Canonicity for cubical type theory

Introduction

We consider two versions of cubical type theory (on distributive lattices¹). In both cases, the syntax has a filling and a "gluing" operation² and a hierarchy of cumulative universes. In version S_1 however, filling is treated as a *constant*, and in version S_2 , filling over a type has computation rules given by case on this type. So version S_2 is an extension of S_1 by giving further computation rules.

Version S_1 has a model in simplicial sets and is compatible with classical logic, while it is not clear at this point if this is the case for version S_2 .

Simon Huber has proved canonicity for S_2 : any closed term of type N_2 (Booleans) reduces to 0 or reduces to 1. In particular it is convertible to 0 or 1.

The goal of this note is to prove canonicity for the system S_1 in the following form: if we have a closed term t of type N_2 then we either have a path from 0 to t or a path from 1 to t. This corresponds to Voevodsky's conjecture.

A corollary of this result is that in *any* extension of S_1 where we can compute (e.g. S_2 , or the system based on de Morgan algebra, or the system based on Boolean algebras) a closed term of type N_2 will compute to the *same* value, independently of the extension. Also, since simplicial sets form a model of S_1 , we know that, e.g. if we compute $\pi_4(S^3)$ in any of these systems, we get the same value as the one we get for topological spaces.

1 Proof relevant reducibility predicate

We consider the cubical set model of S_1 . In this model we have a hierarchy of universes of fibrant types U_n , and on top of this hierarchy a universe U_{ω} . We also have (following A. Swan) a type Id $A a_0 a_1$.

We can in this model consider the term model³ of the system system S₁. We have a type of contexts Con in U₀ and if Γ : Con a type $|\Gamma|$ of closed instances of Γ . We have a type $Type_n(\Gamma)$ in U₀ of types in Γ type of level *n*. If $A: Type_n(\Gamma)$ we have a type $\mathsf{Term}(\Gamma, A)$ of closed terms of type *A*. We have the empty context () and we write simply $\mathsf{Term}(A)$ for $\mathsf{Term}((), A)$ if *A* is in $Type_n()$ and we write simply $Type_n$ for $Type_n()$. We have a term $U_n: Type_{n+1}$ such that $\mathsf{Term}(U_n) = Type_n$.

We have a term $N_2 : Type_0$ with two canonical elements $0 \ 1 : \text{Term}(N_2)$ and we have a coding function $q : \mathbb{N}_2 \to \text{Term}(N_2)$ defined by q(0) = 0 and q(1) = 1.

We form then a new model of S₁. In this model a context is given by a context Γ : Con and a "predicate" $C_{\Gamma} : |\Gamma| \to U_{\omega}$. A type at level n in Γ, C_{Γ} is given by a term $T : Type_n(\Gamma)$ and a "predicate" $C_T(\rho, \rho') : \text{Term}(T\rho) \to U_n$. Context extension is then obtained by taking $\Gamma.T$ and

$$C_{\Gamma.T}(\rho, t) = \Sigma(\rho' : C_{\Gamma}(\rho))C_T(\rho, \rho')(t)$$

A substitution in $\Delta, C_{\Delta} \to \Gamma, C_{\Gamma}$ is given by a pair σ, σ' with σ in $\Delta \to \Gamma$ and σ' in $\Pi(\nu \in |\Delta|)C_{\Delta}(\nu) \to C_{\Gamma}(\sigma\nu)$. We define then $\operatorname{Term}((\Gamma, C_{\Gamma}), (A, C_{A}))$ to be a pair a, a' with a in $\operatorname{Term}(\Gamma, A)$ and $a'\rho\rho'$ is in $C_{A}(\rho, \rho')(a\rho)$ if ρ is in $|\Gamma|$ and ρ' in $C_{\Gamma}(\rho)$.

The extension operation is defined by $(\Gamma, C_{\Gamma}).(A, C_A) = \Gamma.A, C_{\Gamma.A}$ where $C_{\Gamma.A}(\rho, u)$ is the set of pairs ρ', u' with $\rho' \in C_{\Gamma}(\rho)$ and u' in $C_A(\rho, \rho')(u)$.

¹The same method can probably be applied to the cartesian cube model.

 $^{^{2}}$ This expresses an equivalence extension property, which is one way to formulate univalence.

³Actually, what we present can be done for an arbitrary model of S_1 as explained in the next section.

We define C_T as follows.

If $T = U_n$, we take $C_T(X) = \operatorname{Term}(X) \to U_n$, so that $C_{U_n} : \operatorname{Term}(U_n) \to U_{n+1}$. If $T = N_2$, we take $C_T(t) = \Sigma(b : \mathbb{N}_2)$ ld $\operatorname{Term}(N_2) q(b) t$. If $T = \Pi A B$, we take $C_T(\rho, \rho')(t) = \Pi(u : \operatorname{Term}(A\rho))\Pi(u' : C_A(\rho, \rho')(u))C_B((\rho, u), (\rho', u'))(\operatorname{app}(t, u))$. If $T = \Sigma A B$, we take $C_T(\rho, \rho')(t) = \Sigma(u' : C_A(\rho, \rho')(t.1))C_B((\rho, t.1), (\rho', u'))(t.2)$.

If $T = \text{Path } A \ a_0 \ a_1$, we take $C_T(\rho, \rho')(t) = \text{Path}^i \ C_A(\rho, \rho')(t \ i) \ a'_0 \ a'_1$ where $a'_0 : C_A(\rho, \rho')(a_0\rho)$ and $a'_1 : C_A(\rho, \rho')(a_1\rho)$.

If $T = \text{Glue} [\psi \mapsto (B, w)] A$, given C_A , and C_B , $w' : \Pi(t : B\rho)C_B(\rho, \rho')(t) \to C_A(\rho, \rho')(w\rho t)$ partially defined on ψ , we define⁴

$$C_T(\rho, \rho')(u) = \mathsf{Glue} \left[\psi \mapsto (C_B(\rho, \rho')(u), w' u)\right] C_A(\rho, \rho')(\mathsf{unglue} u)$$

This defines a new model of S_1 . If we compute the semantics of a closed term t of type N_2 in this model we get an element t' in $\Sigma(b: N_2)$ ld Term $(N_2) q(b) t$. But in this model N_2 is the constant Boolean presheaf, hence we get the canonicity result.

We use Id in order to interpret elimination rule over N_2 : if we define $f : \prod N_2 T$ by cases $app(f, 0) = u_0$ and $app(f, 1) = u_1$, and given $u'_0 : C_T(0, 0')(u_0)$ and $u'_1 : C_T(1, 1')(u_1)$, we can define

$$f': \Pi(t: \operatorname{Term}(N_2))\Pi(t': C_{N_2}(t))C_T(t, t')(\operatorname{app}(f, t))$$

by Id elimination, such that $f' \ 0 \ 0' = u'_0$ and $f' \ 1 \ 1' = u'_1$.

Since the model is effective, we can produce, given t, an *actual* value 0 or 1 and a path in $\text{Term}(N_2)$ between t and this value.

A concrete example is the following. We can consider the equivalence $\neg : N_2 \to N_2$ defined by the negation. We can then consider the type $T(i) = \mathsf{Glue} \ [i = 0 \mapsto (N_2, id), \ i = 1 \mapsto (N_2, \neg)] \ N_2$ which is a path between $T(0) = N_2$ and $T(1) = N_2$ and the term $t = \mathsf{comp}^i \ T(i) \ [] \ 0$ of type N_2 . We compute an element in $C_{N_2}(t)$ and this produces the element 1 and a path between 1 and t in $\mathsf{Term}(N_2)$. This computation is possible since C_{N_2} defines a fibration over N_2 .

Note that the same argument cannot apply as such for S_2 (reproving Simon Huber's result). The problem is for defining $C_{N_2}(t)$: if we express *strict* equality to 0 or 1 then we get a *non fibrant* type. It is then not so simple to define $C_{U_n}(X)$. These problems disappear in the present version where $C_{N_2}(t)$ is expressed as a *fibrant* type.

Note also that we could instead have used the *simplicial set model* of S_1 . The difference is that we would get only, given a closed term of type N_2 , the *classical* existence of a Boolean 0 or 1 and a path between 0 or 1 and this term.

If we have a type of natural numbers N we define inductively

 $C_N(t) = \mathsf{Id} \operatorname{Term}(N) \ 0 \ t + \Sigma(u : \operatorname{Term}(N))(u' : C_N(u)) \ \mathsf{Id} \operatorname{Term}(N) \ (\mathsf{succ} \ u) \ t$

⁴It can be shown that w' u is an equivalence.

An algebraic presentation of S_1

We work in a presheaf topos where we have an interval \mathbb{I} (with a distributive lattice structure) and a presheaf \mathbb{F} of "cofibrant" truth values. In the following "set" means set in the internal language of this presheaf topos.

In this framework we can define what is a model of S_1 . This is a generalization of the notion of category with families.

A model is given by a set of *contexts*. If Γ, Δ are two given contexts we have a set $\Delta \to \Gamma$ of *substitutions* from Δ to Γ . These collections of sets are equipped with operations that satisfy the laws of composition in a category: we have a substitution 1 in $\Gamma \to \Gamma$ and a composition operator $\sigma\delta$ in $\Theta \to \Gamma$ if δ is in $\Theta \to \Delta$ and σ in $\Delta \to \Gamma$. Furthermore we should have $\sigma 1 = 1\sigma = \sigma$ and $(\sigma\delta)\theta = \sigma(\delta\theta)$ if $\theta: \Theta_1 \to \Theta$.

We assume to have a "terminal" context (): for any other context, there is a unique substitution, also written (), in $\Gamma \to ($). In particular we have () $\sigma = ($) in $\Delta \to ($) if σ is in $\Delta \to \Gamma$.

We write $|\Gamma|$ the set of substitutions () $\rightarrow \Gamma$.

If Γ is a context we have a cumulative sequence of sets $Type_n(\Gamma)$ of $types \ over \ \Gamma$ at level n (where n is a natural number). If A in $Type_n(\Gamma)$ and σ in $\Delta \to \Gamma$ we should have $A\sigma$ in $Type_n(\Delta)$. Furthermore A1 = A and $(A\sigma)\delta = A(\sigma\delta)$. If A in $Type_n(\Gamma)$ we also have a collection $\mathsf{Term}(\Gamma, A)$ of elements of type A. If a in $\mathsf{Term}(\Gamma, A)$ and σ is in $\Delta \to \Gamma$ we have $a\sigma$ in $\mathsf{Term}(\Delta, A\sigma)$. Furthermore a1 = a and $(a\sigma)\delta = a(\sigma\delta)$. If A is in $Type_n()$ we write |A| the set $\mathsf{Term}((), A)$.

We have a context extension operation: if A is in $Type_n(\Gamma)$ then we can form a new context $\Gamma.A$. Furthermore there is a projection p in $\Gamma.A \to \Gamma$ and a special element q in $\text{Term}(\Gamma.A, Ap)$. If σ is in $\Delta \to \Gamma$ and A in $Type_n(\Gamma)$ and a in $\text{Term}(\Delta, A\sigma)$ we have an extension operation (σ, a) in $\Delta \to \Gamma.A$. We should have $p(\sigma, a) = \sigma$ and $q(\sigma, a) = a$ and $(\sigma, a)\delta = (\sigma\delta, a\delta)$ and (p, q) = 1.

If a is in $\operatorname{Term}(\Gamma, A)$ we write $\langle a \rangle = (1, a)$ in $\Gamma \to \Gamma.A$. Thus if B is in $Type_n(\Gamma.A)$ and a in $\operatorname{Term}(\Gamma, A)$ we have $B\langle a \rangle$ in $Type_n(\Gamma)$. If furthermore b is in $\operatorname{Term}(\Gamma.A, B)$ we have $b\langle a \rangle$ in $\operatorname{Term}(\Gamma, B\langle a \rangle)$.

A global type of level n is given by a an element C in $Type_n()$. We write simply C instead of C() in $Type_n(\Gamma)$ for () in $\Gamma \to ()$. Given such a global element C, a global element of type C is given by an element c in Term((), C). We then write similarly simply c instead of c() in $Term(\Gamma, C)$.

Models are sometimes presented by giving a class of special maps (fibrations), where a type are modelled by a fibration and elements by a section of this fibration. In our case, the fibrations are the maps \mathbf{p} in $\Gamma.A \to \Gamma$, and the sections of these fibrations correspond exactly to elements in $\mathsf{Term}(\Gamma, A)$. Any element $a \; \mathsf{Term}(\Gamma, A)$ defines a section $\langle a \rangle = (1, a) : \Gamma \to \Gamma.A$ and any such section is of this form.

1.1 Dependent product types

A category with families has product types if we furthermore have one operation $\Pi A B$ in $Type_n(\Gamma)$ for A is in $Type_n(\Gamma)$ and B is in $Type_n(\Gamma.A)$. We should have $(\Pi A B)\sigma = \Pi (A\sigma) (B\sigma^+)$ where $\sigma^+ = (\sigma p, q)$. We have an abstraction operation λb in $\text{Term}(\Gamma, \Pi A B)$ given b in $\text{Term}(\Gamma.A, B)$. We have an application operation such that app(c, a) is in $\text{Term}(\Gamma, B\langle a \rangle)$ if a is in $\text{Term}(\Gamma, A)$ and c is in $\text{Term}(\Gamma, \Pi A B)$. These operations should satisfy the equations

 $\operatorname{app}(\lambda b, a) = b\langle a \rangle$ $c = \lambda(\operatorname{app}(cp, q))$ $(\lambda b)\sigma = \lambda(b\sigma^+)$ $\operatorname{app}(c, a)\sigma = \operatorname{app}(c\sigma, a\sigma)$

where we write $\sigma^+ = (\sigma \mathbf{p}, \mathbf{q})$.

1.2 Cumulative universes

We assume to have global elements U_n in $Type_{n+1}(\Gamma)$ such that $Type_n(\Gamma) = \text{Term}(\Gamma, U_n)$.

1.3 Filling operation

We assume to have a filling operation. This means that if A is in $Type_n(\Gamma)^{\mathbb{I}}$ and we have a partial family of elements in $\mathsf{Term}(\Gamma, A(i))$ for i satisfying $\psi \lor i = b$, where ψ is in \mathbb{F} and b = 0 or 1 then we can extend this partial family to a total family of elements in $\mathsf{Term}(\Gamma, A(i))$.

The new component is that we don't assume any "computation rules" for these filling operations.

1.4 "Gluing" operation

This expresses that we can extend a partially defined equivalence to a totally defined equivalence (which is one way to formulate univalence). Given A in $Type_n(\Gamma)$ and T defined only on the extent ψ in $Type_n(\Gamma)$ and an equivalence w between T and A defined on the extent ψ , then we can find an element $G = \text{Glue } [\psi \mapsto (T, w)] A$ in $Type_n(\Gamma)$ which restricts to T on ψ and a map unglue from G to A which restricts to w on ψ . An element of G is of the form glue $[\psi \mapsto t] a$ with a in $\text{Term}(\Gamma, A)$ and t partial element of $\text{Term}(\Gamma, T)$ of extent ψ such that app(w, t) = a on ψ . It is then possible to show that the map unglue : $G \to A$ is an equivalence and so univalence (equivalent to the equivalence extension property) is provable in this system.