
Canonicity for cubical type theory

Introduction

We consider two versions of cubical type theory (on distributive lattices1). In both cases, the syntax has
a filling and a “gluing” operation2 and a hierarchy of cumulative universes. In version S1 however, filling
is treated as a constant, and in version S2, filling over a type has computation rules given by case on this
type. So version S2 is an extension of S1 by giving further computation rules.

Version S1 has a model in simplicial sets and is compatible with classical logic, while it is not clear
at this point if this is the case for version S2.

Simon Huber has proved canonicity for S2: any closed term of type N2 (Booleans) reduces to 0 or
reduces to 1. In particular it is convertible to 0 or 1.

The goal of this note is to prove canonicity for the system S1 in the following form: if we have a
closed term t of type N2 then we either have a path from 0 to t or a path from 1 to t. This corresponds
to Voevodsky’s conjecture.

A corollary of this result is that in any extension of S1 where we can compute (e.g. S2, or the system
based on de Morgan algebra, or the system based on Boolean algebras) a closed term of type N2 will
compute to the same value, independently of the extension. Also, since simplicial sets form a model of
S1, we know that, e.g. if we compute π4(S3) in any of these systems, we get the same value as the one
we get for topological spaces.

1 Proof relevant reducibility predicate

We consider the cubical set model of S1. In this model we have a hierarchy of universes of fibrant types
Un, and on top of this hierarchy a universe Uω. We also have (following A. Swan) a type Id A a0 a1.

We can in this model consider the term model3 of the system system S1. We have a type of contexts
Con in U0 and if Γ : Con a type |Γ| of closed instances of Γ. We have a type Typen(Γ) in U0 of types in
Γ type of level n. If A : Typen(Γ) we have a type Term(Γ, A) of closed terms of type A. We have the
empty context () and we write simply Term(A) for Term((), A) if A is in Typen() and we write simply
Typen for Typen(). We have a term Un : Typen+1 such that Term(Un) = Typen.

We have a term N2 : Type0 with two canonical elements 0 1 : Term(N2) and we have a coding function
q : N2 → Term(N2) defined by q(0) = 0 and q(1) = 1.

We form then a new model of S1. In this model a context is given by a context Γ : Con and a
“predicate” CΓ : |Γ| → Uω. A type at level n in Γ, CΓ is given by a term T : Typen(Γ) and a “predicate”
CT (ρ, ρ′) : Term(Tρ) → Un. Context extension is then obtained by taking Γ.T and

CΓ.T (ρ, t) = Σ(ρ′ : CΓ(ρ))CT (ρ, ρ′)(t)

A substitution in ∆, C∆ → Γ, CΓ is given by a pair σ, σ′ with σ in ∆ → Γ and σ′ in Π(ν ∈ |∆|)C∆(ν) →
CΓ(σν). We define then Term((Γ, CΓ), (A,CA)) to be a pair a, a′ with a in Term(Γ, A) and a′ρρ′ is in
CA(ρ, ρ′)(aρ) if ρ is in |Γ| and ρ′ in CΓ(ρ).

The extension operation is defined by (Γ, CΓ).(A,CA) = Γ.A, CΓ.A where CΓ.A(ρ, u) is the set of pairs
ρ′, u′ with ρ′ ∈ CΓ(ρ) and u′ in CA(ρ, ρ′)(u).

1The same method can probably be applied to the cartesian cube model.
2This expresses an equivalence extension property, which is one way to formulate univalence.
3Actually, what we present can be done for an arbitrary model of S1 as explained in the next section.

1



We define CT as follows.

If T = Un, we take CT (X) = Term(X) → Un, so that CUn : Term(Un) → Un+1.

If T = N2, we take CT (t) = Σ(b : N2) Id Term(N2) q(b) t.

If T = ΠAB, we take CT (ρ, ρ′)(t) = Π(u : Term(Aρ))Π(u′ : CA(ρ, ρ′)(u))CB((ρ, u), (ρ′, u′))(app(t, u)).

If T = Σ A B, we take CT (ρ, ρ′)(t) = Σ(u′ : CA(ρ, ρ′)(t.1))CB((ρ, t.1), (ρ′, u′))(t.2).

If T = Path A a0 a1, we take CT (ρ, ρ′)(t) = Pathi CA(ρ, ρ′)(t i) a′0 a
′
1 where a′0 : CA(ρ, ρ′)(a0ρ) and

a′1 : CA(ρ, ρ′)(a1ρ).

If T = Glue [ψ 7→ (B,w)] A, given CA, and CB , w
′ : Π(t : Bρ)CB(ρ, ρ′)(t) → CA(ρ, ρ′)(wρ t) partially

defined on ψ, we define4

CT (ρ, ρ′)(u) = Glue [ψ 7→ (CB(ρ, ρ′)(u), w′ u)] CA(ρ, ρ′)(unglue u)

This defines a new model of S1. If we compute the semantics of a closed term t of type N2 in this
model we get an element t′ in Σ(b : N2)Id Term(N2) q(b) t. But in this model N2 is the constant Boolean
presheaf, hence we get the canonicity result.

We use Id in order to interpret elimination rule over N2: if we define f : Π N2 T by cases app(f, 0) = u0

and app(f, 1) = u1, and given u′0 : CT (0, 0′)(u0) and u′1 : CT (1, 1′)(u1), we can define

f ′ : Π(t : Term(N2))Π(t′ : CN2
(t))CT (t, t′)(app(f, t))

by Id elimination, such that f ′ 0 0′ = u′0 and f ′ 1 1′ = u′1.

Since the model is effective, we can produce, given t, an actual value 0 or 1 and a path in Term(N2)
between t and this value.

A concrete example is the following. We can consider the equivalence ¬ : N2 → N2 defined by the
negation. We can then consider the type T (i) = Glue [i = 0 7→ (N2, id), i = 1 7→ (N2,¬)] N2 which is
a path between T (0) = N2 and T (1) = N2 and the term t = compi T (i) [] 0 of type N2. We compute
an element in CN2(t) and this produces the element 1 and a path betwen 1 and t in Term(N2). This
computation is possible since CN2 defines a fibration over N2.

Note that the same argument cannot apply as such for S2 (reproving Simon Huber’s result). The
problem is for defining CN2(t): if we express strict equality to 0 or 1 then we get a non fibrant type. It
is then not so simple to define CUn

(X). These problems disappear in the present version where CN2
(t)

is expressed as a fibrant type.

Note also that we could instead have used the simplicial set model of S1. The difference is that we
would get only, given a closed term of type N2, the classical existence of a Boolean 0 or 1 and a path
between 0 or 1 and this term.

If we have a type of natural numbers N we define inductively

CN (t) = Id Term(N) 0 t+ Σ(u : Term(N))(u′ : CN (u)) Id Term(N) (succ u) t

4It can be shown that w′ u is an equivalence.

2



An algebraic presentation of S1

We work in a presheaf topos where we have an interval I (with a distributive lattice structure) and a
presheaf F of “cofibrant” truth values. In the following “set” means set in the internal language of this
presheaf topos.

In this framework we can define what is a model of S1. This is a generalization of the notion of
category with families.

A model is given by a set of contexts. If Γ,∆ are two given contexts we have a set ∆ → Γ of
substitutions from ∆ to Γ. These collections of sets are equipped with operations that satisfy the laws of
composition in a category: we have a substitution 1 in Γ → Γ and a composition operator σδ in Θ → Γ
if δ is in Θ → ∆ and σ in ∆ → Γ. Furthermore we should have σ1 = 1σ = σ and (σδ)θ = σ(δθ) if
θ : Θ1 → Θ.

We assume to have a “terminal” context (): for any other context, there is a unique substitution,
also written (), in Γ → (). In particular we have ()σ = () in ∆ → () if σ is in ∆ → Γ.

We write |Γ| the set of substitutions () → Γ.

If Γ is a context we have a cumulative sequence of sets Typen(Γ) of types over Γ at level n (where n
is a natural number). If A in Typen(Γ) and σ in ∆ → Γ we should have Aσ in Typen(∆). Furthermore
A1 = A and (Aσ)δ = A(σδ). If A in Typen(Γ) we also have a collection Term(Γ, A) of elements of
type A. If a in Term(Γ, A) and σ is in ∆ → Γ we have aσ in Term(∆, Aσ). Furthermore a1 = a and
(aσ)δ = a(σδ). If A is in Typen() we write |A| the set Term((), A).

We have a context extension operation: if A is in Typen(Γ) then we can form a new context Γ.A.
Furthermore there is a projection p in Γ.A → Γ and a special element q in Term(Γ.A,Ap). If σ is in
∆ → Γ and A in Typen(Γ) and a in Term(∆, Aσ) we have an extension operation (σ, a) in ∆ → Γ.A.
We should have p(σ, a) = σ and q(σ, a) = a and (σ, a)δ = (σδ, aδ) and (p, q) = 1.

If a is in Term(Γ, A) we write 〈a〉 = (1, a) in Γ → Γ.A. Thus if B is in Typen(Γ.A) and a in Term(Γ, A)
we have B〈a〉 in Typen(Γ). If furthermore b is in Term(Γ.A,B) we have b〈a〉 in Term(Γ, B〈a〉).

A global type of level n is given by a an element C in Typen(). We write simply C instead of C() in
Typen(Γ) for () in Γ → (). Given such a global element C, a global element of type C is given by an
element c in Term((), C). We then write similarly simply c instead of c() in Term(Γ, C).

Models are sometimes presented by giving a class of special maps (fibrations), where a type are
modelled by a fibration and elements by a section of this fibration. In our case, the fibrations are the
maps p in Γ.A → Γ, and the sections of these fibrations correspond exactly to elements in Term(Γ, A).
Any element a Term(Γ, A) defines a section 〈a〉 = (1, a) : Γ → Γ.A and any such section is of this form.

1.1 Dependent product types

A category with families has product types if we furthermore have one operation Π A B in Typen(Γ) for A
is in Typen(Γ) and B is in Typen(Γ.A). We should have (Π A B)σ = Π (Aσ) (Bσ+) where σ+ = (σp, q).
We have an abstraction operation λb in Term(Γ,Π A B) given b in Term(Γ.A,B). We have an application
operation such that app(c, a) is in Term(Γ, B〈a〉) if a is in Term(Γ, A) and c is in Term(Γ,Π A B). These
operations should satisfy the equations

app(λb, a) = b〈a〉 c = λ(app (cp, q)) (λb)σ = λ(bσ+) app(c, a)σ = app(cσ, aσ)

where we write σ+ = (σp, q).

1.2 Cumulative universes

We assume to have global elements Un in Typen+1(Γ) such that Typen(Γ) = Term(Γ, Un).

1.3 Filling operation

We assume to have a filling operation. This means that if A is in Typen(Γ)I and we have a partial family
of elements in Term(Γ, A(i)) for i satisfying ψ ∨ i = b, where ψ is in F and b = 0 or 1 then we can extend
this partial family to a total family of elements in Term(Γ, A(i)).

The new component is that we don’t assume any “computation rules” for these filling operations.

3



1.4 “Gluing” operation

This expresses that we can extend a partially defined equivalence to a totally defined equivalence (which
is one way to formulate univalence). Given A in Typen(Γ) and T defined only on the extent ψ in
Typen(Γ) and an equivalence w between T and A defined on the extent ψ, then we can find an element
G = Glue [ψ 7→ (T,w)] A in Typen(Γ) which restricts to T on ψ and a map unglue from G to A which
restricts to w on ψ. An element of G is of the form glue [ψ 7→ t] a with a in Term(Γ, A) and t partial
element of Term(Γ, T ) of extent ψ such that app(w, t) = a on ψ. It is then possible to show that the map
unglue : G→ A is an equivalence and so univalence (equivalent to the equivalence extension property) is
provable in this system.

4


