 Q)(P

q

�w �

M

f

�

U) : 2

Observe here that we do not require decidability of membership of M . In lemma 4.6 a large

part of the e�ort is devoted for the possibility of di�erent values of �w for di�erent proofs of

w 2 S

L(M

0

)

. This problem only occurs when x 2M . So decidability would simplify the proof;

if x 2M then M

0

=M and there is nothing to prove, and if x 2= M then the formulation and

the proof of lemma 4.6 are easier.

If w is an element and U is a subset of the base of L(M), then �w = w and

�

U = U , so as

a corollary to lemma 4.6 we obtain:

Corollary 4.7 Let w be an element, U a subset of the base of L(M), then

w �

0

M

0

f

U ) x 2M _ (8q 2 Q)(P

q

w �

M

f

U):

Proof of proposition 4.3: Suppose w �

M

0

f

U , where w is an element and U a subset in

the base of L(M). First, by examining the axioms of the form C6 in the proof of w �

M

0

f

U ,

we can �nd �nite sequences fa

n

g and ft

n

g in A and in Q, respectively, such that (8i)(a

i

2

M & a

i

+t

i

x 2 N(1)). Then, the proof of w �

M

0

f

U can be converted into a proof of w �

0

M

0

f

U .

By corollary 4.7 we have x 2 M _ (8q 2 Q)(P

q

w �

M

f

U). If x 2 M , M

0

= M and there

is nothing to prove. If (8q 2 Q)(P

q

w �

M

f

U) then fP

q

: q 2 Qg � w �

M

f

U and, since

h i �

M

f

fP

q

: q 2 Qg (lemma 4.5), we obtain w �

M

f

U by localization and transitivity. 2

We include a proof in this setting of the following application of the Helly-Hahn-Banach

theorem (which is proved indirectly in [13], whereas it has a direct proof in [19]).

Proposition 4.8 If h i � hx 2 (�1; 1)i, then x 2 N(1).

The above proposition is proved by interpreting the neighbourhoods of L([x]) as subsets of

Q �Q. First we de�ne, for r 2 Q and I = (p; q),

r 2 I � p < r < q:

Then we put

ht

1

x 2 I

1

; : : : ; t

n

x 2 I

n

i

0

�

8

<

:

; if (9i)(t

i

= 0 & 0 62 I

i

)

Q� Q if (8i)(t

i

= 0 & 0 2 I

i

)

f

V

1�i�n;t

i

6=0

1

t

i

I

i

g otherwise

and let U

0

be the union of all w

0

such that w 2 U .

Then we have:

12



Lemma 4.9 If w �

f

U in L([x]), then

(9r 2 Q)(x 2 N(r) & (�r; r) �w

0

�

R

f

U

0

):

Proof: The proof is by induction on the derivation of w �

f

U .

1. Let w �

f

U be derived by C1 from w 2 U . Then, by the de�nition of

0

, w

0

� U

0

so w

0

�

R

f

U

0

. By N2, (9r)(x 2 N(r)) and for such an r, (�r; r) � w

0

�

R

f

U

0

. Thus

(9r)(x 2 N(r) & (�r; r) � w

0

�

R

f

U

0

).

For 2�6 below we argue by case analysis on the way ht

1

x 2 I

1

; : : : ; t

n

x 2 I

n

i

0

is constructed.

The cases (9i)(t

i

= 0 & 0 62 I

i

) and (8i)(t

i

= 0 & 0 2 I

i

) are easy, so below we only consider

the third case for which

ht

1

x 2 I

1

; : : : ; t

n

x 2 I

n

i

0

� f

^

1�i�n;t

i

6=0

1

t

i

I

i

g :

2. Let w

1

�

f

U be derived by C2 from w

1

� w

2

and w

2

�

f

U . From the de�nition of �

and

0

, w

0

1

= fIg and w

0

2

= fJg, for some I � J , thus w

0

1

�

R

f

w

0

2

. By induction hypothesis

(9r)(x 2 N(r) & (�r; r) � w

0

2

�

R

f

U

0

). For such an r, (�r; r) � w

0

1

�

R

f

(�r; r) � w

0

2

so, by

transitivity, (�r; r) �w

0

1

�

R

f

U

0

. Thus the claim.

3. Suppose htx 2 Iiw �

f

U is derived by C3 from V �nite, I �

f

V and (8J 2 V )(htx 2

Jiw �

f

U). Here also we only consider the case for which w

0

is a singleton set of an interval,

the other cases being easy. By induction hypothesis (8J 2 V )(9r)(x 2 N(r) & (�r; r) �

(htx 2 Jiw)

0

�

R

f

U

0

) and since V is �nite we can take the smallest such r and obtain

x 2 N(r) & (8J 2 V )((�r; r) � (htx 2 Jiw)

0

�

R

f

U

0

). We assume V to be nonempty, since

if V is empty, I is negative and the claim follows easily. Since (htx 2 Jiw)

0

=

1

t

I � w

0

,

(8K 2 (�r; r) �

1

t

w

0

� V )(K �

R

f

U

0

). Moreover (�r; r) �

1

t

w

0

� I �

R

f

(�r; r) �

1

t

w

0

� V so, by

transitivity, (�r; r) �

1

t

w

0

� I �

R

f

U

0

. Thus the claim.

4. Suppose ht

1

x 2 I

1

; t

2

x 2 I

2

iw �

f

U is derived by C4 from ht

1

x+ t

2

x 2 I

1

+ I

2

iw �

f

U .

By induction hypothesis (9r)(x 2 N(r) & (�r; r) � (ht

1

x+ t

2

x 2 I

1

+ I

2

iw)

0

�

R

f

U

0

). Then

we just notice that ht

1

x 2 I

1

; t

2

x 2 I

2

i

0

� ht

1

x+ t

2

x 2 I

1

+ I

2

i

0

and therefore the claim.

5. Similar to 4.

6. Suppose w �

f

U is derived by C6 from tx 2 N(1) and htx 2 (�1; 1)iw �

f

U . Again, we

only consider the case in which w

0

is a singleton set of an interval. By N4 and N5, x 2 N(

1

jtj

),

and by induction hypothesis,

(9r)(x 2 N(r) & (�r; r) � (htx 2 (�1; 1)iw)

0

�

R

f

U

0

):

We have (htx 2 (�1; 1)iw)

0

=

1

t

(�1; 1) � w

0

. If r �

1

jtj

then (�r; r) � (�r; r) �

1

t

(�1; 1) and

therefore (�r; r) � w

0

�

R

f

U

0

; if r >

1

jtj

we have

1

t

(�1; 1) � w

0

�

R

f

U

0

and the claim follows

from x 2 N(

1

jtj

). Thus (9r)(x 2 N(r) & (�r; r) � w

0

�

R

f

U

0

). 2

Proof of proposition 4.8: Suppose h i �

L(A)

hx 2 (�1; 1)i. Then, by the (localic) Helly-

Hahn-Banach theorem, we have h i �

L([x])

hx 2 (�1; 1)i and, by de�nition of �, h i �

L([x])

f

hx 2 (�1; 1)i. Thus by, lemma 4.9, there exists an r 2 Q

+

such that x 2 N(r) and (�r; r) �

R

f

(�1; 1). Therefore (cf. [7], lemma 10) (�r; r)� (�1; 1), that is, r � 1, thus x 2 N(1). 2

The usual Hahn-Banach theorem states that the restriction mapping

Pt(L(A)) ! Pt(L(M))

f 7! f � f \ S

L(M)
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is surjective.

We can obtain this result from ours plus an assumption of extensionality, up to an ar-

bitrarily good approximation. Namely we can prove that given g in Pt(L(M) and given

! 2 g there exists f 2 Pt(L(A)) such that ! 2 f : By contradiction, suppose that no such f

exists. Then by extensionality ! �

L(A)

; and therefore, by conservativity, ! �

L(M)

;, that

contradicts ! 2 g.

5 Conclusion

The basic problem of the Helly-Hahn-Banach theorem can be formulated as follows. We have

a normed vector space M , a linear functional u on M of norm � 1, and we want to extend u

to [M + x

0

]. For this we consider two families

�

A

x

= u(x)� kx� x

0

k ; x 2M

B

y

= u(y) + ky � x

0

k ; y 2M .

We have A

x

� B

y

for all x; y 2 M and the core of the question is to �nd a real number r

such that A

x

� r � B

y

for all x and y. Classically this is possible by taking r = sup(A

x

).

Intuitionistically, there is no reason why A

x

should have a supremum. There are then two

alternatives:

Bishop [2] and Bridges-Richman [4]:

One �nds instead an extension u

0

of u of norm � 1 + � for any given � > 0. For this,

given � > 0, we change A

x

and B

y

into

�

A

0

x

= u(x)� (1 + �)kx� x

0

k

B

0

y

= u(x) + (1 + �)ky � x

0

k:

We still have A

0

x

� B

0

y

, but the di�erence is that now sup(A

0

x

) exists, because A

0

x

goes

to �1 when x is big, and we can therefore restrict sup(A

0

x

) to a compact subset of M .

So here we build a linear functional that extends the given one, but with norm � 1 + �

instead of � 1.

Formal topology:

One reduces the problem to a �nite collection of x and y. We can then take sup A

x

,

over a �nite subset of M .

We never build a functional, only a �nite approximation.

From this analysis, it is quite unlikely that one can easily deduce the Bishop version from

the formal one, nor do we think that the proof in formal topology follows from Bishop's

formulation. On the other hand, the formal one may be as good as Bishop's result for

applications, since in an application one will only need �nite approximations of a functional.

As we said, our proof can be represented in Martin-Löf's type theory, and indeed, proof-

theoretically, we use only the notion of �nitary inductive de�nition. An interesting question at

this point is the connection of our work to [5]. For instance, our spaces are absolute, see [10],

only for separable vector spaces, which explains the separability restriction in [5] that does

not appear here.

14



One aim of this approach is to provide an alternative to Bishop's treatment of functional

analysis in constructive mathematics. For this, it will be important to �nd concrete instances

of the use of the Alaoglu and Hahn-Banach theorems, for which our proof can help to extract

their computational content.
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Abstract

We describe an implementation of a pointfree proof of the Alaoglu and the Hahn-

Banach theorems in Type Theory. The proofs described here are formalisations of the

proofs presented in \The Hahn-Banach Theorem in Type Theory" [4]. The implementation

was partially developed simultaneously with [4] and it was a help in the development of

the informal proofs.

1 Introduction

We present a machine assisted formalisation of pointfree topology in Martin-L�of's type theory.

The continuum and the basic de�nitions needed in a pointfree approach to functional analysis

are given and in this setting we describe implementations of localic formulations of the Alaoglu

and the Hahn-Banach theorems.

The classical Hahn-Banach theorem says that, if M is a subspace of a normed linear

space A and f is a bounded linear functional on M , then f can be extended to a linear

functional F on A so that kFk = kfk. (In our proof we use the equivalent formulation:

if kfk � 1 then f can be extended to F so that kFk � 1.) A constructive proof of the

Hahn-Banach theorem, based on points, was given by Bishop in [2]. In his formulation of the

theorem, the norm of the linear functional is preserved to an arbitrary degree by the extension

and a counterexample shows that the norm, in general, is not preserved exactly.

In a pointfree formulation of the theorem, one works with �nite approximations of the

functionals rather than with the functionals themselves. Pointfree formulations of the Hahn-

Banach theorem were presented by Mulvey and Pelletier [13] and by Vermeulen [20]. The

proof in [13] shows the Hahn-Banach theorem in any Grothendieck topos. However, the

argument relies on Barr's theorem, which is not justi�ed constructively. The proof in [20]

is done in the framework of topos theory with a natural number object, and thus relies on

the use of impredicative quanti�cation. The proof in [4], which this formalisation is based

on, uses more basic concepts; in fact, the formalisation in this paper is done in type theory

(cf. section 7.1) with only �nitary inductive de�nitions.

This formalisation should not be seen only as a correctness check of the proofs presented

in [4], but also as a help in the development of the informal proofs of the Hahn-Banach

theorem. The implementation was partially developed simultaneously with [4]. Some parts

in the proof were harder than we �rst expected, some steps were even wrong, and quite

1



important steps in the original development were changed due to errors found during this

formalisation.

The paper is organised as follows. First we provide all the preliminary de�nitions (formal

topology and the continuum). Then follows a de�nition of the formal space of linear func-

tionals of norm � 1 and proofs of the Alaoglu and the Hahn-Banach theorems. Some further

details speci�c to the implementation are then given, this includes axiomatically produced

rational numbers and linear spaces. For further details of the proofs we then refer to the

actual implementation.

We do not present all the lemmas occuring in the implementation, but we try to present the

most important ones and show the overall structure of the implementation. Many properties

of a de�ned object are obvious from an abstract point of view; we think that by presenting

all of them the more important proofs would get drown.

The proofs presented in section 4{6 are basically the same as in [4]. The proofs here

however have a direct correspondence to the implementation: they are proved in the same

way and also presented in the same order as the implementation was developed, partly top-

down. Here we also have a slightly more general de�nition of the space of the formal linear

functionals than that given in [4]. This modi�cation does not a�ect the informal proofs but

it greatly simpli�es the implementation.

2 Formal Spaces

Formal topologies were introduced by Per Martin-L�of and Giovanni Sambin [19] as a con-

structive approach to (pointfree) topology, in the tradition of Johnstone's version of the

Grothendieck topologies [9] and Fourman and Grayson's Formal Spaces [7], but using a con-

structive set theory based on Martin L�of's type theory.

In pointfree topology one considers the open sets, and not the points, as primitive entities

and studies those properties of a topological space that can be expressed without mentioning

the points. By abstracting from the fact that open sets are subsets of points one only looks

at the algebraic structure, called a frame, that the open sets form.

Since a point-set topology always can be presented using one of its bases, the abstract

structure that we will consider is a commutative monoid hS; �i where the set S corresponds

to a base of the point-set topology 
(X) and � corresponds to the operation of intersection

between basic subsets.

In a point-set topology any open set is obtained as a union of elements of the base, but

this union does not make sense if we refuse reference to points; hence we are naturally led to

think that an open set may directly correspond to a subset of the set S. For this purpose we

introduce a relation �, called cover, between elements and subsets S whose intuitive meaning

is that a � U when a

�

� [

b2U

b

�

, where a

�

is the set of points of the neighbourhood a. The

conditions we require of this relation can all be justi�ed by this analogue to the point-set

theoretic situation.

DEFINITION 2.1 A formal topology over a set S is a structure

hS; �;�i

where hS; �i is a commutative monoid, � is a relation, called cover, between elements and

subsets of S such that, for any x; y 2 S and U; V � S, the following conditions hold:

2



(re
exivity)

x 2 U

x � U

(transitivity)

x � U U � V

x � V

where U � V � (8u 2 U)(u � V )

(dot-left)

x � U

x � y � U

(dot-right)

x � U x � V

x � U � V

where U � V � fu � v j u 2 U; v 2 V g:

We point out that, in contrast to the de�nition of formal topology given by Sambin in [19],

we do not require the base monoid to have a unit. The role of the unit element is that of the

whole space and is here taken over by the subset of all elements in the base. Nor do we have

the positivity predicate used in [19].

Subsets of S are here represented by predicates over S. We say that U is a subset of the

base set S, U � S, if U is a propositional function ranging over S and we say that an element

a of S is a member of the subset U , a 2 U , i� U(a) holds.

We work with sets with equalities and whenever a relation is de�ned, we check that this

relation respects the equality. For a formal topology this means that we justify the de�nition

of the cover by showing

(substitutivity)

x = y y � U

x � U

:

Several concrete formal topologies are de�ned in this paper and for each of them the equality

relation is explicitly given, but the substitutivity rule is used implicitly in the proofs presented

here.

The following derived rules are frequently used below:

(stability)

x � U y � V

x � y � U � V

(localisation)

x � U

x � y � U � y

and so is the property of the cover relation respecting the subset relation:

x � U U � V

x � V

:

We write x � y for x � fyg, x � U for fxg � U , etc. Also note that dot-right follows from

stability and that stability is derivable without dot-right if localisation holds. This means

that in a proof that a structure is a formal topology we can show localisation (or stability)

instead of dot-right.

We conclude this section by de�ning a notion of formal Stone cover [19] and compact

formal space:

DEFINITION 2.2 A cover � is called a Stone cover if, whenever a is an element and U a

subset of the base, a � U implies a � U

0

for some �nite subset U

0

of U .

DEFINITION 2.3 Let S � hS; �;�i be a formal topology. We say that a subset U of the

base S covers the whole space S, S � U , if (8x 2 S)(x � U). The space S is compact if, for

any subset U of S, S � U implies S � U

0

for some �nite subset U

0

of U .
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Note that in a formal topology hS; �;�i with a unit element 1, compactness can be stated

equivalently as follows. For any subset U of the base S, if 1 � U then 1 � U

0

for some �nite

subset U

0

of U .

3 The Continuum as a Formal Space

Real numbers can be obtained as points of a locale where the subbasic elements are open

rational intervals (cf. Johnstone [9]). Here the continuum is obtained as a certain formal

topology based on the rational numbers.

1

The following de�nition was suggested by Thierry

Coquand.

DEFINITION 3.1 The topology of formal reals is the structure

R � hQ�Q;=

Q�Q

; �;�

R

i;

where Q is the set of rational numbers. Two intervals are equal if their respective endpoints

are equal. The monoid operation is de�ned by (p; q) �(r; s)� (max(p; r); min(q; s)). The cover

�

R

is de�ned by

(p; q) �

R

U � (8p

0

; q

0

)(p < p

0

& q

0

< q ! (p

0

; q

0

) �

R

f

U);

where the relation �

R

f

is inductively de�ned by

1.

q � p

(p; q) �

R

f

U

2.

(p; q) 2 U

(p; q) �

R

f

U

3.

r < s (p; s) �

R

f

U (r; q)�

R

f

U

(p; q) �

R

f

U

4.

(p

0

; q

0

) �

R

f

U p

0

� p q � q

0

(p; q) �

R

f

U

.

With I = (p; q) and J = (r; s), we write I < J (resp. I � J) to express that r < p & q < s

(resp. r � p & q � s). Thus I �

R

U means J �

R

f

U for all J < I . Moreover, we use the

notations I + J for (p+ r; q+ s), and tI for (tp; tq) when t � 0 and for (tq; tp) when t < 0.

Now we will show that R

f

� hQ � Q;=

Q�Q

; �;�

R

f

i and R � hQ � Q;=

Q�Q

; �;�

R

i

are formal topologies. First note that hQ � Q; �i forms a commutative monoid under the

relation =

Q�Q

. Then it is enough to prove that �

R

f

and �

R

really are cover relations.

LEMMA 3.2 The relation �

R

f

is a cover.

Proof: By the fourth rule, �

R

f

respects the equality. Re
exivity holds by de�nition. To

prove transitivity, suppose I �

R

f

U and U �

R

f

V . Then it is straightforward by induction

on the derivation of I �

R

f

U that I �

R

f

V . Dot-left follows by the fourth rule. Localisation

follows by induction on the derivation of the premiss. 2

The following lemma is used to prove transitivity of �

R

.

1

For a description of the formal points of this formal topology we refer to [14].

4



LEMMA 3.3 Suppose I < J, J �

R

f

U and U �

R

V . Then I �

R

f

V .

Proof: By induction on the derivation of J �

R

f

U . 2

LEMMA 3.4 The relation �

R

is a cover.

Proof: By the de�nition of �

R

and the fact that < on intervals respects the equality, �

R

respects the equality relation. To prove transitivity, suppose that I �

R

U and U �

R

V . To

prove I �

R

V we must then show that J �

R

f

V holds for all J < I . So take a J < I . Then

we can �nd J

0

such that J < J

0

< I . By de�nition of �

R

, J

0

�

R

f

U and then, by lemma 3.3,

J �

R

f

V . Dot-left follows from the de�nition of �

R

, the de�nition of the dot-operation and

the fourth rule of �

R

f

. Dot-right is straightforward from the validity of dot-right of �

R

f

. 2

We have thus proved

PROPOSITION 3.5 R

f

� hQ�Q;=

Q�Q

; �;�

R

f

i and R � hQ�Q;=

Q�Q

; �;�

R

i are formal

topologies.

We include here some lemmas used to prove properties of the space of formal linear

functionals in the next section.

LEMMA 3.6 Let I; J; J

1

; : : : ; J

n

be intervals such that I < J and J �

R

f

fJ

1

; : : : ; J

n

g. Then

(9I

1

; : : : ; I

n

)((8i)(I

i

< J

i

) & I �

R

f

fI

1

; : : : ; I

n

g):

Proof: By induction on the derivation of I �

R

f

fJ

1

; : : : ; J

n

g. 2

LEMMA 3.7 Let V be a �nite subset of rational intervals. Then

(p; q) �

R

f

V ) (p+ k; q + k) �

R

f

f(r+ k; s+ k) : (r; s) 2 V g:

Proof: By induction on the derivation of (p; q) �

R

f

V . 2

LEMMA 3.8 Let (p; q) be a rational interval and r a rational number greater than 0. Then

there is a �nite set U of rational intervals, shorter than or equal to r, such that (p; q) �

R

f

U .

Proof: We cover (p; q) with an overlapping family of intervals of length r.

For an arbitrary rational number r > 0 and a natural number n, let

U

n

� f(p+ (i� 1)r=2; p+ (i+ 1)r=2) : 0 � i � ng:

We prove by induction on n that (p; p+ (n+ 1)r=2) �

R

f

U

n

. Then, given a rational interval

(p; q), by the Archimedian axiom, there exists a natural number n such that n(r=2) > q � p.

For such an n, since q < p+ (n+ 1)r=2,

(p; q) �

R

f

U

n

:

If n = 0 then, since (p; p+ r=2) � (p� r=2; p+ r=2), by the fourth rule of �

R

f

,

(p; p+ r=2) �

R

f

U

0

:

5



Otherwise, by induction hypothesis,

(p; p+ n(r=2)) �

R

f

U

n�1

and, since U

n�1

� U

n

,

(p; p+ n(r=2)) �

R

f

U

n

:

By re
exivity, (p+(n�1)r=2; p+(n+1)r=2) �

R

f

U

n

. Then, since p+(n�1)r=2 < p+n(r=2),

by rule three for �

R

f

,

(p; p+ (n+ 1)r=2) �

R

f

U

n

: 2

The following easily proved property is used implicitly in the rest of this paper.

LEMMA 3.9 Let I be a rational interval and U a subset of intervals. Then

I �

R

f

U ) I �

R

U:

For this and other properties of the formal space R we refer to [5] and [14].

4 Formal Linear Functionals

We start by de�ning a seminormed space as in [13]. Here a seminorm on a linear space X is

not de�ned as a function k � k from X to the non-negative reals, but as a function N from the

rationals to P(X). The rules we require for N can be justi�ed, from those of a seminorm k �k,

by putting N(q) � fx : kxk < qg. (For the representation of N and seminormed linear spaces

in type theory see section 7.6.)

DEFINITION 4.1 A seminormed space X on the rationals Q is a linear space X on Q

together with a mapping

N : Q �! P(X)

from the rationals to the subsets of X satisfying the following conditions for x; y 2 X, p; q 2 Q:

N0. q � 0) x2= N(q)

N1. x 2 N(q)) (9p < q)(x 2 N(p))

N2. (9q)(x 2 N(q))

N3. x 2 N(q) & y 2 N(p)) x+ y 2 N(q + p)

N4. x 2 N(q) & p > 0) px 2 N(pq)

N5. x 2 N(q)) �x 2 N(q)

N6. x = y & x 2 N(q)) y 2 N(q)

N7. x 2 N(p) & p = q ) x 2 N(q).

6



Given a seminormed linear space X , we will now de�ne the formal space L(A) of linear

functionals of norm � 1, generated by a linear subspace A of X .

2

The basic opens are �nite

sets of the form w � [hx

1

; I

1

i; : : : ; hx

n

; I

n

i], where x

1

; : : : ; x

n

are elements of X and I

1

; : : : ; I

n

are rational intervals. The intuitive meaning of an element w is that of a neighbourhood of

functionals in the weak topology [18], we say that w is a neighbourhood of f i� for all i, I

i

is a neighbourhood of f(x

i

). In the sequel we use the notation hx

1

2 I

1

; : : : ; x

n

2 I

n

i for

[hx

1

; I

1

i; : : : ; hx

n

; I

n

i].

DEFINITION 4.2 Let X be a linear space and A a linear subspace of X. The base S of

L(A) consists of �nite lists of the form hx

1

2 I

1

; : : : ; x

n

2 I

n

i, where x

1

; : : : ; x

n

are elements

in X and I

1

; : : : ; I

n

are rational intervals.

Let w � hx

1

2 I

1

; : : : ; x

n

2 I

n

i and w

0

� hy

1

2 J

1

; : : : ; y

m

2 J

m

i. Then de�ne

w = w

0

� n = m & (8i)(x

i

= y

i

& I

i

= J

i

);

w < w

0

� n = m & (8i)(x

i

= y

i

& I

i

< J

i

);

w � hx 2 Ii � (9hx

i

1

2 I

i

1

; : : : ; x

i

p

2 I

i

p

i � w)

(x

i

1

= � � �= x

i

p

= x & I

i

1

� � � � � I

i

p

� I);

w � w

0

� (8hx 2 Ii 2 w

0

)(w � hx 2 Ii):

Let w be an element and U a subset of S. Then w �

A

f

U is inductively de�ned by

C1

w 2 U

w �

A

f

U

C2

w � w

0

w

0

�

A

f

U

w �

A

f

U

C3

x 2 A w = hx 2 Iiw

0

I �

R

f

V (8J 2 V )(hx 2 Jiw

0

�

A

f

U)

w �

A

f

U

where V is a �nite subset

C4

x; y 2 A w = hx 2 I; y 2 Jiw

0

hx+ y 2 I + Jiw

0

�

A

f

U

w �

A

f

U

C5

x 2 A w = hx 2 Iiw

0

r 6= 0 hrx 2 rIiw

0

�

A

f

U

w �

A

f

U

C6

x 2 A x 2 N(1) hx 2 (�1; 1)iw �

A

f

U

w �

A

f

U

.

Then w �

A

U is de�ned by

w �

A

U � (8w

0

< w)(w

0

�

A

f

U):

2

The formal points of L(A) correspond to the linear functionals of norm � 1 from A to the reals, see [4].
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A motivation for the above de�nition can be given as follows: conditions C1-C3 de�ne formal

functionals from A to the formal reals, C4 and C5 impose linearity and C6 says that we only

consider functionals of norm � 1.

Observe that in order to get a �nitary inductive de�nition, the subset V in clause C3 has

to be �nite. In fact, this inductive de�nition cannot be made in predicative type theory if V

is an arbitrary subset.

The formal space L(A) of neighbourhoods of linear functionals of norm � 1 from A to the

reals is de�ned as:

DEFINITION 4.3 Let L(A

f

) � hS;=

�

; �;�

A

f

i and L(A) � hS;=

�

; �;�

A

i, where the equal-

ity between neighbourhoods is the subset equality: w

1

=

�

w

2

� w

1

� w

2

& w

2

� w

1

, and the

monoid operation is union.

Observe that the base S is independent of the subspace A. Di�erent subspaces of X give rise

to di�erent formal spaces of linear functionals, but all of these formal spaces have the same

base. This will greatly simplify the implementation. The alternative (as suggested in [4]) is to

let the vectors x

1

; : : : ; x

n

occuring in a neighbourhood in S belong to the speci�c subspace A.

A neighbourhood will then be a list of triples hx; h; Ii, where h is a proof that x is an element

of A. The problem is now that the elements have to be transformed (the proof objects have to

be changed) between formal spaces generated from di�erent linear subspaces. This problem

already appears in the formulation of the Hahn-Banach theorem (theorem 6.1) and building

the proofs upon this de�nition, these transformations would soon occupy a considerable part

of the proofs.

To express that the vectors occuring in a neighbourhood w belong to a certain linear

space A, the expression w 2 S can thus not be used. For this purpose we introduce the

relation live:

DEFINITION 4.4 Let w � hx

1

2 I

1

; : : : ; x

n

2 I

n

i. We say that w lives in the space

generated by A if (8i)(x

i

2 A); and a subset U lives in L(A) if all its elements live in L(A).

If we forget about the proof objects, then the de�nition used here and the corresponding

de�nition in [4] are equivalent

3

, so our simpli�cation does not change the informal proofs.

We continue by proving that L(A

f

) and L(A) are formal topologies. First note that hS; �i

form a commutative monoid under the subset equality, it is then enough to show that �

A

f

and �

A

are cover relations.

LEMMA 4.5 The relation �

A

f

is a cover.

Proof: If w =

�

w

0

then w � w

0

so, by C2, �

A

f

respects equality. Re
exivity holds by

de�nition. Dot-left follows from C2, since w

1

w

2

� w

1

. Transitivity and localisation are

straightforward by induction on the proof of w �

A

f

U and, as noted before, dot-right follows

from localisation. 2

The following lemma is used in the proof of transitivity of �

A

.

3

If w and U live in L(A) and w �

A

f

U , then it is easy to dress w and U with proof objects into w

0

and

U

0

and, by induction on w �

A

f

U , w

0

�

0

A

f

U

0

follows, where �

0

A

f

is the corresponding de�nition in [4].

Conversely, if w

0

�

0

A

f

U

0

, then the corresponding w and U live in L(A) and w �

A

f

U . The same then also

holds for �

A

.
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LEMMA 4.6 Let w

1

< w, w �

A

f

U and U �

A

V . Then w

1

�

A

f

V .

Proof: By induction on the derivation of w �

A

f

U .

C1: If w 2 U then, since U �

A

V , w �

A

V and, by de�nition of �

A

, w

1

�

A

f

V .

C2: w �

A

f

U is derived from w � w

0

and w

0

�

A

f

U . Since w

1

< w and w � w

0

, there is

a partition w

2

of w

1

such that w

1

� w

2

and w

2

< w

0

. So, by induction hypothesis, w

2

�

A

f

V

and, by C2, w

1

�

A

f

V .

C3: w �

A

f

U is derived from w = hx 2 Iiw

2

, I �

R

f

fK

1

; : : : ; K

m

g and (8i)(hx 2

K

i

iw

2

�

A

f

U). Since w

1

< w = hx 2 Iiw

2

, w

1

� hy 2 Jiw

3

for some y = x, J < I and

w

3

< w

2

. By lemma 3.6 there is a set fK

0

1

; : : : ; K

0

m

g such that J �

R

f

fK

0

1

; : : : ; K

0

m

g and

(8i)(K

0

i

< K

i

). For such a set, by induction hypothesis,

(8i)(hy 2 K

0

i

iw

3

�

A

f

V ):

Then w

1

�

A

f

V follows by C3.

C4: w �

A

f

U is derived from w = hx

1

2 I

1

; x

2

2 I

2

iw

2

and hx

1

+ x

2

2 I

1

+ I

2

iw

2

�

A

f

U .

Since w

1

< w = hx

1

2 I

1

; x

2

2 I

2

iw

2

, w

1

� hy

1

2 J

1

; y

2

2 J

2

iw

3

for some y

1

= x

1

, y

2

= x

2

,

J

1

< I

1

, J

2

< I

2

and w

3

< w

2

, and thus J

1

+ J

2

< I

1

+ I

2

. Then, by induction hypothesis,

hy

1

+ y

2

2 J

1

+ J

2

iw

3

�

A

f

V:

w

1

�

A

f

V now follows by C4.

C5: w �

A

f

U is derived from w = hx 2 Iiw

2

, r 6= 0 and hrx 2 rIiw

2

�

A

f

U . Since

w

1

< w = hx

1

2 Iiw

2

, w

1

� hy 2 Jiw

3

, for some y = x, J < I and w

3

< w

2

, and thus

rJ < rI . Then, by induction hypothesis,

hry 2 rJiw

3

�

A

f

V:

w

1

�

A

f

V now follows by C5.

C6: w �

A

f

U is derived from x 2 N(1) and hx 2 (�1; 1)iw �

A

f

U . By N1, x 2 N(r) for

some r < 1. Then, by induction hypothesis,

hx 2 (�r; r)iw

1

�

A

f

V:

w

1

�

A

f

V now follows by C6 and the rules of N. 2

LEMMA 4.7 The relation �

A

is a cover.

Proof: We start by justifying the de�nition of �

A

, by showing that �

A

respects the equality

relation =

�

. To prove w

1

�

A

U from w

1

=

�

w

2

and w

2

�

A

U , we must show w

0

1

�

A

f

U for

an arbitrary w

0

1

< w

1

. Given w

0

1

< w

1

and w

1

=

�

w

2

we can �nd a partition w

0

2

of w

0

1

such

that w

0

2

< w

2

and w

0

2

� w

0

1

. Moreover w

0

2

� w

0

1

implies w

0

1

� w

0

2

and, by de�nition of �

A

,

w

0

2

�

A

f

U . So, by C2, w

0

1

�

A

f

U .

Re
exivity: follows from re
exivity of �

A

f

, since w �

A

f

U implies w �

A

U (lemma 4.9).

Dot-left: Suppose w

1

�

A

U . To prove w

1

w

2

�

A

U we must show that w �

A

f

U holds

for an arbitrary w < w

1

w

2

. Given w < w

1

w

2

we can �nd w

0

1

and w

0

2

such that w = w

0

1

w

0

2

,

w

0

1

< w

1

and w

0

2

< w

2

. Then, by de�nition of �

A

, w

0

1

�

A

f

U and, by dot-left of �

A

f

,

w

0

1

w

0

2

�

A

f

U . w �

A

f

U now follows since w = w

0

1

w

0

2

implies w =

�

w

0

1

w

0

2

.

Transitivity: Suppose w �

A

U and U �

A

V . We must show that w

0

�

A

f

V holds for an

arbitrary w

0

< w. The relation < on neighbourhoods is dense, so given w

0

< w there exists

9



a w

00

such that w

0

< w

00

< w. For such a w

00

, by de�nition of �

A

, w

00

�

A

f

U . Then, by

lemma 4.6, w

0

�

A

f

V .

Dot-right: Immediately from the de�nition of �

A

and the validity of dot-right of �

A

f

. 2

We have thus proved

PROPOSITION 4.8 If A is a normed linear space then L(A

f

) � hS; �;=

�

;�

A

f

i and

L(A) � hS; �;=

�

;�

A

i are formal topologies.

The following two easily proved properties will be used implicitly without any remarks in

the proofs.

LEMMA 4.9 Let M be a linear space, w a neighbourhood and U a subset of the base. Then

w �

M

f

U ) w �

M

U:

LEMMA 4.10 Let M be a linear space and U a subset of the base. Then

hi �

M

U ) hi �

M

f

U:

Another easily proved property is the following:

LEMMA 4.11 Let M be a linear subspace of the linear space A. Then

w �

M

f

U ) w �

A

f

U:

Proof: w �

A

f

U follows by induction on the derivation of w �

M

f

U , since x 2 M implies

x 2 A. 2

5 Alaoglu's Theorem

As an immediate consequence of the de�nition of the cover for L(A), we obtain Alaoglu's

theorem, asserting that the unit ball of the space of linear and continuous functionals is

compact in the weak topology. We need the following result:

PROPOSITION 5.1 The cover �

A

f

is a Stone cover.

Proof: Suppose w �

A

f

U . The proof is straightforward by induction on the derivation of

w �

A

f

U . We will only consider the case when w �

A

f

U is obtained by C3 from w =

hx 2 Iiw

0

, I �

R

f

V and (8J 2 V )(hx 2 Jiw

0

�

A

f

U), for a �nite subset V . By induction

hypothesis, given an element J 2 V , there exists a �nite subset U

J

of U such that hx 2

Jiw

0

�

A

f

U

J

. Let U

0

be the union of all such U

J

's. Then, by C3, w �

A

f

U

0

. 2

Alaoglu's theorem then follows as a corollary:

THEOREM 5.2 The formal space L(A) is compact.

Proof: If h i �

A

U then, by de�nition of �

A

, h i �

A

f

U and, since �

A

f

is a Stone cover,

h i �

A

f

U

0

for some �nite subset U

0

of U . For such a U

0

, by lemma 4.9, h i �

A

U

0

. 2

10



6 The Hahn-Banach Theorem

The motivation to our localic formulation of the Hahn-Banach theorem uses a reasoning with

points. Let M be a subspace of the seminormed linear space A and F a linear functional

on A of norm � 1, then the restriction F

jM

of F to M is also a linear functional of norm � 1.

The Hahn-Banach theorem says that the restriction function

F 7�! F

jM

is surjective. For T

1

spaces, surjectivity on points follows from formal injectivity (see for

instance MacLane and Moerdijk [10]). Classically, the T

1

property on the space of functionals

follows easily from the fact that R is Hausdor�. The localic Hahn-Banach theorem is then

formulated as formal injectivity:

THEOREM 6.1 Let M be a linear subspace of the linear space A, w an element and U a

subset of the base, both living in L(M). Then

w �

A

U ) w �

M

U:

The Hahn-Banach theorem is a conservativity statement. If M is a subspace of A, we say

that �

A

is conservative over �

M

if, whenever w is an element and U is a subset living in L(M),

w �

A

U , then w �

M

U . Conservativity of �

A

f

over �

M

f

is de�ned in the same way. The

de�nition of �

A

in terms of �

A

f

allows us to replace �

A

by �

A

f

for proving conservativity,

since we have:

PROPOSITION 6.2 If �

A

f

is conservative over �

M

f

, then �

A

is conservative over �

M

.

Proof: To prove w �

M

U from w �

A

U , where w and U live in L(M), we must show that

(8w

0

< w)(w

0

�

M

f

U) holds. But if w

0

< w then w

0

also lives in L(M) and by de�nition

of �

A

, w

0

�

M

f

U . The result then follows by conservativity of �

A

f

over �

M

f

. 2

The Hahn-Banach theorem is thus reduced to:

LEMMA 6.3 Let M be a linear subspace of the linear space A, w an element and U a subset

living in L(M). Then

w �

A

f

U ) w �

M

f

U:

Now we will use the fact that the de�nition of �

A

f

is �nitary and show that only a �nite

number of elements of A is relevant to the proof of w �

A

f

U . Then we argue by induction

on this �nite set and reduce lemma 6.3 to the following lemma. (If M is a linear space, the

notation [M + x] is used for the linear extension of M with x.)

LEMMA 6.4 Let M be a linear space, w an element and U a subset living in L(M). Then

w �

[M+x]

f

U ) w �

M

f

U:

To prove lemma 6.3 from lemma 6.4 the two additional lemmas 6.5 and 6.7 are used:

LEMMA 6.5 Let A be a linear space. Then

w �

A

f

U ) (9A

0

�

f

A)(w �

[A

0

]

f

U):

11



Proof: The proof is by induction on the derivation of w �

A

f

U . For each introduction rule

the �nite set A

0

is constructed, the claim then follows by the same rule using the induction

hypothesis.

C1: A

0

can be chosen to be the empty set.

C2: A

0

is taken from the induction hypothesis.

C3: First form the union of the sets from the induction hypothesises, then add the new

element x to this union.

C4: Add the new elements x and y to the set from the induction hypothesis.

C5: Add the new element x to the set from the induction hypothesis.

C6: Suppose w �

A

f

U is derived by C6 from x 2 A, x 2 N(1) and hx 2 (�1; 1)iw �

A

f

U .

By the induction hypothesis there is a �nite set A

0

0

such that hx 2 (�1; 1)iw �

[A

0

0

]

f

U . Let A

0

be the set A

0

0

[ fxg. Clearly x 2 A

0

and, since A

0

0

� A

0

, we have hx 2 (�1; 1)iw �

[A

0

]

f

U .

w �

[A

0

]

f

U now follows by C6. 2

Since w �

[A

0

]

f

U implies w �

[B+A

0

]

f

U , we obtain as a corollary to lemma 6.5

COROLLARY 6.6 Let B be a linear subspace of the linear space A, w an element and U

a subset living in L(B). Then

w �

A

f

U ) (9A

0

�

f

A)(w �

[B+A

0

]

f

U):

LEMMA 6.7 Let M be a linear subspace of the linear space B, A

0

a �nite set of vectors, w

an element and U a subset living in L(M). Then

w �

[B+A

0

]

f

U ) w �

B

f

U:

Proof: The proof is by induction on the length of A

0

(Assuming that A

0

is a list). If A

0

is

empty there is nothing to prove. If A

0

� x :: A

1

, then by induction hypothesis w �

[B+x]

f

U

and, since w and U live in L(M) they also live in L(B), so by 6.4, w �

B

f

U . 2

Lemma 6.3 now follows by combining corollary 6.6 and lemma 6.7, for B =M .

To prove lemma 6.4 a proof of w �

[M+x]

f

U , where w and U live in L([M + x]), must be

transformed into a proof of w �

M

f

U . To do this we transform the elements and the subsets

occuring in the proof of w �

[M+x]

f

U in the following way: The sub-basic elements having

form ha+ tx 2 (r; s)i, where a 2M , are transformed into ha 2 (r + tq; s+ tq)i. The rational

number q can be understood as an approximation of f(x), where f is the linear functional.

The proof transformation is then done by induction on the derivation of w �

[M+x]

f

U . There

are however some obstacles that have to be overcome.

To justify the de�nitions and lemmas below, we show what happens if we try to prove

w �

[M+x]

f

U ) w �

M

f

U (where w and U live in L([M + x]) and w and U are the

corresponding transformed objects), directly by induction on the derivation of w �

[M+x]

f

U .

First consider the axiom C1 . We have w 2 U , but w 2 U does not necessarily imply w 2 U .

To see this we must have a closer look at the transformation operation. The value of w does

not only depend on w and the rational number q, but also the proof that w lives in L([M+x])

and there may be di�erent values of w for di�erent proofs. This will happen when x is already

a member of M , since then we can have a

1

+ t

1

x = a

2

+ t

2

x with a

1

6= a

2

and t

1

6= t

2

. Now,

if w and U live in L([M + x]) and w 2 U , there are in fact to two proofs that w lives in

L([M + x]), the second one comes from the proof that U lives in L([M + x]). If these two

proof objects result in di�erent values of w, then w does not belong to U . But, as we will

12



see, w 2 U implies w 2 U

W

x 2M and if x 2M then [M + x] is no proper extension of M .

Observe here that we do not require decidability of membership of M . Decidability would

simplify the proof; if x 2 M then [M + x] = M and there is nothing to prove, and if x2= M

then there is only one value of �w (for a speci�c rational number q). Then look at axiom C6 ;

w �

[M+x]

f

U is derived from a+ tx 2 N(1) and ha+ tx 2 (�1; 1)iw �

[M+x]

f

U , where a 2M .

By induction hypothesis ha 2 (�1+ tq; 1+ tq)iw �

M

f

U , but we do not have a 2 N(1) so the

axiom C6 is not applicable again. Yet another problem is that an e�cient method of �nding

a su�cient good rational approximation q, used in the transformation from L([M + x]) to

L(M), does not seem to exist. (The problems described above were actually found during

the implementation.)

The last problem is solved by quantifying over all rational numbers q. Before solving the

other problems, let us de�ne the transformation from L([M + x]) to L(M) precisely.

DEFINITION 6.8 Let q be a rational number and let w be an element living in L([M + x]),

i.e. we have a proof h

w

of w = ha

1

+ t

1

x 2 (r

1

; s

1

); : : : ; a

n

+ t

n

x 2 (r

n

; s

n

)i, where a

1

; : : : ; a

n

2

M . Then

w

q;h

w

� ha

1

2 (r

1

+ t

1

q; s

1

+ t

1

q); : : : ; a

n

2 (r

n

+ t

n

q; s

n

+ t

n

q)i

and if h

U

is a proof that the subset U lives in L([M + x]) then

U

q;h

U

� fw

q;h

U

(w;h)

: h is a proof that w 2 Ug:

As indicated before, the problem of w

q;h

w

being dependent of the proof h

w

that w lives in

L([M + x]) is solved by the following:

LEMMA 6.9 Let h

w

and h

U

be proofs that w and U live in L([M + x]), respectively. Then

w 2 U ) (8q)(w

q;h

w

2 U

q;h

U

) _ x 2M:

Proof: We start by showing that, if there are two proofs h

1

and h

2

that ha 2 Ii lives in

L([M + x]) then (8q)(ha 2 Ii

q;h

1

= ha 2 Ii

q;h

2

) _ x 2M .

By h

1

and h

2

there existsm

1

, t

1

,m

2

, t

2

such thatm

1

; m

2

2M and a = m

1

+t

1

x = m

2

+t

2

x.

We now use decidability of equality on the rational numbers. If t

1

= t

2

then alsom

1

= m

2

and

thus (8q)(m

1

2 I + (tq; tq) = m

2

2 I + (tq; tq)). If t

1

6= t

2

then x = (m

2

�m

1

)=(t

1

� t

2

) 2M .

Then, if h

1

and h

2

are two proofs that w lives in L[M + x]), it is easy to prove, by

induction on the length of w, that (8q)(w

q;h

1

= w

q;h

2

) _ x 2 M . This is also the situation

in the original problem. There are two proofs that w lives in L([M + x]): h

w

and h

U

(w; h),

where h is the proof that w is an element in U . 2

To solve the problem arising from axiom C6 , we �rst de�ne a new cover relation, which is

de�ned as �

[M+x]

f

but for the last axiom where only a �nite number of elements from [M+x]

are allowed.

DEFINITION 6.10 Let a � fa

1

; : : : ; a

n

g and t � ft

1

; : : : ; t

n

g be �nite sequences in M and

in Q, respectively, such that (8i)(a

i

+ t

i

x 2 N(1)). Then let �

a,t

be de�ned as �

[M+x]

f

, with

the last axiom replaced by

C6

0

:

a 2 a t 2 t ha+ tx 2 (�1; 1)iw �

a,t

U

w �

a,t

U

:

13



Then the neighbourhood P in the following de�nition is used in order to \absorb" the element

ha 2 (�1 + tq; 1 + tq)i which appears in the induction hypothesis, in the case C6 .

DEFINITION 6.11 Let q be a rational number and let a � fa

1

; : : : ; a

n

g and t � ft

1

; : : : ; t

n

g

be �nite sequences in M and in Q, respectively, such that (8i)(a

i

+ t

i

x 2 N(1)). Then de�ne

P

q;a,t

� ha

1

2 (�1 + t

1

q; 1 + t

1

q); : : : ; a

n

2 (�1 + t

n

q; 1 + t

n

q)i:

The proof that w �

M

f

U follows from w �

[M+x]

f

U (lemma 6.4) uses of the following two

lemmas. First a proof of w �

[M+x]

f

U is transformed into a proof of w �

a,t

U , for some a

and t:

LEMMA 6.12 If w �

[M+x]

f

U , then there exist �nite sequences a and t in M and in Q,

respectively, such that (8i)(a

i

+ t

i

x 2 N(1)) and w �

a,t

U .

Proof: The proof is by induction on the derivation of w �

[M+x]

f

U . For each introduction

rule we �nd appropriate sequences a and t, then the corresponding rule of �

a,t

is applied.

C1: Let a and t be empty.

C2, C4, C5: Take a and t directly from the induction hypothesis.

C3: Form a and t by appending all the sequences from the induction hypothesises.

C6: w �

[M+x]

f

U is derived from a+ tx 2 N(1) and ha+ tx 2 (�1; 1)iw �

[M+x]

f

U , where

a 2M . Take the sequences a

0

and t

0

from the induction hypothesis, then let a � a :: a

0

and

t � t :: t

0

. C6' now gives w �

a,t

U . 2

Then the proof of w �

a,t

U is then transformed into a proof of w �

M

f

U :

LEMMA 6.13 Let a and t be �nite sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1)) and let w be an element and U a subset living in L(M). Then

w �

a,t

U ) w �

M

f

U _ x 2M:

Proof of lemma 6.4: Suppose w and U live in L([M+x]) and w �

[M+x]

f

U . By combining

the lemmas 6.12 and 6.13, we get w �

M

f

U _ x 2M . If w �

M

f

U , there is nothing more to

prove. If x 2M then [M + x] �M and, since w �

[M+x]

f

U , w �

M

f

U follows. 2

The Hahn-Banach theorem is thus reduced to lemma 6.13. Before proving this lemma

some intermediate results are needed. The �rst one is the core of the Hahn-Banach theorem;

intuitively it tells us that, if f is a linear functional on M , then we can �nd a rational

approximation q for the value of f(x). The proof is given later.

LEMMA 6.14 Let a and t be �nite sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1)). Then

hi �

M

f

fP

q;a,t

: q 2 Qg:

The following two lemmas describe some properties of the transformation of neighbour-

hoods from L([M + x]) to L(M) and the relation � between neighbourhoods.

LEMMA 6.15 Let h

w

1

be a proof that w

1

lives in L([M + x]). Then

w

1

� w

2

)

(9h

w

2

: w

2

lives in L([M + x]))(8q)(w

1

q;h

w

1

� w

2

q;h

w

2

) _ x 2M:

14



Proof: We show that if w

1

� ha 2 Ii then

(9h : ha 2 Ii lives in L([M + x]))(8q)(w

1

q;h

w

1

� ha 2 Ii

q;h

) _ x 2M:

The claim then follows by induction on the length of w

2

.

By the de�nition of�, there exists ha

1

2 I

1

; : : : ; a

n

2 I

n

i � w

1

such that a

1

= � � � = a

n

= a

and I

1

� � � � � I

n

� I . Since w

1

lives in L([M + x]) there exist elements m

1

; : : : ; m

n

in M and

rational numbers t

1

; : : : ; t

n

such that a

1

= m

1

+ t

1

x; : : : ; a

n

= m

n

+ t

n

x. Now there are

two cases. If t

1

= � � � = t

n

= t then also m

1

= � � � = m

n

= m and, since I

1

� � � � � I

n

� I ,

(I

1

+ (tq; tq)) � � � � � (I

n

+ (tq; tq)) � I + (tq; tq). If there exists an i such that t

i

6= t then, since

m

i

+ t

i

x = m+ tx, x = (m�m

i

)=(t

i

� t) 2M . 2

LEMMA 6.16 Localisation holds for �:

w

1

� w

2

) w

1

� w � w

2

�w:

Proof: Follows from the de�nition of �, by using properties of the subset relation and inter-

section of rational intervals. 2

The next lemma is the one that actually performs the proof transformation fromL([M+x])

to L(M).

LEMMA 6.17 Let a and t be �nite sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1)), and let h

w

and h

U

be proofs that w is an element and U a subset

living in L([M + x]), respectively. Then

w �

a,t

U ) (8q)(w

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M:

Proof: By induction on the derivation of w �

a,t

U .

C1: w 2 U and, by lemma 6.9,

(8q)(w

q;h

w

2 U

q;h

U

) _ x 2M:

If (8q)(w

q;h

w

2 U

q;h

U

) then, by re
exivity and dot-left,

(8q)(w

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

):

If x 2M then there is nothing more to prove.

C2: w � w

0

and w

0

�

a,t

U . By lemma 6.15,

(9h

w

0

: w

0

lives in L([M + x]))(8q)(w

q;h

w

� w

0

q;h

w

0

) _ x 2M:

If (9h

w

0

: w

0

lives in L([M + x]))(8q)(w

q;h

w

� w

0

q;h

w

0

) then for such an h

w

0

, by induction

hypothesis,

(8q)(w

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M:

If (8q)(w

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) then, by lemma 6.16 on w

q;h

w

� w

0

q;h

w

0

,

w

q;h

w

� P

q;a,t

� w

0

q;h

w

0

� P

q;a,t
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and then, by C2' ,

(8q)(w

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

):

C3: I �

R

f

V and (8J 2 V )(ha+ tx 2 Jiw

0

�

a,t

U). By induction hypothesis

(8J 2 V )((8q)(ha 2 J + (tq; tq)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M)

and, since V is �nite, the disjunction can be moved outside the universal quanti�er. We get

(8J 2 V )(8q)(ha 2 J + (tq; tq)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M

which is the same as

(8q)(8J 2 V + (tq; tq))(ha 2 Jiw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M:

If (8q)(8J 2 V + (tq; tq))(ha 2 Jiw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

), then, by C3', since I �

R

f

V

implies I + (tq; tq) �

R

f

V + (tq; tq) (see lemma 3.7),

(8q)(ha 2 I + (tq; tq)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

):

C4: ha+ t

a

x+ b+ t

b

x 2 I

a

+ I

b

iw

0

�

a,t

U so, by induction hypothesis,

(8q)(ha+ b 2 I

a

+ (t

a

q; t

b

q) + I

b

+ (t

a

q; t

b

q)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

)

_

x 2M:

If (8q)(ha+ b 2 I

a

+ (t

a

q; t

b

q) + I

b

+ (t

a

q; t

b

q)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) then, by C4' ,

(8q)(ha 2 I

a

+ (t

a

q; t

b

q); b 2 I

b

+ (t

a

q; t

b

q)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

):

C5: hr(a+ tx) 2 rIiw

0

�

a,t

U so, by induction hypothesis,

(8q)(hra 2 r(I + (tq; tq))iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M:

If (8q)(hra 2 r(I + (tq; tq))iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

) then, by C5' ,

(8q)(ha 2 I + (tq; tq)iw

0

q;h

w

0

� P

q;a,t

�

M

f

U

q;h

U

):

C6: a+ tx 2 N(1) and ha+ tx 2 (�1; 1)iw �

a,t

U so, by induction hypothesis,

(8q)(ha 2 (�1 + tq; 1 + tq)iw

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

) _ x 2M:

If (8q)(ha 2 (�1 + tq; 1+ tq)iw

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

) then, since ha 2 (�1 + tq; 1 + tq)i is a

member of P

q;a,t

,

(8q)(w

q;h

w

� P

q;a,t

�

M

f

U

q;h

U

): 2

If w lives in L(M), then there is a trivial proof h that w lives in L([M + x]) (for which

the coe�cient of x is always zero). For this proof object w will not change during the

transformation from L([M + x]) to L(M) ((8q)(w = w

q;h

)). So as a corollary to lemma 6.17

we obtain:
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COROLLARY 6.18 Let a and t be �nite sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1)). Let w be an element and U a subset living in L(M). Then

w �

a,t

U ) (8q)(w � P

q;a,t

�

M

f

U) _ x 2M:

Proof of lemma 6.13: Suppose w �

a,t

U . Then by corollary 6.18,

(8q)(w � P

q;a,t

�

M

f

U) _ x 2M:

If (8q)(w � P

q;a,t

�

M

f

U) then, using transitivity,

w � fP

q;a,t

: q 2 Qg �

M

f

U:

Moreover from lemma 6.14 and localisation we get

w �

M

f

w � fP

q;a,t

: q 2 Qg

so, using transitivity again,

w �

M

f

U: 2

The Hahn-Banach theorem is now reduced to lemma 6.14. To prove lemma 6.14, we start

by restricting it to the case when all rational numbers in the sequence t are distinct from 0.

LEMMA 6.19 Let a and t be �nite sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1) & t

i

6= 0). Then

hi �

M

f

fP

q;a,t

: q 2 Qg:

Proof of lemma 6.14: Split the sequences a,t into a

0

,t

0

and a

00

,t

00

in such a way that a

0

,t

0

con-

tains all elements a

i

,t

i

for which t

i

6= 0 and a

00

,t

00

contains all elements a

i

,t

i

for which t

i

= 0.

To a

0

and t

0

lemma 6.19 is applied. By induction on the length of a

00

and t

00

and by using C6 ,

we have hi �

M

f

fthe list of all a

i

2 (�1; 1) for which t

i

= 0g. hi �

M

f

fP

q;a,t

: q 2 Qg then

basically follows by dot-right. 2

By transitivity, lemma 6.19 follows from the next two lemmas.

LEMMA 6.20 Let a and t be non empty sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1) & t

i

6= 0). Then

hi �

M

f

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j)g:

LEMMA 6.21 Let a and t be non empty sequences in M and in Q, respectively, such that

(8i)(a

i

+ t

i

x 2 N(1) & t

i

6= 0). Then

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j)g

�

M

f

fP

q;a,t

: q 2 Qg:

Several lemmas are used in order to prove the lemmas 6.20 and 6.21.
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LEMMA 6.22 Given x and y in M and a rational interval (p; q), we have

(a) hx+ y 2 (p; q)i�

M

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r + r

0

& s + s

0

� qg

(b) hx� y 2 (p; q)i �

M

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r � s

0

& s � r

0

� qg.

Proof: First we show that, given an element x and a positive rational d, we have

(c) hi �

M

f

fhx 2 (r; s)i : s� r � dg:

By N2 there exists a rational number q such that x 2 N(q). C6 and the rules of N then gives

hi �

M

f

hx 2 (�q; q)i:

By lemma 3.8 there exists a �nite subset U of rational intervals, not longer than d, such that

(�q; q) �

R

f

U:

For all I in U , hx 2 Ii 2 fhx 2 (r; s)i : s � r � dg and thus

hx 2 Ii �

M

f

fhx 2 (r; s)i : s � r � dg:

So, by C3 ,

hx 2 (�q; q)i �

M

f

fhx 2 (r; s)i : s� r � dg:

The claim now follows by transitivity.

(a) By de�nition of �

M

,

hx+ y 2 (p; q)i�

M

fhx+ y 2 (p

0

; q

0

)i : p < p

0

& q

0

< qg:

By transitivity it is enough to show that

fhx+ y 2 (p

0

; q

0

)i : p < p

0

& q

0

< qg

�

M

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg:

So consider an element hx+ y 2 (p

0

; q

0

)i, where p < p

0

and q

0

< q, and let

8

<

:

d � min(p

0

� p; q � q

0

)=2

V

x

� fhx 2 (r; s)i : s � r � dg

V

y

� fhy 2 (r

0

; s

0

)i : s

0

� r

0

� dg:

Then, since d > 0, by (c), hi �

M

V

x

and hi �

M

V

y

. Stability now gives

hx+ y 2 (p

0

; q

0

)i

�

M

hx+ y 2 (p

0

; q

0

)i � V

x

� V

y

�

M

fhx 2 (r; s); y 2 (r

0

; s

0

); x+ y 2 (p

0

; q

0

)i : s � r � d & s

0

� r

0

� dg:

Now consider an element hx 2 (r; s); y 2 (r

0

; s

0

); x+y 2 (p

0

; q

0

)i, where s�r � d and s

0

�r

0

� d.

By C4,

hx 2 (r; s); y 2 (r

0

; s

0

); x+ y 2 (p

0

; q

0

)i

�

M

f

hx+ y 2 (r + r

0

; s+ s

0

); x+ y 2 (p

0

; q

0

)i:

18



There are three cases to consider. If r + r

0

< p then s+ s

0

� p

0

and

hx+ y 2 (r + r

0

; s+ s

0

); x+ y 2 (p

0

; q

0

)i

�

M

f

hx+ y 2 (p

0

; p

0

)i

�

M

f

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg;

the last step since p

0

� p

0

. Similarly, if q < s + s

0

then r + r

0

� q

0

and

hx+ y 2 (r + r

0

; s+ s

0

); x+ y 2 (p

0

; q

0

)i

�

M

f

hx+ y 2 (q

0

; q

0

)i

�

M

f

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg:

Otherwise, p � r+ r

0

and s+ s

0

� q, and then

hx 2 (r; s); y 2 (r

0

; s

0

); x+ y 2 (p

0

q

0

)i

�

M

f

hx 2 (r; s); y 2 (r

0

; s

0

)i

�

M

f

fhx 2 (r; s); y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg;

the last step is by re
exivity.

(b) From (a) we get

hx� y 2 (p; q)i �

M

fhx 2 (r; s);�y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg:

We proceed by using transitivity. So take an element hx 2 (r; s);�y 2 (r

0

; s

0

)i of fhx 2

(r; s);�y 2 (r

0

; s

0

)i : p � r+ r

0

& s+ s

0

� qg and let

�

r

00

� �s

0

s

00

� �r

0

:

By C5, we get

hx 2 (r; s);�y 2 (r

0

; s

0

)i �

M

hx 2 (r; s); y 2 (r

00

; s

00

)i

and the claim follows since hx 2 (r; s); y 2 (r

00

; s

00

)i is an element of fhx 2 (r; s); y 2 (r

00

; s

00

)i :

p � r � s

00

& s � r

00

� qg. 2

LEMMA 6.23 Let a and b be elements in M , t

a

and t

b

rational numbers distinct from 0

such that a+ t

a

x 2 N(1) and b+ t

b

x 2 N(1). Then

a=t

a

� b=t

b

2 N(1=jt

a

j+ 1=jt

b

j):

Proof: Easily proved using the rules of N . 2

LEMMA 6.24 Let a and b be elements in M , t

a

and t

b

rational numbers distinct from 0

such that a+ t

a

x 2 N(1) and b+ t

b

x 2 N(1). Then

hi �

M

fha=t

a

2 (r; s); b=t

b

2 (r

0

; s

0

)i :

�(1=jt

a

j+ 1=jt

b

j) � r � s

0

& s� r

0

� 1=jt

a

j+ 1=jt

b

jg:
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Proof: Lemma 6.23 gives

a=t

a

� b=t

b

2 N(1=jt

a

j+ 1=jt

b

j)

then, by C6, the rules of N and the fact that w �

M

f

U ) w �

M

U ,

hi �

M

ha=t

a

� b=t

b

2 (�(1=jt

a

j+ 1=jt

b

j); 1=jt

a

j+ 1=jt

b

j)i:

The claim now follows by transitivity and lemma 6.22(b). 2

LEMMA 6.25 Let a be an element in M and t a rational number distinct from 0 such that

a + tx 2 N(1). Then

hi �

M

fha=t 2 (r; s)i : s � r � 1=jtj+ 1=jtjg:

Proof: By N2 there exists a rational number q such that a=t 2 N(q) and thus, by C6 and

the rules of N ,

hi �

M

f

fha=t 2 (�q; q)i : q 2 Qg:

By transitivity it is now enough to show that

ha=t 2 (�q; q)i �

M

f

fha=t 2 (r; s)i : s � r � 1=jtj+ 1=jtjg;

which follows from C3, using the fact that there exists a �nite set V of rational intervals, not

longer than 1=jtj+ 1=jtj, such that (�q; q) �

R

f

V (see lemma 3.8). 2

LEMMA 6.26 Let a; a

1

; : : : ; a

n

be elements inM , t; t

1

; : : : ; t

n

rational numbers distinct from

0 such that a+ tx 2 N(1) and (8i)(a

i

+ t

i

x 2 N(1)). Then

hi �

M

fha=t 2 (r; s); a

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

s� r � 1=jtj+ 1=jtj &

(8i)(s� r

i

� 1=jtj+ 1=jt

i

j & s

i

� r � 1=jt

i

j+ 1=jtj)g:

Proof: By induction on the length of the sequences. If n = 0 then the claim follows by

lemma 6.25. Otherwise let

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

A � fha=t 2 (r

0

; s

0

); a

1

=t

1

2 (r

1

; s

1

)i :

s

0

� r

1

� 1=jtj+ 1=jt

1

j & s

1

� r

0

� 1=jt

1

j+ 1=jtjg

B � fha=t 2 (r

00

; s

00

); a

2

=t

2

2 (r

2

; s

2

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

s

00

� r

00

� 1=jtj+ 1=jtj &

(8i)(s

00

� r

i

� 1=jtj+ 1=jt

i

j & s

i

� r

00

� 1=jt

i

j+ 1=jtj)g

C � fha=t 2 (r; s); a

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

s� r � 1=jtj+ 1=jtj &

(8i)(s� r

i

� 1=jtj+ 1=jt

i

j & s

i

� r � 1=jt

i

j+ 1=jtj)g:

Lemma 6.24 gives hi �

M

f

A and, by induction hypothesises, hi �

M

f

B. Thus, by dot-right,

hi �

M

f

A � B. By transitivity, it is enough to show A � B �

M

f

C. So take a

w � ha=t 2 (r

0

; s

0

); a

1

=t

1

2 (r

1

; s

1

)i �

ha=t 2 (r

00

; s

00

); a

2

=t

2

2 (r

2

; s

2

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i 2 A � B
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and let

w

0

� ha=t 2 (r; s); a

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i;

where (r; s) = (r

0

; s

0

) � (r

00

; s

00

). Then w � w

0

and w

0

2 C, since

8

>

>

>

>

<

>

>

>

>

:

s� r = min(s

0

; s

00

)�max(r

0

; r

00

) � s

00

� r

00

� 1=jtj+ 1=jtj

s� r

1

= min(s

0

; s

00

)� r

1

� s

0

� r

1

� 1=jtj+ 1=jt

1

j

s� r

i

= min(s

0

; s

00

)� r

i

� s

00

� r

0

i

� 1=jtj+ 1=jt

i

j; i � 2

s

1

� r = s

1

�max(r

0

; r

00

) � s

1

� r

0

� 1=jt

1

j+ 1=jtj

s

i

� r = s

i

�max(r

0

; r

00

) � s

i

� r

00

� 1=jt

i

j+ 1=jtj; i; j � 2:

Thus, by C2, w �

M

f

C. 2

LEMMA 6.27 Let a

1

; : : : ; a

n

be elements in M , t

1

; : : : ; t

n

rational numbers distinct from 0

such that (8i)(a

i

+ t

i

x 2 N(1)). Then

hi �

M

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j)g:

Proof: By induction on the length of the sequences. The base case follows by re
exivity. For

the inductive step let

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

A � fha

1

=t

1

2 (r

0

1

; s

0

1

); : : : ; a

n

=t

n

2 (r

0

n

; s

0

n

)i :

s

0

1

� r

0

1

� 1=jt

1

j+ 1=jt

1

j &

(8i � 2)(s

0

1

� r

0

i

� 1=jt

1

j+ 1=jt

i

j & s

0

i

� r

0

1

� 1=jt

i

j+ 1=jtj)g

B � fha

2

=t

2

2 (r

00

2

; s

00

2

); : : : ; a

n

=t

n

2 (r

00

n

; s

00

n

)i :

(8i; j � 2)(s

00

i

� r

00

j

� 1=jt

i

j+ 1=jt

j

j)g

C � fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j)g:

Lemma 6.26 gives hi �

M

f

A and, by induction hypothesises, hi �

M

f

B. Thus, by dot-right,

hi �

M

f

A � B. By transitivity, it is enough to show A � B �

M

f

C. So take a

w � ha

1

=t

1

2 (r

0

1

; s

0

1

); : : : ; a

n

=t

n

2 (r

0

n

; s

0

n

)i �

ha

2

=t

2

2 (r

00

2

; s

00

2

); : : : ; a

n

=t

n

2 (r

00

n

; s

00

n

)i 2 A � B

and let

w

0

� ha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i;

where

�

(r

1

; s

1

) � (r

0

1

; s

0

1

)

(r

i

; s

i

) � (r

0

i

; s

0

i

) � (r

00

i

; s

00

i

); for i � 2:

Then w � w

0

and w

0

2 C, since

8

>

>

>

>

<

>

>

>

>

:

s

1

� r

1

= s

0

1

� r

0

1

� 1=jt

1

j+ 1=jt

1

j

s

1

� r

i

= s

0

1

�max

i�2

(r

0

i

; r

00

i

) � s

0

1

� r

0

i

� 1=jt

1

j+ 1=jt

i

j; i � 2

s

1

� r

i

= min

i�2

(s

0

i

; s

00

i

)� r

0

i

� s

0

i

� r

0

1

� 1=jt

i

j+ 1=jt

1

j; i � 2

s

i

� r

j

= min

i�2

(s

0

i

; s

00

i

)�max

j�2

(r

0

j

; r

00

j

) �

s

00

i

� r

00

j

� 1=jt

i

j+ 1=jt

j

j; i; j � 2:

Thus, by C2, w �

M

f

C. 2
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LEMMA 6.28 Let n be a natural number greater than 0, a

1

; : : : ; a

n

be elements in M ,

t

1

; : : : ; t

n

rational numbers distinct from 0 and (r

1

; s

1

); : : : ; (r

n

; s

n

) rational intervals. Then

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j) ) max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j):

Proof: Easily proved by induction on the length of the sequences. 2

Proof of lemma 6.20: Lemma 6.27 gives

hi �

M

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j)g

and by lemma 6.28,

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j) ) max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j)

which means that

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

(8i; j)(s

i

� r

j

� 1=jt

i

j+ 1=jt

j

j)g

�

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j)g:

The claim now follows since, in general, a � U & U � V ) a � V . 2

LEMMA 6.29 Let a be an element in M , t a rational number distinct from 0, r, s and q

rational numbers such that s � 1=jtj � q � r+ 1=jtj. Then

ha=t 2 (r; s)i �

M

f

ha 2 (�1 + tq; 1 + tq)i:

Proof: From s � 1=jtj � q � r+ 1=jtj, we get

t(r; s) � (�1 + tq; 1 + tq)

and, since t(a=t) = a,

ht(a=t) 2 t(r; s)i � ha 2 (�1 + tq; 1 + tq)i:

C2 now gives

ht(a=t) 2 t(r; s)i �

M

f

ha 2 (�1 + tq; 1 + tq)i

and by C5

ha=t 2 (r; s)i�

M

f

ha 2 (�1 + tq; 1 + tq)i: 2

LEMMA 6.30 Let fa

1

; : : : ; a

n

g and ft

1

; : : : ; t

n

g be non empty sequences in M and in Q,

respectively, such that (8i)(a

i

+ t

i

x 2 N(1) & t

i

6= 0). Let q be a rational number such that

max(s

i

� 1=jt

i

j) � q � min(r

i

+ 1=jt

i

j). Then

ha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i

�

M

f

ha

1

2 (�1 + t

1

q; 1 + t

1

q); : : : ; a

n

2 (�1 + t

n

q; 1 + t

n

q)i:
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Proof: The proof is by induction on the lenght of the sequences. We have

s

1

� 1=jt

1

j � max(s

i

� 1=jt

i

j) � q � min(r

i

+ 1=jt

i

j) � r

1

+ 1=jt

1

j:

So if n = 1, there is nothing more to prove. Otherwise, lemma 6.24 gives

ha

1

=t

1

2 (r

1

; s

1

)i �

M

f

ha

1

2 (�1 + t

1

q; 1 + t

1

q)i:

Moreover

max

i�2

(s

i

� 1=jt

i

j) �

max(s

i

� 1=jt

i

j) �

q �

min(r

i

+ 1=jt

i

j) �

min

i�2

(r

i

+ 1=jt

i

j)

and, by induction hypothesis,

ha

2

=t

2

2 (r

2

; s

2

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i

�

M

f

ha

2

2 (�1 + t

2

q; 1 + t

2

q); : : : ; a

n

2 (�1 + t

n

q; 1 + t

n

q)i:

The claim now follows, since in general,

x

1

� y

1

& x

2

� y

2

) x

1

� x

2

� y

1

� y

2

: 2

Proof of lemma 6.21: Given an element

ha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i

in

fha

1

=t

1

2 (r

1

; s

1

); : : : ; a

n

=t

n

2 (r

n

; s

n

)i :

max(s

i

� 1=jt

i

j) � min(r

i

+ 1=jt

i

j)g;

let q � max(s

i

� 1=jt

i

j). Then the claim follows easily using lemma 6.30. 2

7 The Implementation

In this section we give some implementation speci�c details.

7.1 Description of the Proof-Checker Half

The implementation has been done in the proof-checker Half, developed by Thierry Coquand,

using a type-checker and an emacs-interface implemented by Dan Synek.

The Half system is a successor to ALF [11]. It is a logical framework based on Martin-L�of's

polymorphic type theory with one universe [12], extended by a theory mechanism (similar to

the theory mechanism in PVS [16]) and let-expressions (cf. [6, 3, 1]).

The system has three levels; Set, Type and Kind. Set is an element and a subset of

Type. Elements can be formed in both Set and Type; both Set and Type are closed under

function types (�-types) and disjoint union (�-types) and allow recursive de�nitions. There

is also a type Theory for theories. Kind consists of the types Set, Type and Theory, and

function types.
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A proof (program) in Half consists of a list of de�nitions and proofs, having the form

f(x

1

: T

1

; : : : ; x

n

: T

n

) = e : T , where the type T

i

may depend on the parameters x

1

; : : : ; x

i�1

and e is an expression of type T .

The �-type is used for expressing dependent function spaces. Given two types A and B,

the �-type for functions from A to B is written (x : A) ! B. Elements of (x : A) ! B

are functions �x ! e, where the abstracted variable x has type A and e is an expression of

type B. The elimination form for elements of �-types is application.

A recursive data type is de�ned using the reserved word data:

dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g;

where A

ij

is an arbitrary type. Elements are introduced using the constructors c

i

c

i

a

i1

� � �a

ij

and the elimination form, for objects of a recursively de�ned data type, is the case-expression

case x of f

c

1

a

11

� � �a

1m

! e

1

;

.

.

.

c

n

a

n1

� � �a

nn

! e

n

g;

where e

1

; : : : ; e

n

are expressions of the same type (the type of the case-expression). For

example, the set of �nite lists may be de�ned by

list(A : Set) = datafNil; Cons(x : A; xs : list A)g : Set

and a list can then be analysed using a case-expression as in the following de�nition of append:

append(A : Set; l

1

: list A; l

2

: list A) =

case l

1

of f

Nil! l

2

;

Cons x xs! Cons x (append A xs l

2

)g : list A:

Note that, using these recursive de�nitions on functional form, non-linear inductive types

cannot be de�ned, i.e. dependencies between the parameters cannot be introduced. It turned

out that pattern matching together with non-linear inductive de�nitions is a non-conservative

extension of Martin-L�of's type theory (see [8]). The approach taken in Half is to allow only

linear inductive de�nitions. As a consequense, the Id -type

a 2 A

id(A; a) 2 Id(A; a; a)

is not de�nable: without dependencies between the parameters there is no way of saying that

the two elements are the same. Therefore, for abstract sets, instead of working with sets

and the Id -type, we work in a more general setting using setoids, i.e. sets with equivalence
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relations. For concrete sets, equalities are explicitly de�ned. This is also closer to the usual

mathematical approach where a set comes together with an equality relation.

A �-type is a dependent record sigft

1

: T

1

; : : : ; t

n

: T

n

g, where the type T

i

may depend

on t

1

; : : : ; t

i�1

. An object of a �-type is formed by constructing objects of the types T

i

,

structft

1

= e

1

; : : : ; t

n

= e

n

g, where e

i

is an expression of type T

i

. The elimination rule for

�-types is projection; if M is of type sigft

1

: T

1

; : : : ; t

n

: T

n

g, the value of its i'th component

is accessed by M:t

i

.

Adding �-types to the system is a conservative extension of the system; it does not

a�ect the strength of the theory, equivalent de�nitions can always be obtained using recursive

de�nitions with one constructor. However, to analyse objects of a recursively de�ned set,

case-analysis is required, even if there is only one case to consider.

Theories are lists of de�nitions and proofs:

th = theoryf

f

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

) = e

1

: T

1

;

.

.

.

f

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

) = e

n

: T

n

g

: Theory

Theories are used to collect de�nitions and lemmas that logically belong together. Identi�ers

de�ned in a theory can be accessed from outside: if th is a theory and f

i

an identi�er de�ned

in th, then the value of f

i

is reached by th:f

i

.

By de�ning functions giving theories as result, a notion of parametrised theory is obtained.

Identi�ers de�ned in a parametrised theory can then be accessed from outside, provided they

are given proper parameters. Also the notion of (parametrised) theory is a conservative exten-

sion of the system: functions occuring in a parametrised theory can always be parametrised

themselves and de�ned outside the theory.

The let-expressions are used for local lemmas and abbreviations:

let x = e

1

: T in e

2

In the environment �, the expression above computes to e

2

(�; x = e

1

�), i.e. the value of e

2

in

the environment � extended with x = e

1

�.

Expressions of this language are thus formed by

sorts Set;Type and Theory

�-types (x : A)! B

abstractions �x! e

applications a b

�-types sigfa

1

: A

1

; : : : ; a

n

: A

n

g

structures structfa

1

= e

1

; : : : ; a

n

= e

n

g

projections b:a

i
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rec. def. types dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g

constructors c

i

case expressions case x of f

c

1

a

11

� � �a

1m

! e

1

;

.

.

.

c

n

a

n1

� � �a

nn

! e

n

g

let expressions let x = e

1

: T in e

2

theories theoryf

f

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

) = e

1

: T

1

;

.

.

.

f

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

) = e

n

: T

n

g

projections th:f

i

variables x

The system also allow mutual recursive de�nitions. But this has not been used in the

proofs in this paper, we have also avoided mutual recursion between a function f and functions

locally de�ned in f .

There is a \size check" for inductively de�ned types. The type

dataf

c

1

(a

11

: A

11

; : : : ; a

1m

: A

1m

);

.

.

.

c

n

(a

n1

: A

n1

; : : : ; a

nk

: A

nk

)g

lives in Set or Type if all A

ij

's live in Set or Type, respectively.

The de�nitional equality is a combination of structural equality and equal by name; for

checking equality of \complex" structures, i.e. data, sig, struct and case, comparision \by

name" is used. This means for instance that in

Bool = datafFalse; Trueg : Set;

Bool

0

= datafFalse; Trueg : Set;

Bool

00

= Bool : Set

Bool and Bool' are not equal, but Bool and Bool" are. This is the approach taken for several

strongly typed languages.

The presence of both Set and Type in Half, where Set corresponds to a universe, allows

a more abstract reasoning than is possible in a system without a universe. We show this by
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a small example with subsets of a set represented as propositional functions. First we give a

name for the type of predicates over a type A:

pred(A : Type) = (x : A)! Set : Type:

The predicates over A are objects in the function space from A to Set. This function space

does not form a set in predicative type theory (it has the type Type). In the same way, given

a type A, we form the type for relations on A:

rel(A : Type) = (x : A; y : A)! Set : Type:

Now we represent subsets of a set A as predicates over A. We say that U is a subset of A

if U is a propositional function ranging over A and an element a of A is a member of U i�

U(a) holds. A propositional function U is then a subset of another propositional function V

provided that Ux implies V x for all x of type A:

subset(A : Set) = �U V ! (x : A; h : Ux)! V x : rel (pred A):

Note that in the type we can see that, given a set A, subset A is a relation on predicates

of A. Also note that, in the last de�nition, A must be a set, since by the de�nition of rel,

(x : A; h : Ux)! V x has to be a set. The system checks this for us.

7.2 Subsets and Finite Subsets

A standard way in type theory to represent subsets of a base set X is to use predicates over

X ; in other words the predicate U represents the subset fx 2 X : U(x) is trueg. Using the

Half notation, a subset of the base set X has the type (x : X) ! Set. We say that an

element a of X is a member of the subset U , a 2 U , i� U(a) holds, i.e. there exists a proof

p of U(a). Moreover, U is a subset of the subset V , U � V , provided that for all elements

x, U(x) ) V (x). Predicates, however, do not in general respect equality, therefore we also

de�ne a weaker subset relation that takes the equality relation on elements as parameter:

U �

=

V � (8x)(U(x)) (9y)(x = y & V (y))):

In a formal topology the cover relation respects the equality relation; so, this second de�nition

is just as strong as it needs to be.

The representation of subsets as predicates indicates that all subsets and subset forming

operations are formed by abstracting a variable x from a proposition P (x) (we usually use

the notation fx : P (x)g for this subset). For instance the union of U and V , U [V , is de�ned

by the abstraction �x:U(x) _ V (x). The properties of the operation, which are the expected

ones, then follows immediately from the properties of the corresponding connective.

For the development of the theories used in this paper, a notion of �nite subset is also

needed. An easy way to handle �nite subsets is to use lists. But since lists of a set X and

predicates over X have di�erent types, a method of converting lists into predicates is needed

when mixing the two notions. To transform a list into a predicate we here simply abstract a

variable belonging to the list:

�x:x 2 l;

where 2 is the membership relation on lists. We also need a relation �

f

between lists of

type X and predicates over X , where the meaning of l �

f

U is that l is a �nite subset of
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U . Since lists are de�ned recursively and proofs about lists are by induction, the best way to

de�ne l �

f

U is by induction on l:

l �

f

U � case l of

nil ) fTrueg;

x :: xs ) U(x) & xs �

f

U:

Another way to handle �nite subsets is to use functions from a �nite set to the base X .

We start with the following canonical �nite sets.

�

N

0

� ;

N

k+1

� N

k

+ fTrueg:

A natural number k together with a function f of type N

k

�! X represents the �nite set

fx 2 X : (9i 2 N

k

)(f(i) = x)g:

So to obtain a predicate of X from the pair hk; fi we abstract a variable belonging to the

image of N

k

under f :

�x:(9i 2 N

k

)(f(i) = x):

The two ways of representing �nite subsets are equivalent, but they have di�erent advan-

tages (and disadvantages). Using lists, we have the possibility of using case-analysis over lists.

Using functions from �nite sets, we have the possibility of quantifying over the \indices" of

the �nite subsets.

In the implementation the list version of �nite subset is used everywhere, except in de�-

nition of the cover in de�nition 4.2, where functions are used to represent �nite subsets. In

the rule C3 the subset V is represented by a natural number k and a function f from N

k

to Q � Q. The reason is that it makes proofs by induction on the derivation of w �

A

f

U

easier. The list approach would here force a local lemma and mutual recursion; while using

the chosen approach, the induction hypothesis can be applied directly inside the assumption

i 2 N

k

.

7.3 Formal Spaces

A natural way of collecting general properties of a mathematical structure is to use the notion

of parametrised theory. First a type for the structure is de�ned and the lemmas for this type

are then collected inside a theory, parametrised over objects of the type. Given an instance

of the mathematical structure, we can then get access to the theory and use the proofs inside

it.

A formal space is here de�ned as a �-type: The set S with the equality relation =, the

binary operation � and the relation � form a formal space; if hS;=; �i form a monoid, �

respects the equality relation and the conditions of a formal topology (re
exivity, transitivity,

dot-left, dot-right) are satis�ed. We denote this �-type by space(S;=; �;�).

Properties of a general formal space are then collected in a theory parametrised over a set

S, a relation =, a binary operation �, a relation � and a proof that hS;=; �;�i form a formal

space (i.e. an object of space(S;=; �;�)).
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7.4 Rational Numbers

The rational numbers Q are here formed abstractly. Following von Plato [17], we start with

the order relation < and, for element p; q; r 2 Q, state the axioms

:(p < q & q < p)

p < q ) p < r _ r < q.

For this order, weak order and equality is de�ned by

p � q � :(q < p)

p = q � p � q & q � p.

The set of rational numbers form a decidable, unbounded and dense order:

p < q _ :(p < q)

(8p)(9q)(q < p)

(8p)(9q)(p < q)

p < q ) (9r)(p < r < q).

Then we add the elements 0 and 1; the binary operations + and �; unary � and the inverse

operation (�)

�1

for nonzero elements such that hQ; 0;+;�; 1; �; (�)

�1

;=i form a �eld. Finally

we need axioms for relating < to + and < to �

p < q ) p+ r < q + r

p < q & 0 < r) p � r < q � r

and the Archimedian axiom

(8p; q > 0)(9n 2 N)(�n � q > p),

where n 7�! �n is the embedding of N into Q.

So we de�ne a �-type, ABSTR Q, consisting of a set Q with the relation <, such that Q

and < form a dense, decidable, unbounded linear order, with all the elements and operations

described above, and such that all the axioms hold. The \true" set of rational numbers should

be an element of ABSTR Q. Future de�nitions and proofs are parametrised over ABSTR Q.

7.5 The Continuum

Given the rational numbers (or rather an element of ABSTR Q), the continuum can now be

de�ned as described in section 3. Once it is proved that R satis�es the conditions of a formal

topology we have an instance of the formal space, i.e. an object of the type space(Q�Q;=

Q�Q

;

�;�

R

).

29



7.6 Seminormed Linear Spaces

A linear space over the the rationals is a set of vectors X with a zero element 0, binary

addition + and negation �, such that hX; 0;+;�i constitutes an Abelian group. Moreover,

to each pair p and x, where p is a rational number and x is a vector, there corresponds a

vector p � x, called the product of p and x, such that

p � (q � x) = (p � q) � x

p = q & x = y ) p � x = q � y

1 � x = x

(p+ q) � x = p � x+ q � x

p � (x+ y) = p � x+ p � y.

A seminormed linear space is then a linear space equipped with a seminorm, a predicate

N on Q�X (for readability the notation x 2 N(q) is used for N(q; x)).

Linear spaces and seminormed linear spaces are treated in the same way as the rational

numbers. They are de�ned as certain �-types describing the elements, operations and axioms

of a linear space and a seminormed linear space, respectively.

A subspace of the linear space X is a linear space A which is a subset of X . A linear

subspace A of the linear space X is here a propositional function A over X (we use the

notation x 2 A for A(x) true) satisfying

0 2 A

x 2 A & x = y ) y 2 A

x 2 A) p � x 2 A

x 2 A & y 2 A) x+ y 2 A.

To de�ne the subspaces we state, using a �-set, under what circumstances a predicate A of

X is a proper linear subspace. We denote this �-set by seminolinsubsp(A). To express that a

linear spaceM is a subspace of another linear space the usual subset relation between subsets

is used, since M and A are predicates.

Linear spaces can then be generated in the following ways. The linear space only contain-

ing the 0-vector:

[ ] � fy : y = 0g.

Given a linear space M , the extension of M with x:

[M + x] � fy : (9z 2M; t 2 Q)(y = z + tx)g.

Given a linear space M , the extension of M with a �nite set M

0

(represented by a list):

[M +M

0

] � case M

0

of

nil ) M;

x ::M

1

) [[M +M

1

] + x]:

The linear space spanned by a �nite set M

0

:
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[M

0

] � [[ ] +M

0

].

For each one of these generated subspaces it must be proved that they really are linear spaces,

i.e. objects of seminolinsubsp([ ]), seminolinsubsp([M + x]), etc., have to be found, but this

follows easily from the way the predicates are generated.

7.7 Formal Linear Functionals

Let X be a seminormed linear space. The subbasic elements of the formal topology of linear

functionals of norm � 1, consist of pairs of the form hx; Ii, where x is an element of X and

I a rational interval. The base S consists of �nite lists of these subbasic elements. The dot-

operation is then append. Using the subset relation on lists, the proofs that the base form a

monoid all follow from general properties of lists and so does idempotence.

7.8 Structure of the Implementation

The entire implementation consists of de�nitions and proofs divided between several theories

and �les

4

. Many of them are not speci�c to the development of the proof of the Hahn-Banach

theorem. We here brie
y describe what the �les contain.

core.half : General data types and de�nitions about relations.

dec.half

5

: Decidable propositions and relations.

monoid.half : De�nition of congruent and commutative monoid.

interval.half

5

: De�nition of interval de�ned as a pair of its endpoints. A theory containing

some properties of relations on interval.

linear.half : De�nition of a general linear ordering.

declinear.half

5

: Decidability is here added to the linear ordering.

unbounddensedec.half : The ordering above is here also unbounded and dense.

�n.half : De�nition of �nite lists and a theory containing general properties of lists.

subsets.half : De�nitions of the subset relation and union for subsets (predicates). A theory

containing general properties of subsets and �nite subsets represented by lists. (see

section 7.2)

space.half

5

: De�nition of formal space (de�nition 2.1). A theory containing some general

properties of formal spaces, such as stability, localisation and the fact that a cover re-

spects the subset relation (see section 2), de�nition of formal Stone cover (de�nition 2.2)

and compact formal space (de�nition 2.3). A lemma saying that stability is derivable

without dot-right if localisation holds (see section 2.1).

4

The �les are obtainable from the URL:

ftp://ftp.cs.chalmers.se/pup/users/ceder/hahnbanach/hhb.tar.

5

Parts of the de�nitions and proofs in this �le are due to Thierry Coquand.
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continuum.half : De�nition of the continuum R as a formal space (de�nition 3.1). The

de�nition of the cover �

R

goes via a �nitely inductively de�ned cover �

R

f

. Proofs that

R really is a formal space (the lemmas 3.2{3.4 and proposition 3.5).

�nset.half : Finite subsets of a set A are here de�ned as functions from canonical �nite sets

to A (see section 7.2).

algstruct.half : De�nitions of some algebraic structures used to de�ne the abstract rational

numbers in section 7.4.

�n2.half : A theory containing some further properties of lists. Provided that the equality

relation on elements are re
exive and transitive, we prove that append is congruent,

commutative, associative and idempotent with respect to the subset equality de�ned on

lists.

RatnumAndLinalg.half : De�nitions of the abstract rational numbers ABSTR Q (see

section 7.4) and linear spaces (see section 7.6).

The rational numbers are de�ned as a �-type consisting of a set Q with the relation

<, such that Q and < form a dense, decidable, unbounded linear order, and with

all the elements, operations and properties described in section 7.4. Included in this

�-type are also several very elementary properties of the rational numbers which are

assumed to hold. These properties do follow from the axiomatisation. Intuitively they

are trivial and there should be no di�culties in proving them formally either. The

reason why we do not prove these properties instead of assuming them is that it would

be tedious and the purpose of this work has not been to prove elementary lemmas about

rational numbers. Observe that these assumptions are not unproved lemmas: elements

of ABSTR Q are records and the assumptions are part of the axiomatisation.

The linear spaces are then treated in the same way.

Here are also some additional properties of the cover �

R

f

proved: the lemmas 3.6{3.8.

hhb.half : The implementation of the Hahn-Banach theorem is structured in theories in

the following way. The proof consists of a single theory, theory_semi_no_linsp,

parametrised over seminormed linear spaces (de�nition 4.1). Apart from proofs of some

basic properties of the norm; de�nition of seminormed linear subspace (seminolinsubsp

section 7.6); de�nition of the base S (de�nition 4.2); de�nition and properties of the

relations =, <, �, =

�

on S; theory_semi_no_linsp also contains two nested theories:

theory_LINSUBSP and theoryHHB.

theory_LINSUBSP is parametrised over a seminormed linear subspace A, it contains

de�nitions and proofs speci�c to one seminormed linear subspace. Here are for instance

the cover relations �

A

f

and �

A

de�ned (de�nition 4.2); and proofs that hS;=

�

; �;�

A

f

i

and hS;=

�

; �;�

A

i are formal topologies (proposition 4.8). Here are also proofs that �

A

f

is a Stone cover (proposition 5.1) and Alaoglu's theorem (corollary 5.2).

theoryHHB is parametrised over two seminormed linear subspaces, M and A, and a

proof that M is a subspace of A. Here we �nd a proof of the conservativity property

(proposition 6.2); de�nitions of how to extend a a seminormed linear subspace (see

section 7.6); the lemmas 6.3{6.7, and �nally the Hahn-Banach theorem 6.1. In this
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theory there is also a nested theory, theory_key, containing de�nitions and lemmas for

the proof of lemma 6.4.

theory_key is parametrised over a seminormed linear subspace M and an element x,

here we �nd de�nitions and proofs related to the transformation of neighbourhoods

from L([M + x]) to L(M). theory_key contains for instance de�nitions of P (de�ni-

tion 6.11); the key lemma 6.14 (and 6.19) and the lemmas 6.20{6.21, 6.23{6.26, 6.12.

The theory theory_key contains yet another nested theory theory_cof with de�nitions

and proofs speci�c to the cover in de�nition 6.10. theory_cof is parametrised over a

list of elements in [M +x] of norm � 1. Apart from the de�nition of the cover in de�ni-

tion 6.10, theory_cof also contains a de�nition of the transformation of neighbourhoods

and subsets from L([M + x]) to L(M) (de�nition 6.8); the lemma that performs the

transformation (lemma 6.17); and the lemmas 6.13, 6.18.
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7.9 Cross Reference List

def/lem formal name located in theory �le

def 2.1 space space.half

def 2.2 stone theory space "

def 2.3 compact " "

sec 2

stability stab " "

localisation loc " "

� respects � lem14, lem15 " "

stability

follows from

localisation STAB "

def 3.1

Q� Q QxQ theory continuum continuum.half

=

Q�Q

eqQxQ " "

� dot " "

�

R

f

covf " "

�

R

cov " "

lem 3.2 axiom0f, reflf, transf,

dotlf, dotrf " "

lem 3.3 translem " "

lem 3.4 axiom0, refl, trans,

dotl, dotr " "

prop 3.5 Rf, R " "

lem 3.6 ltQxQcovRflem theory ABSTR Q RatnumAndLinalg.half

lem 3.7 addQxQcovRflem " "

lem 3.8 fincovRf " "

lem 3.9 covftocov theory continuum continuum.half

def 4.1 semi no linsp hhb.half

def 4.2

S S theory semi no linsp "

= eqS " "

< ltS " "

� leqS " "

�

A

f

covf " "

�

A

cov " "

def 4.3

� dot " "

=

�

eqS2 " "

def 4.4 lives, subs lives theory semi no linsp,

theory LINSUBSP "

lem 4.5 axiom0f, reflf, transf,

dotlf, dotrf " "

lem 4.6 translem " "

lem 4.7 axiom0, refl, trans,

dotl, dotr " "

prop 4.8 isspacef, isspace " "

lem 4.9 covftocov " "

lem 4.10 covtocovf " "

lem 4.11 convcovf2 theory semi no linsp,

theoryHHB "
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def/lem formal name located in theory �le

prop 5.1 isStone theory semi no linsp,

theory LINSUBSP hhb.half

thrm 5.2 Alaoglu " "

thrm 6.1 HHB theory semi no linsp,

theoryHHB "

prop 6.2 conserveprop " "

lem 6.3 HHBf " "

lem 6.4 HHBf2 " "

lem 6.5 HHBf0 " "

cor 6.6 HHBf1 " "

lem 6.7 HHBf3 " "

def 6.8 bar, barsubs theory semi no linsp,

theoryHHB, theory key,

theory cof "

lem 6.9 barlem4 " "

def 6.10 cof " "

def 6.11 P theory semi no linsp,

theoryHHB, theory key "

lem 6.12 covftocof " "

lem 6.13 coftocovf2 theory semi no linsp,

theoryHHB, theory key,

theory cof "

lem 6.14 hhbkey2 theory semi no linsp,

theoryHHB, theory key "

lem 6.15 liveslem6 theory semi no linsp,

theoryHHB, theory key,

theory cof "

lem 6.16 leqSlem9 theory semi no linsp "

lem 6.17 coftocovfbar theory semi no linsp,

theoryHHB, theory key,

theory cof "

cor 6.18 coftocovf1 " "

lem 6.19 hhbkey1 theory semi no linsp,

theoryHHB, theory key "

lem 6.20 hhbkey1lem1 " "

lem 6.21 hhbkey1lem2 " "

lem 6.22 splitsum1, splitsum2 theory semi no linsp,

theory LINSUBSP "

lem 6.23 Nlem3 theory semi no linsp,

theoryHHB, theory key "

lem 6.24 covlem1 " "

lem 6.25 covlem2lem2 " "

lem 6.26 covlem2 " "

lem 6.27 covlem3 " "

lem 6.28 maxsminrlem " "

lem 6.29 covflem1 " "

lem 6.30 covflem2 " "
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def/lem formal name located in theory �le

sec 7.2

� Subset subsets.half

�

=

Subset2 "

[ Union "

�

f

finsubset theory subsets "

N NN finset.half

sec 7.4

order islinear declinear.half

� leq theoryLinear linear.half

= eq " "

dec order isdeclinear unbounddencedec.half

dec, unbounded,

dense order isdenseunbdeclinear "

ABSTR Q ABSTR Q RatnumAndLinalg.half

sec 7.6

linear spaces linsp "

semi no lin sp semi no linsp hhb.half

[ ] ZERO theory semi no linsp,

theoryHHB "

[M + x] finext1 " "

[M +M

0

] finext " "

[M

0

] mk lin " "
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