
Trivial cofibration-fibration factorization

Introduction

The goal of this note is to present the two factorizations of a map of 〈〈cubical sets 〉〉 as trivial cofibration-
fibration and cofibration-trivial fibration. All the arguments can be represented in a constructive metathe-
ory with inductive definitions.

1 Base category, fibrations and cofibrations

We recall first the main components of the cubical set model.
We write I, J,K, . . . the objects of the given small category of 〈〈cubes 〉〉 C.
We write A,B, . . . ,X, Y, , . . . for presheaves over C. A presheaf A is given by a collection of sets A(I)

with restriction maps A(I) → A(J) sending u to uf for f : J → I. We use the same notation for an
object I and the presheaf it represents.

We have a special presheaf I which has a structure of distributive lattice with an involution (a.k.a.
de Morgan algebra). We write A+ = A× I. We have two maps e0, e1 : A→ A+ that are sections of the
projection p : A+ → A.

From the lattice structure of I, we get a conjunction map m : A++ → A+ such that me1 = me+1 = 1
and me0 = me+0 = e0p.

We have a subobject F of the subobject classifier which is a sub-lattice. Any map ψ : A→ F defines
a subpresheaf A|ψ ⊆ A where (A|ψ)(I) is the subset of element ρ in Γ(I) such that ψρ = 1 in F(I).

We have a map δ0 : A+ → F which classifies e0 : A → A+. Similarly we have δ1 : A+ → F which
classifies e1. They satisfy the equalities δ1m = δ1 ∧ δ1p and δ0m = δ0 ∨ δ0p.

If we have σ : A → B and ψ : B → F then σ induces a map A|ψσ → B|ψ, that sends u in (A|ψ)(I)
to σu. We may simply write σ : A|ψσ → B|ψ for this induced map.

We say that a map is a cofibration if, and only if, it is classified by F.
If ψ : A → F we define b(ψ) = δ0 ∨ ψp : A+ → F. A (generalised) open box A+|b(ψ) ⊆ A × I is the

subpresheaf determined by b(ψ) : A× I→ F for some ψ : A→ F. Notice that

b(ψ)m = (δ0 ∨ ψp)m = δ0m ∨ ψpm = δ0 ∨ δ0p ∨ ψpp = b(b(ψ))

A fibration is a map that has the right lifting property w.r.t. any open box. A trivial fibration is a
map which has the right lifting property w.r.t. any cofibration. Finally a trivial cofibration is a map that
has the left lifting property w.r.t. any fibration1.

For each I, ψ = 1 is decidable in F(I).
We could avoid the involution on I, but then we have to consider not only the box ψp ∨ δ0 but also

the box ψp ∨ δ1. All the arguments are then valid with this modification.

Finally, J × I is always representable by an object J+ in the base category 2.

We recall the following results (valid constructively without using choice).

1Cisinski calls 〈〈 naive 〉〉 fibrations what we simply call fibrations. The justification of our terminology is that, with some
extra assumptions on the base category described below, we do get, as shown by Christian Sattler, a model structure on
the presheaf category with these notions of fibrations, trivial fibrations, cofibrations and trivial cofibrations.

2In order to get a fibrant univalent universe, and a model structure, we need further assumptions on the base category:
that cofibrations are closed by compositions, and by exponentiation with I. But this will not be needed in this note.
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Theorem 1.1 A map α : X → Y is a fibration if, and only if, we have an operation which takes a
commutative diagram

I+|b(ψ)
u - X

I+
?

∩

v - Y

α

?

and produces a diagonal filler c̃(I, v, ψ, u) : I → X such that c̃(I, v, ψ, u)f+ = c̃(J, vf+, ψf, uf+) if
f : J → I.

Corollary 1.2 A map α : X → Y is a fibration if, and only if, we have an operation which takes a
commutative diagram

I+|b(ψ)
u - X

I+
?

∩

v - Y

α

?

and produces a diagonal filler c(I, v, ψ, u) : I → X of the composite diagram

I|ψ - I+|b(ψ)
u - X

I
?

∩

e1 - I+
?

∩

v - Y

α

?

and furthermore satisfies the equations c(I, v, ψ, u)f = c(J, vf+, ψf, uf+) if f : J → I.

Proof. If we have such an operation, c̃(I, v, ψ, u) = c(I+, vm, b(ψ), um) is a diagonal filler satisfying the
uniformity equations.

Indeed, if f : J → I, we have, using the equality mf++ = f+m

c̃(I, v, ψ, u)f+ = c(I+, vm, b(ψ), um)f+

= c(J+, vmf++, b(ψ)f+, umf++)
= c(J+, vf+m, b(ψf), uf+m)
= c̃(J, vf+, ψf, uf+)

Conversely, given c̃ we define c(I, v, ψ, u) = c̃(I, v, ψ, u)e1.
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2 Trivial cofibration-fibration factorization

Given σ : A→ B we define first an upper approximation of a presheaf E as a family of sets Ẽ. This will
be an example of a tree type: for each I and ψ in F(I) an element of Ẽ(I) is either given by an element
a in A(I) or by a family of elements uf in Ẽ(J) for f : J → I+ in b(ψ).

Once this family of sets Ẽ(I) has been defined, we define next by induction maps p : Ẽ(I) → B(I)
and maps Ẽ(I)→ Ẽ(J) for any f : J → I. At this point, these maps don’t act in a functorial way, but
they will when we restrict them to E(I) which itself corresponds to a predicate defined by induction on
Ẽ(I).

An element of Ẽ(I) is

1. either of the form i a with a in a in A(I)

2. or is of the form c(I, v, ψ, u) with ψ 6= 1 in F(I) and v in B(I+) and u is a family of elements uf
in Ẽ(J) indexed by f : J → I+ such that b(ψ)f = 1.

We then define a 〈〈 restriction 〉〉 map Ẽ(I)→ Ẽ(J) by induction

1. (i a)f = i (af) and

2. c(I, v, ψ, u)f = c(J, vf+, ψf, uf+) if ψf 6= 1 where uf+ is the family (uf+)g = uf+g for b(ψ)f+g =
1 and c(I, v, ψ, u)f = uf+e1 if ψf = 1 (in which case we have b(ψ)f+ = 1)

We also define p (i a) = σ a and p c(I, v, ψ, u) = ve1. This defines for each I a map p : Ẽ(I)→ B(I).

We then define inductively a subset E(I) ⊆ Ẽ(I). An element i a is in E(I) and c(I, v, ψ, u) is in
E(I) if uf is in E(J) and p uf = vf for all f : J → I+ such that b(ψ)f = 1 and (uf )g = ufg in Ẽ(K) if
furthermore g : K → J .

Lemma 2.1 If w = c(I, v, ψ, u) is in E(I) and f : J → I then wf is in E(J). If furthermore g : K → J
then (wf)g = w(fg) in E(K)

Proof. If ψf = 1 then wf = uf+e1 is in E(J) since w is in E(I). If ψf 6= 1 then wf = c(vf+, ψf, uf+)
and this is in E(J) since (uf+)g = uf+g is in E(K) and p uf+g = v(f+g) = (vf+)g for all g : K → J
such that ψfg = 1, and furthermore (uf+)gh = (uf+)gh = uf+gh for all g : K → J such that ψfg = 1
and all h : L→ K.

If ψf = 1 then wf = uf+e1 and (wf)g = uf+e1g which is equal to uf+e1g = e(fg)+e1 = w(fg) if w is in
E(I). If ψf 6= 1 and ψfg = 1 then wf = c(vf+, ψf, uf+) and (wf)g = (uf+)g+e1 = u(fg)+e1 = w(fg).
If ψfg 6= 1 then (wf)g = c(vf+g+, ψfg, uf+g+) = w(fg).

Using this, we see that an element of E(I) is either of the form i a with a in A(I) or c(v, ψ, u) with v
in B(I+) and ψ 6= 1 in F(I) and u : I+|b(ψ)→ E. The next Lemma expresses that we have furthermore
p u = v.

Lemma 2.2 If w = c(I, v, ψ, u) is in E(I) and f : J → I then (p w)f = p (wf) in B(J).

Proof. If ψf+ = 1 then wf = uf+e1 and p (wf) = p uf+e1 and p w = ve1 and (p w)f = ve1f =
v(f+e1) = p uf+e1 since w is in E(I).

If ψf+ 6= 1 then wf = c(vf+, ψf, uf+) and p (wf) = vf+e1 = ve1f while (p w)f = ve1f .

Theorem 2.3 The map i : A→ E is a trivial cofibration and the map p : E → B is a fibration.

Proof. By the definitions of E, p we get directly that p : E → B is a fibration.

If we have a map β : X → E which is a fibration, we have an operation cX(I, w, ψ, x) which takes
w in E(I+) and x : I+|b(ψ) → X such that βx = w and produce an element in X(I) such that
βcX(I, w, ψ, x) = we1. Note that x : I+|b(ψ) → X is given by a family of elements xf in X(J) for
f : J → I+ such that b(ψ)f = 1.

Given such an operation and α : A→ X such that βα = i, we explain how to build a map τ : E → X
such that βτ = 1E and τi = α. We define τ w in X(I) for w in E(I) by induction on w.
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We take τ (i a) = α a.
We take τ c(I, v, ψ, u) = cX(I, c̃(I, v, ψ, u), ψ, τu), where τu is the family (τu)f = τ uf which is

defined by induction and c̃ as defined in Corollary 1.2.

Note that for the special cubical set model where an object is given by a finite set, and F is the face
lattice then Ẽ(I) can be described by a finitary inductive definition: an element of Ẽ(I) is given by a
finitely branching tree.

3 Cofibration-trivial fibration factorization

This factorization is much simpler, and does not require an inductive definition, provided we assume
that F is contractible (i.e. the map F → 1 is a trivial fibration), which is equivalent to assuming that
cofibrations are closed by compositions.

Theorem 3.1 A map σ : A → B has a factorization in a cofibration j : A → E and a trivial fibration
q : E → B.

Proof. We define E(I) to be the set of elements v, ψ, u where ψ : I → F and v : I → B and u : I|ψ → A
such that v extends σu. We then define j a to be the element σa, 1, a for a in A(I) and q(v, ψ, u) to be
v.

Corollary 3.2 A map is a cofibration if, and only if, it has the left lifting property w.r.t. any trivial
fibration.
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