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in general, classical proofs lack computational con-tent. This paper shows, however, that the formulae-as-types correspondence can be extended to classi-cal logic in a computationally interesting way. It isshown that classical proofs posses computational con-tent when the notion of computation is extended toinclude explicit access to the current control context.This notion of computation is found in the pro-gramming language Scheme [16], which contains thecontrol construct call/cc1 that provides access tothe current continuation (the current control con-text). This, in e�ect, provides Scheme with �rst-class labels and jumps, and allows for programs thatare more e�cient than purely functional programs.The formulae-as-types correspondence presented inthis paper is based on a typed version of IdealizedScheme | a typed ISWIM containing an operatorC similar to call/cc | developed by Felleisen et al[3, 2, 4] for reasoning about Scheme programs.Section 2 reviews ISWIM and its extension to Ide-alized Scheme (IS) with the control operator C ofFelleisen et al. Roughly speaking, the evaluation ofC(M ) abandons the current control context and ap-plies M to a procedural abstraction of this context.A typed version of Idealized Scheme is presentedin Section 3 together with a formulae-as-types corre-spondence between typed terms and natural deduc-tion proofs for classical implicational logic. Typesinclude the type ?, which corresponds to the propo-sition \false." The type �! ? is abbreviated as :�(\not �"). An application of C is typed as follows.If M is of type ::�, then C(M ) is of type �. Thisrule corresponds to the classical inferrrence rule forelimination of double negation.Section 4 demonstrates that there are computation-ally interesting typed IS programs of type �, where �holds classically, but not constructively. It is shownthat if conjunctive, disjunctive, and existential typesare de�ned using standard classical de�nitions, then1call/cc abbreviates call-with-current-continuation.Page 1



the operations of pairing, projection, injection, andanalysis by cases can be de�ned using C.There are many equivalent ways of de�ning classi-cal logic. For example, in place of double negationelimination, classical logic is often de�ned by addingthe law of the excluded middle, � _ :�, to construc-tive logic. Section 5 shows that the law of the ex-cluded middle can be given an operational interpre-tation that is computationally equivalent to that ofC. In Section 6 it is shown that the well-known cps(continuation passing style) transform corresponds toan embedding of classical into constructive logic. Sec-tion 7 uses a modi�ed cps transform to prove that allevaluations of well-typed IS programs are �nite.2 From ISWIM to IdealizedSchemeThis section reviews the de�nition of Landin's ISWIMand its extension to Idealised Scheme (IS). Two ver-sions of ISWIM are presented: a call-by-value version,denoted as ISWIMv, and a call-by-name version, de-noted as ISWIMn. These ISWIMs give rise to call-by-value and call-by-name versions of Idealized Scheme,denoted as ISv and ISn, respectively.2.1 Call-by-valueLandin's ISWIM [11, 12] is a call-by-value languagewhose core syntax is made up of expressions of the�-calculus,N ::= x j NN j �x:Nwhere x ranges over an in�nite set of variables.The operational semantics of ISWIM was de�ned byLandin in terms of the SECD-machine. Plotkin [14]showed that this de�nition is equivalent2 to the (par-tial) function evalv:1. evalv(V ) = V ,2. evalv(MN ) = evalv(Q[V=x]) if evalv(M ) = �x:Qand evalv(N ) = V .Each V represents a value, where values are de�nedto be variables or �-abstractions. Throughout thispaper the metavariables V , V1, V2, : : : will rangeover values. The notation M [N=x] denotes the usualcapture-avoiding substitution of N for all free occur-rences of x in M . We will use the notation ISWIMvfor this call-by-value ISWIM to distinguish it fromcall-by-name version ISWIMn de�ned below.2This paper ignores constants and their evaluation.

An expression of the form (�x:M )V is called a �v-redex. The function evalv produces a result thatis equivalent to repeatedly reducing the leftmost-outermost �v-redex not inside the scope of a �-abstraction. Felleisen et al [3, 4] have formalizedthis evaluation order in terms of evaluation contexts.ISWIM evaluation contexts E are de�ned inductivelyas E ::= [ ] j EN j V E;where [ ] represents a \hole." If E is an evalua-tion context, then E[M ] denotes the term that resultsfrom placing M in the hole of E. It is not di�cult toshow that any closed term M is either a value or canbe written in a unique way asM = E[R], where R is a�v-redex. Moreover, R is the leftmost-outermost �v-redex of M that is not inside of a �-abstraction. Thenotation M / E[R] means that E[R] is this uniquerepresentation of M . For example, if E0 = (�x;M )[ ]and E1 = [ ], then(�x;M )V = E0[V ] / E1[(�x:M )V ]:The unique representation of any non-value in termsof an evaluation context and a �v-redex gives rise tothe context rewrite ruleE[(�x:M )V ] 7!�v E[M [V=x]]; (7!�v )which expresses Plotkin's left reduction !v in terms ofevaluation contexts. The reexive, transitive closure7!��v can be taken as an abstract operational seman-tics for ISWIMv since it is equivalent to evalv.Theorem 1 [Theorem 4 in Plotkin??] evalv(M ) =V i� M 7!��v V .An ISWIMv term M evaluates to V if and only ifM 7!��v V .The notation of evaluation contexts gives a clearpicture of the manner in which subterms are evalu-ated during the evaluation of a term. (The notation7!k�v denotes a k-fold application of the 7!�v rule.)Lemma 2 1. If E[M ] 7!k�v E[N ], then M 7!k�v N .2. If E[M ] 7!��v V , then there is a value V0 suchthat E[M ] 7!� E[V0] 7!��v V .Thus, at any point i in an evaluation sequenceM0 7!�v M1 7!�v � � � 7!�v Mi 7!�v � � �ifMi = E[N ], for a non-value N , then E must \wait"for N to evaluate to a value before the evaluationsequence can continue with computations involvingsubterms of E. That is, E represents the rest ofPage 2



the computation that remains to be done after N isevaluated. The context E is called the continuation(or control context) of N at this point in the evalu-ation sequence. The notation of evaluation contextsallows, as we shall see below, a concise speci�cationof the operational semantics of operators that ma-nipulate continuations (indeed, this was its intendeduse [3, 2, 4, 1]).The programming language Scheme [16] containscall/cc, a control construct that provides programswith direct access to a procedural abstraction repre-senting the current continuation (the current controlcontext). Felleisen et al [3, 2, 4, 1] have presentedan extension to ISWIM called Idealized Scheme3, orIS, which incorporates two constructs that manipu-late control contexts. IS expressions are de�ned byextending the grammar of ISWIM as follows:N ::= � � � A(N ) j C(N ):The operators A and C are called, respectively, abortand and control. In IS, any closed term M is eithera value, or can be written in a unique way as M =E[R], where R is either a �v-redex, R = A(N ), orR = C(N ).Informally, the evaluation of A(M ) throws awaythe current control context and continues with theevaluation of M . This is expressed with a contextrewrite rule, where the de�nition of evaluation con-texts has been extended to IS expressions in the ob-vious way, as E[A(M )] 7!A M (7!A)The operational semantics of C(M ) can be de-scribed informally as follows. As with A, the evala-tion of E[C(M )] abondons the control context E. Theterm M is then applied to a procedural abstractionof the abandoned control context. If this procedure isinvoked with a value V in any context E1, then E1 isabandoned and evaluation resumes with E[V ]. Thisis expressed with the rule,E[C(M )] 7!C M�z:A(E[z]): (7!C)The operator A can be de�ned in terms of C asA(M ) def= C(�d:M );where d is a dummy variable not free in M , sinceE[A(M )] = E[C(�d:M )]7!C (�d:M )�z:A(E[z])7!�v M3This paper treats only the assignment-free sublanguage ofIdealized Scheme.

Therefore, A(M ) will be treated as a de�ned con-struct, and the rules 7!�v and 7!C will be treated asde�ning the operational semantics of IS. The notation7!u denotes the union of the two evaluation rules.The operational semantics of C di�ers from that ofcall/cc in that C need not return to the location ofits use. If a version of call/cc were to be added toIS, say K, then it would have the evaluation ruleE[K(M )] 7!K E[M�z:A(E[z])]: (7!K)However, this addition is not necessary since an oper-ator computationally equivalent to K can be de�nedas Kd(M ) def= C(�k:k(Mk)): (Kd)One use of Kd is in the implemention of a\catch/throw" mechanism similar to that of CommonLisp [17]. Think of the evaluation of E0[Kd(�j:M )]as a \catch" that labels the current context withthe name j. If j is never invoked, or \thrown to"during the evaluation of M , then this expression re-turns \normally." If, on the other hand, an appli-cation of j, such as E1[jV ], is encountered duringthe evaluation of M , then the value V is \thrownback to" the location labeled by j. That is, the con-text E1 is abandoned and evaluation resumes withE0[V ]. The following illustrates how this is accom-plished with the evaluation rules of Idealized Scheme.If Q = �z:A(E0[z]), thenE0[Kd(�j:M )] 7!C (�k:k((�j:M )k))Q7!�v Q((�j:M )Q)7!�v Q(M [Q=j])If M [Q=j] 7!��v V , then the evaluation returns \nor-mally" with 7!��v QV7!� A(E0[V ])7!A E0[V ]� � � � � �If, on the other hand, a value is eventually thrown,then Q(M [Q=j]) 7!��v E1[QV ]7!�v E1[A(E0[V ])]7!A E0[V ]� � � � � �showing that the context E1 is abandoned and thatevaluation continues with V in the restored contextE0. Page 3



It should be noted that the operational semanticsof ISWIMv would be unaltered if cbv evaluation con-texts were rede�ned asE ::= [ ] j NE j EVso that the argument of a funtion application is eval-uated before the function part. However with theaddition of C this is no longer the case. If the evalua-tion of M jumps to context E1 and the evaluation ofN jumps to E2, then the result of MN will dependon which term is evaluated �rst.2.2 Call-by-nameThe de�nition of call-by-name ISWIM, ISWIMn, dif-fers from call-by value only in the de�nition of eval-uation contexts and the � rule. Call-by-name (cbn)evaluation contexts are de�ned asE ::= [ ] j ENwhile the call-by-name � rule is de�ne asE[(�x:M )N ] 7!�v E[M [N=x]]; (7!�v )where E is a call-by-name evaluation context.Plotkin [14] de�ned the operational semantics ofISWIMn with the function evaln:1. evaln(V ) = V ,2. evalv(MN ) = evaln(Q[N=x]) if evaln(M ) =�x:Q.As in the call-by-name case, we have an agreementbetween this operational semantics and the contextrewrite rule.Lemma 3 evaln(M ) = V i� M 7!��v V .A call-by-name Idealized Scheme, ISn, is obtainedby extending ISWIMn with the control operator andthe evaluation ruleE[C(M )] 7!C M�z:A(E[z]); (7!C)where E is now a call-by-name evaluation context.3 Formulae-as-types for ISThis section develops a typed version of IdealizedScheme (ISt) together with a formulae-as-types cor-respondence between ISt expressions and a systemof natural deduction for classical implicational logic.The evaluation of typed terms requires a minor mod-i�cation to the operational semantics of IS.

De�ne type expressions � as� ::= t j �! �0;where t is a member of a set of atomic types. Typeexpressions will also be read as propositions (formu-lae), with �! � representing \� implies �."The syntax of ISWIM is modi�ed so that variablesare tagged with a type expression: x� and �x�:M .Typed ISWIM, written as ISWIMt, is de�ned in thesame way as the simply-typed �-calculus. A variablex� has type �; if M has type � ! � and N hastype �, then MN has type �; if M has type �, then�x�:M has type � ! �. The notation M� meansthat M has type �.First, the Curry-Howard isomorphism betweenISWIMt terms and natural deduction proofs for min-imal logic (M) is presented. The reader is referredto Prawitz [15], Stenlund [18], and Girard [8], for acomplete treatment. Second, the correspondence isextended to ISt with a logically consistent typing forC.Natural deduction derivations (proofs) � are tree-structured objects whose leaves contain formulae rep-resenting assumptions and whose nodes represent theapplication of inference rules. A derivation � withconclusion � is written as ��The system M of natuarl deduction derivations isgenerated from assumptions �, the inference rule for!-elimination (! E, or modus ponens)�1 �2�! � ��and the inference rule for !-introduction (! I)[�]���! �The notation ���means that there are zero or more undischarged oc-currences of the assumption � in the derivation �,while the notation [�]�� Page 4



means that some of these assumptions have been dis-charged (made unavailable).For each derivation � there is a corresondingISWIMt term M of type �, which is de�ned by in-duction on the structure of �. Assume that the as-sumptions of � are divided into a disjoint collectionof sets, each associated with a unique variable. Anassumption � corresponds to the variable x�, wherex is the variable associated with the set for �. If�1�! �corresponds to the term M�!� and�2�corresponds to the term N�, then�1 �2�! � ��corresponds to (MN )�. If ���corresponds to M�, then [�]���! �corresponds to (�x�:M )�!�, provided that the set ofdischarged assumptions is the set associated with thevariable x.We will now extend the correspondence betweentyped terms and proofs to IS by �nding a logicallyconsistent typing for C. Let us start by looking atthe 7!C ruleE[C(M )] 7!C M�z:A(E[z]): (7!C)Let � and � be arbitrary types. Suppose that Eis of type � and that the hole in E is expecting aterm of type �. It seems reasonable to give the term�z:A(E[z]) the type � ! � since for any value V oftype �, (�z:A(E[z]))V 7!+u E[V ];which is of type �. Therefore, since both sides of the7!C rule are of type �, M must have type (�! �)!

�. We then arrive at the following typing rule forC(M ): if M has type (�! �) ! �, then C(M ) hastype �.It follows from this derivation that if N is a closedterm of type �, then A(N ) = C(�d:N ) can be givenany type �. Therefore, if we want a type system thatis logically consistent when types are read as proposi-tions, � must be a proposition that has no proof (oth-erwise every proposition is provable). Assume thatthe set of atomic types contains the type ?, whichrepresents an empty type, or the proposition \false."De�ne :� (read \not �") as:� def= �!?; (:�):We then arrive at a logically consistent typing forC(M ): if M has type ::�, then C(M ) has type�. This will be the typing used for typed IdealizedScheme, which is written as ISt. Such an instanceof C(M ) will often be written as C�(M ) in order tomake explicit the type of the term.From a logical perspective, C�(M ) correponds tothe classical proof rule for double negation elimina-tion (?c) �::��ifM::� corresponds to the derivation �. The systemC is de�ned to be M extended with the ?c rule.Note that A(M ) now corresponds to the construc-tive rule for ?-elimination (?e )�?�which can be derived in C. The notation A�(M ) in-dicates that this term has type �. The constructivesystem J is de�ned to be M extended with the ?erule.There is one problem with this typing of IS. The7!C rule applies only when the entire expressionE[C(M )] is of type ?, and since there are no closedterms of this type, the rule is useless! To rectify thisproblem, a minor modi�cation is made to the oper-ational semantics of IS. The basic idea is as follows.Instead of evaluating an expression M� with the 7!urules, the expression C(�k:�:kM ) is evaluated withthe rules of 7!u being applied only inside of the ex-pression C(�k: � � �). The rules now make \type sense"since the body of the �-expression is of type ?.Formally, de�ne the operational semantics 7!t asPage 5



the union of the following rules.C(�k:E[(�x:M )V ]) 7!t�v C(�k:E[M [V=x]])C(�k:E[C(M )]) 7!tC C(�k:M�z:A(E[z]))C(�k:kV ) 7!Ce VThe last rule is subject to the proviso that k is notfree in V . This rule merely allows for the removalof the outermost C at the end of some computations.An expression is in 7!t normal form if none of theserules apply.De�nition 1 (evaluation of typed terms) Aclosed ISt expression M� evaluates to Q ifC�(�k:�:kM ) 7!�t Qand Q is in 7!t normal form.That 7!t is only a minor modi�cation to the 7!usemantics is stated in the following lemma.Lemma 4 If C(�k:kM ) 7!�u V , then C(�k:kM ) 7!�tQ, where Q is either V , C�k:kV 0, or C�k:V 0, andV = V 0[�x:A(x)=k].In other words, the only type violation of the system7!u is the replacement of the top-level continuation kwith �x:A(x).The types of \classical programs" cannot be giventhe same operational interpretation as the types of\constructive programs." A program M correspond-ing to a constructive proof of � ! � takes inputsof type � to outputs of type �. This is no longerthe case with classical programs since the evaluationof an expression need not return to the point of itsevaluation but may \jump" to some other evalua-tion context. In the type system presented here, thedistinction between a \returning expression" and a\jumping expression" cannot be made by inspectingan expression's type. Thus, if M is a classical pro-gram of type �! � and N is a classical program oftype �, we know only that if the application of M toN returns to the current control context, then it willreturn with a (classical) value of type �. Note thatthe evaluation of either M , N , or the application ofM to N could result in a jump.4 Conjunctive, disjunctive,and existential typesThis section demonstrates that there are computa-tionally interesting ISt terms of type �, where � holdsin classical, but not constructive, logic. It is shown

that if conjunctive and disjunctive types are de�nedusing standard classical de�nitions, then the opera-tions of pairing, projection, injection, and analysisby cases can be de�ned using C. The section con-cludes by pointing out that if ISt types are extendedwith universal types 8xt:�(x), then existential types9xt:�(x) can be de�ned in ISt.4.1 De�nitions in call-by-nameThat the connectives for conjunction and disjunc-tion cannot be de�ned in constructive (implicational)logic4 is related, via the Curry/Howard correpon-dence, to the fact that pairing, projection, injection,and analysis by cases are not de�nable in the sim-ply typed �-calculus. It is well known, however, thatthe connectives for conjunction and disjunction canbe de�ned classically in terms of negation and impli-cation as � ^ � def= :(�! :�);� _ � def= :�! �:The remainder of the section proceeds as follows.The introduction and elimination rules for ^ and _are derived in the classical system C and the com-putational properties of the ISt terms correspondingto these derived rules are investigated. It is shownthat these terms can be used for pairing, projection,injection, and analysis by cases.The ^-introduction rule�1 �2� �� ^ � (^I)can be derived in C as �1[�! :�] �:� �2�?:(�! :�)If M� and N� are ISt terms corresponding to thederivations �1 and �2, then the ISt termhM;N i def= �f�!:� :fMNof type � ^ � corresponds to the derived ^-introduction rule.The two rules for ^-elimiantion��1 ^ �2�i (^Ei);4For a proof of this see Prawitz?? page 59. Page 6



can be derived in C as [�i] [:�i]?� :�2:(�1 ! :�2) �1 ! :�2?::�i�iIf the termM of type �^� corresponds to the deriva-tion to �, then the ISt term�i(M ) def= C(�j:�i :M�x�11 :�x�22 :jxi)of type �i corresponds to the derived rule for ^-elimination.The derivations of the computational properties ofthese terms are carried out with the 7!u rules, withthe understanding that typed terms are to be evalu-ated using the 7!t rules. This is done only to avoidthe notational clutter of wrapping around each termthe expression C(�k: � � �).Computationally, the terms hM;N i and �i repre-sent operations of pairing and projection. That is, wecan derive the reduction ruleE[�1(hM1;M2i)] 7!�i E[Mi]; (7!�i )as follows. Let Q = �z:A(E[z]), thenE[�1(hM1;M2i)] 7!C hM1;M2i(�x1:�x2:Qxi)7!�n (�x1:�x2:Qxi)M1M27!+�n QMi7!�n A(E[Mi])7!A E[Mi]:The projection is thus computed at the top-level andthe result is thrown back to the original context.Turning to disjunction, the introduction rule��1�1 _ �2 (_I1);can be derived in C in such a way that if M� corre-sponds to the derivation �, theninj1(M ) def= �k:�1 :A�2(kM )is a ISt term of type �1 _ �2 corresponding to thederived rule for _I1. The introduction rule��2�1 _ �2 (_I2);

can be derived in C in such a way that if the term Mof type �2 corresponds to the derivation �, theninj2(M ) def= �k:�1 :Mis of type �1 _ �2 corresponding to the derived _I2rule. Finally, the _-elimination rule��1 _ �2 [�1]�1� [�2]�2�� (_E):can be derived in C in such a way that the termcase(M;F1; F2) def= C(�j:� :j(F2(M�a:j(F1a))))of type � corresponds to the derived rule when Fi =�x�ii :Mi correspond to the derivations[�i]�i��i ! �for i 2 f1; 2g.Computationally, the termsinji(M ) and case(M;F1; F2) represent operations ofinjection and case analysis, since it is easy to derivefor ISn the rulesE[case(inji(N ); F1; F2)] 7!casei E[FiN ]: (7!casei)A more symetric de�nition of the terms of injectionand case analysis can be obtained with a rede�nitionof disjunction as�_ � def= :�! ::�:Injections can now be de�ned asinji(M�i) def= �f:�11 :�f:�22 :fiMof type �1 _ �2. Case analysis can abe de�ned ascase(M;F1; F2) def= C(�j:� :MG1G2);where Gi = �x:j(Fix).4.2 De�nitions in call-by-valueAs above, the call-by-name evaluation of the projec-tion computes asE[�1(hM1;M2i)] 7!+ (�x1:�x2:Qxi)M1M2:Now, however, bothM1 andM2 must evaluate to val-ues V1 and V2, respectively, before the two �-redicesPage 7



can be contracted. If this occurs, then the reductioncan be continued as7!+u (�x1:�x2:Qxi)V1M27!�v (�x2:Qxi[V1=x1])M27!+u (�x2:Qxi[V1=x1])V27!� QVi7!� A(E[Vi])7!A E[Vi]... ...Thus, the evaluation of E[�i(hM1;M2i)] forces bothM1 and M2 to be evaluated to values V1 and V2 atthe top-level before Vi is thrown back to the contextE. Note, however, that in general the terms Mi neednot return. As a special case, if the evaluation startswith a pair of values, then we haveE[�i(hV1; V2i)] 7!+u E[Vi]:This should be campared to adding operators forpairing and projection to ISWIMt together with theevaluation ruleE[�i(hM1;M2i)] 7!�i E[Mi]: (7!�i )If E[�i(hM1;M2i)] 7!�i E[Mi], then Mi must evalu-ate to a value Vi before the evaluation can continuewith subterms ofE (by an extension of Lemma2, Sec-tion 2, with the appropriate de�nition of evaluationcontexts). The classical de�nition requires, however,that both M1 and M2 are evaluated to values.This computational behavior can be improved witha modi�ed de�ninition of conjunction. Suppose wede�ne conjunction as� ^ � def= :((T ! �)! :(T ! �));where T is any type for which there exists some clodedvalue V of type T . De�ne pairing and projection ashM;N i def= �f:f(�t:M )(�t:N );�i(M ) def= (C(�j:M�x1:�x2:jxi))V:It is then possible to derive the reductionE[�1(hM1;M2i)] 7!�i E[Mi]; (7!�i )using the call-by-value rules.In a similar way, the de�nitions disjunction givenabove can be used in the call-by-value setting, butthe evaluation of E[case(M;F1; F2)] forces FiM tobe evaluated to at the top-level to a value V 0i beforethis value is thrown back to the context E.

This computational behavior can agian be modi-�ed starting with a rede�nition of conjunction (thesymetric version) as� _ � def= :(T ! �! ::(T ! �):inji(M�i) def= �f:�11 :�f:�22 :fi(�t:M )case(M;F1; F2) def= C(�j:� :MG1G2)V;where Gi = �x:j(�t:Fi(xt)).E[case(inj1(N1); F1; F2)] 7!+u (�a:Q(F1a))N1;and E[case(inj2(N2); F1; F2)] 7!+u Q(F2N2)are easy to derive using the 7!u rules. Suppose thatNi evaluates to Vi. If FiVi evaluate to a value V 0i ,then in both cases evaluation can be continued as7!+u QV 0i7!�v A(E[V 0i ])7!A E[V 0i ]... ...4.3 Existential typesSuppose that ISt types are extended with univer-sal types, 8x:�, where x ranges over integer terms.In logical terms, this corresponds to extending thepropositional calculus to a �rst-order predicate cal-culus. It is assumed that types (propositions) havebeen extended to include predicates such as equality.If M has type 8x:� and n is an integer expression,then Mn has type �[n=x]. If x is not free in any typeof a free variable of M�, then �x:M has type 8x:�.Existential types can now be de�ned with the stan-dard classical de�nition,9x:� def= :8x::�(x):De�ne the termsP1 def= �x:�w�(x):�f8y::�(y):fxwof type 8x:(�(x)! 9y:�(y)), andP2 def= �p9x:�(x):�f8x:(�(x)!�):C(�j:� :p(�x:�w:j(fxw)))of type 9x:�(x) ! (8x:(�(x)! �)) ! �. Theseterms represent operators for computing with (weak)Page 8



existential types (see, for example, [10]). For an in-teger value n, V1 of type �[n=x], and V2 of type8x:(�(x)! �), the evaluationE[P2(P1nV1)V2] 7!+u Q(V2nV1)can be derived with Q = �z:A(E[z]). If V2nV1 eval-uates to a value V , then this value is thrown back tothe context E.5 The excluded middleThere are many equivalent ways of de�ning classi-cal logic. For example, in place of double negationelimination, classical logic is often de�ned by addingthe law of the excluded middle, � _ :�, to construc-tive logic. This section shows that the law of theexcluded middle can be given an operational inter-pretation that is computationally equivalent to thatof C.For any �, the law of the excluded middle can bederived in C as [�][:(�_ :�)] � _ :�?:�[:(�_ :�)] � _ :�?::(�_ :�)�_ :�This derivation corresponds to the ISt termc� def= C(�j:(�_�) :j(inj2(�a�:j(inj1(a)))))of type � _ :�. It is then easy to derive, using the7!u rules, an evaluation rule for c,E[c] 7!c E[inj2(�a:Q(inj1(a)))];where Q = �z:A(E[z]). (As in the previous section,notational clutter is avoided by using the 7!u evalu-ation rules.)Alternatively, suppose that typed constants c� areadded to an extended ISWIM, which contains in-jections and analysis by cases. Note that this cor-responds to an alternative formalization of classicallogic in which the double negation elimination rulecan be derived as� _:� [�] �::� [:�]?��

This derivation corresponds to the derived version ofC, C�c (M ) def= case(c�; �a�:a; �k:�:A�(Mk));where M corresponds to �. Suppose that 7!c is takenas a primitive evaluation rule and evaluation contextsinclude contexts of the form case(E;M1;M2). Thenthe evaluation rule for Cc can be derived asE[Cc(M )] 7!Cc M�z:Q0(inj1(z)); (7!Cc)where Q0 = �z:A(E[case(z; �a:a; �k:A(Mk))]). Notethat 7!Cc is computationally equivalent to the 7!Crule, since for any context E1,E1[(�z:Q0(inj1(z)))V ] 7!+ E[V ]:Similar results can be obtained for other formaliza-tions of classical logic. For example, suppose classicallogic is de�ned as J extended with Peirce's law�(�! �)! ��This rule can be put into correspondence with a typedversion of K (see Section 2 for the de�nition of K) asfollows. If M is a term of type (�! �) ! �, thenK�� (M ) has type �. Now C can then be de�ned asC�(M ) def= K�?(�j:�:A�(Mj));which corresponds to the derivation of double nega-tion elimination using ?e and Peirce's law. The 7!Crule can then be derived with the rules 7!�v , 7!A, and7!K.6 The cps transform is a logi-cal embeddingA common approach to providing a semantics for alanguage that contains labels and jumps is via a trans-lation to a language that explicitly represents contin-uations as functions. Such a translation is often calleda continuation passing style transformation, or simplya cps transformation.6.1 Call-by-value cpsA cps transform M for untyped �-expressions wasintroduced by Fischer [7] and extended to expressionscontaining C by Felleisen et al [3]. A slightly modi�edPage 9



cps transform is de�ned here asx = �k:kx;�x:M = �k:k(�x:M);MN = �k:M (�m:N (�n:mnk));C(M ) = �k:M (�m:m(�z:�d:kz)�x:A(x)):This de�nition di�ers from the one in [3] in the lastclause, where we use �x:A(x) rather than �x:x.Although the cps transform is de�ned for untypedexpressions, it de�nes a transformation on typed ex-pressions as well. Assume there is a distinguishedtype o, and de�ne the transformation �� on types ast� = t;(�! �)� = �� ! (�� ! o)! o:Theorem 5 [cps as a typed transform] IfM is an IStexpression of type �, then M has type (�� ! o)! o.This fact simply extends a result of Meyer andWand [13] from simply-typed terms to typed termscontaining C.An embedding of classical implicational logic (C)into constructive implicational logic (J) is de�ned tobe a translation of formulae �0 such that if there isa classical proof of �, then there is a constructiveproof of �0, where � is classically equivalent to �0. Itis interesting to note that if we take A to be a basicconstruct, then the cps transform corresponds to suchan embedding.For S being J or C, let � `S � represent the as-sertion that there exists an S-derivation for �, all ofwhose undischarged assumptions are in the set of for-mulae �. Let �� = f�� j � 2 �g. Theorem 5 can nowbe restated in terms of proofs.Theorem 6 (cps as a proof transform) If � is aproof of � `C � corresponding toM , then there existsa proof � of �� `J (�� ! o)! o that corresponds toM .If o = ?, then it is easy to check that for all �,`C �$ ::��;and so the translation corresponds to an embedding5.5The author has not been able to �nd this embeddingmen-tioned in the literature of proof theory.

6.2 Call-by-name cpsA call-by-name version of cps was de�ned byPlotkin ?? and is here extended to Idealized Scheme.x = x;�x:M = �k:k(�x:M);MN = �k:M(�m:mNk);C(M ) = �k:M(�m:m(�z:z(�f:�d:fk))�x:x):This translation also corresponds to a translation ontyped terms and, equivalently, as an embedding ofclassical logic into minimal logic. De�ne the transla-tion �+ on types (formulae) as follows.t+ = t;(�! �)+ = ((�+ ! o)! o)! :(�+ ! o)! o:Theorems corresponding to Theorem 5 and ?? cannow be stated for the call-by-name cps transform.Theorem 7 [cbn cps as a typed transform] If Mis an ISt expression of type �, then M has type(�+ ! o)! o.Theorem 8 (cbn cps as a proof transform) If� is a proof of � `C � corresponding to M , thenthere exists a proof � of �+ `M (�+ ! o)! o thatcorresponds to M .7 Evaluations are �niteIn this section it is shown that all computations withwell-typed ISt terms are �nite.Theorem 9 (�nite evaluation) The evaluation ofany well-typed ISt term M� is �nite.The method of proof involves a translation of IStterms M to simply-typed �-terms M 0 so that anyin�nite evaluation sequence starting from M inducesan in�nite �-reduction sequence starting from M 0.Then, since there are no in�nite �-reductions in thesimply-typed �-calculus (see, for example, [9]) therecan be no in�nite evaluations of ISt terms.An obvious candidate for this translation is the cpstransform of the previous section. However, as men-tioned in Plotkin [14], the cps transformM introducesmany \bookkeeping" redexes. These bookkeeping re-dexes prevent the direct use of the cps transform asthe desired translation. To overcome this problem, amodi�ed cps transform M is de�ned that contractsPage 10



many of the bookkeeping redexes, that is, M !�� M .This modi�ed cps transform will serve as the trans-lation described above.For the purposes of this proof the operator A willbe taken as primitive and the evaluation rules of IStwill include the ruleC(�k:E[A(M )]) 7!tA C(�k:M ): (7!tA)Clearly, there is no loss of generality in this assump-tion.The following abbreviations are used throughoutthis section. A def= �x:A(x);J(V ) def= �z:�d:V z(z; d not free in V );M� def= �k0:M [J(k0)=k]:De�ne 	(x�) = x�� , and 	(�x�:M ) = �x�� :M .De�ne M def= �k:(M : k);for k not free in M . Given a term M of type �, anda value V of type �� ! o, de�ne the term M : V oftype o, by induction on M (it is assumed that typesare chosen appropriately and that new variables arechosen to avoid capture):1. V1 : V0 = V0	(V1)2. V1V2 : V0 = 	(V1)	(V2)V03. V1N : V0 = N : �n:	(V1)nV04. MV1 : V0 = M : �m:m	(V1)V05. MN : V0 = M : (�m:N : (�n:mnV0))6. A(M ) : V0 = M : A7. C(M ) : V0 = M : �m:mJ(V0)A8. #C(�j:M ) : V0 = (M : A)[J(V0)=j].The special symbol # will be used to mark the top-level of a term. This de�nition was based on Plotkin'sde�nition of M : V in [14]. However, the M : Vde�ned here reduces more redexes and is extended tothe language of IS.The relation !� denotes the usual notion of � re-duction, while!+� and!�� denote the transitive, andtransitive, reexive closures, respectively, of !�.Lemma 10 For all M , M !�� M .

Therefore, if M has type �, then M has type(�� ! o) ! o. The following lemma states that ev-ery 7!t evaluation step from a term M induces zeroor more !� steps on the term #M .Lemma 11 1. If M0 7!t�v M1, then #M0 !+�#M1.2. If M0 7!tC M1, then #M0 !�� #M1.3. If M0 7!tA M1, then #M0 = #M1.The proof of this lemma will require the followinglemmas.Lemma 12 For all M , values V0 and V1,(M : V0)[	(V1)=x] = M [V1=x] : V0[	(V1)=x]Proof. By induction on M . 2Corollary 13 For all M , values V ,M [	(V )=x] = M [V=x]Proof. M [	(V )=x] = (�k:(M : k))[	(V )=x]= (�k:(M : k)[	(V )=x])= (�k:M [V=x] : k) (by lemma 12)= M [V=x]. 2Lemma 14 For all evaluation contexts E, non-values M , and values VE[M ] : V = M : V Ewhere V E is de�ned by induction on E as1. V [ ] = V ,2. V E1N = (�m:N : (�n:mnV ))E1 ,3. V E1V 0 = (�m:m	(V 0)V )E1 ,4. V V 0E1 = (�n:	(V 0)nV )E1 .Proof. By induction on E. 2When a term M is inserted into the hole of acontext E1 a context switch may occur. That isE1[M ] / E2[R], where E1 6= E2. (Note that E1 = E2only when M = R.) There are three ways thiscan happen. First, a downward context switch oc-curs when M is not a value and M / E3[R] andE2 = E1[E3]. In this case we haveE1[M ] : V =M : V E1 = E2[R] : V E1 = R : (V E1 )E2The other cases arise when M = V0 is a value. IfE1 = E2[V [ ]] or E1 = E2[[ ]V1], then E1[V0] / E2[R]Page 11



is an upward context switch. If E1 = E3[[ ]E4[R]]then E2 = E3[V0E4] and this is called a rightwardcontext switch. In the case of an upward or a right-ward context shift, E[V0] reduces to R : V , for someV .Lemma 15 For any non-empty context E1, ifE1[V1] / E2[R], then for any value V2,V E12 	(V1)!+ R : V E22 :Proof.By induction on E1.Case 1: E = [ ]. Trivial.Case 2: E1 = E3N . This requires two subcases.Case 2.1: E3 6= [ ]. This requires two subcases.Case 2.1.1: N is not a value. In this case we haveE1[V1] = E3[V1]N / E4[R]N = E2[R]and so using induction,V E12 	(V1) = V E3N2 	(V1)= (�m:(N : (�n:mnV2)))E3	(V1)!+ R : (�m:(N : (�n:mnV2)))E4= R : V E4N2= R : V E22 :Case 2.1.2: N = V3 is a value. In this case we haveE1[V1] = E3[V1]V3 / E4[R]V3 = E2[R]and so using induction,V E12 	(V1) = V E3V32 	(V1)= (�m:m	(V3)V2)E3	(V1)!+ R : (�m:m	(V3)V2)E4= R : V E4V32= R : V E22 :Case 2.2: E3 = [ ]. This requires two subcases.Case 2.2.1: N is not a value. In this case we haveE1[V1] = V1N / V1E3[R] = E2[R]and so using induction and lemma 14,V E12 	(V1) = V [ ]N2 	(V1)= (�m:(N : (�n:mnV2)))	(V1)! N : (�n:	(V1)nV2)= R : (�n:	(V1)nV2)E4= R : V V1E42= R : V E22 :Case 2.2.2: N = V3 is a value. In this case we haveE1[V1] = V1V3 / E2[R]

where E2 = [ ] and R = V1V3.V E12 	(V1) = V [ ]V32 	(V1)= (�m:m	(V3)V2)	(V1)! 	(V1)	(V3)V2= V1V3 : V2= R : V E22 :Case 3: E1 = V3E3. THis requires two subcases.Case 3.1: E3 = [ ]. In this case we haveE1[V1] = V3V1 / E2[R]where E2 = [ ] and R = V3V1.V E12 	(V1) = V V3[ ]2 	(V1)= (�n:	(V3)nV2)	(V1)! 	(V3)	(V1)V2= V3V1 : V2= R : V E22 :Case 3.2: E3 6= [ ]. In this case we haveE1[V1] = V3E3[V1] / V3E4[R] = E2[R]and so using inductionV E12 	(V1) = V V3E32 	(V1)= (�n:	(V3)nV2)E3	(V1)!+ R : (�n:	(V3)nV2)E4= R : V V3E42= R : V E22 : 2Corollary 16J(AE )!+� 	(�z:A(E[z])):Proof. Suppose E[z] / E0[R]. Then we haveJ(AE) = �z:�d:AEz!+� �z:�d:(R : AE0 )and, on the other hand,	(�z:A(E[z])) = �z:A(E[z])= �z:�d:(A(E[z]) : d)= �z:�d:(E[z] : A)= �z:�d:(R : AE0): 2Proof of Lemma 11. For the �rst part of thelemma, supposeM0 = C(�k:E[(�x:M )V ]);M1 = C(�k:E[M [V=x]]): Page 12



There are two cases to consider.Case 1: M is not a value or M is a value and E = [ ].Looking at the left-hand side, we have#M0 = (E[(�x:M )V ] : A)�= ((�x:M )V : AE)�= ((�x:M)	(V )AE )�!� (M [	(V )=x]AE)�= (M [V=x]AE)�= ((�k1:M [V=x] : k1)AE )�!� (M [V=x] : AE)�:Now, turning to the right-hand side,#M1 = (E[M [V=x]] : A)�= (M [V=x] : AE)�;which is equal to the left-hand side. Case 2: M is avalue and E 6= [ ]. Suppose that E[M [V=x]]/ E0[R].#M0 !+� (M [V=x] : AE)�= (AE	(M [V=x]))�!+� (R : AE0 )�= #M1:For the second part of the lemma, supposeM0 = C(�k:E[C(N )]);M1 = C(�k:N�z:A(E[z])):Looking at the left-hand side, we have#M0 = (E[C(N )] : A)�= (C(N ) : AE)�= (N : �m:mJ(AE )A)�!+� (N : �m:m(	(�z:A(E[z])))A)�:Turning to the right-hand side, there are two cases toconsider. Suppose N is not a value, then#M1 = (N�z:A(E[z]) : A)�= (N : �m:m	(�z:A(E[z]))A)�;and the left- and right-hand sides are equal. Suppose,on the other hand, that N is a value. Looking at theleft-hand side, we have#M0 !+� (	(N )	(�z:A(E[z]))A)�;while on the right we have#M1 = (N�z:A(E[z]) : A)�= (	(N )	(�z:A(E[z]))A)�;which is equal to the left-hand side.

Finally, for the third part of the lemma, supposeM0 = C(�k:E[A(N )]);M1 = C(�k:N ):On the left we have#M0 = (E[A(N )])�= (A(N ) : AE)�= (N : A)�;which is equal to #M1. 2Lemma 17 All sequences of 7!C steps are �nite.Proof. Any sequence of 7!C steps must have the formM0 / E1[C(M1)] 7!C M1V1/ E2[C(M2)]V1 7!C M2V2� � � � � � � � � � � �/ Ei[C(Mi)]Vi�1 7!C MiVi� � � � � � � � � � � �where V1 = �z:A(E1[z]), Vi+1 = �z:A(Ei+1[z]Vi).This sequence must be �nite since each Mi+1 is aproper subterm ofMi and all terms have �nite depth.2 By essentially the same argument we can prove thefollowing lemma.Lemma 18 All evaluation sequences composed onlyof applications of the 7!tC and 7!tA rules are �nite.We can now prove the main result of this section.Proof of Theorem 9. Let M be a typed IS termof type �. Suppose there is an in�nite evaluationsequence C�k:�:M0 7!t C�k:�:M1 7!t � � �where M0 = kM . Let Ni = C�k:Mi and Qi = #Ni.Then, by Lemma 11,Q0 !�� Q1 !�� � � �where Qi = Qi+1 = � � � = Qi+j is possible only whenthe evaluation subsequence from Qi to Qi+j is com-posed only of 7!tC and 7!tA steps. Since each suchsubsequence is �nite by Lemma 18, it must be possi-ble to �nd an in�nite subsequenceQ0 !+� Q01 !+� Q02 !+� � � �However, since Q0 is well-typed (of type (�� ! o)!o), this contradicts the well-known fact that simplytyped �-terms are strongly normalizing. Therefore,there cannot exist an in�nite evaluation sequencestarting from M . 2Page 13



8 ConclusionThis paper has shown that a formulae-as-typed cor-respondence can be de�ned between classical propo-sitional logic and a typed Idealized Scheme contain-ing a control operator similar to Scheme's call/cc.It should be noted, however, that the paper merelypresents a formal correspondence between classicallogic and Idealized Scheme. At this point there stillremains the question: Why should there be any cor-respondence at all? Whether or not there is a \deeperreason" underlying the correspondence is unclear atthis time.[Note: Shortly before the publication deadline forthis conference the work of Andrzej Filinski [6, 5] wasbrought to my attention. His work may provide a\deeper reason," for the correspondence described inthis paper. However, due to the lack of time, I havebeen unable to investigate this thoroughly. Filinki de-�nes the Symmetric Lambda Calculus (SLC), whichgives a symmetric treatment of values and continua-tions. He then develops a categorical model of thislanguage in which values and continuations are dualnotions. Classical types for control operators seem toarise naturally in this setting.]9 AcknowledgmentsI'm indebted to Matthias Felleisen for introducing meto call/cc, for spending many hours patiently ex-plaining his work in this area, and for his commentson drafts of this paper. I would like to thank BobHarper for his comments on drafts of this paper andfor bringing the work of Andrzej Filinski to my at-tention.References[1] M. Felleisen. The calculi of �v-CS conversion: asyntactic theory of control and state in impera-tive higher-order programming languages. PhDthesis, Indiana University, 1987. Technical Re-port No. 226.[2] M. Felleisen and D. Friedman. Control opera-tors, the secd-machine, and the �-calculus. InFormal Description of Programming ConceptsIII, pages 131{141. North-Holland, 1986.[3] M. Felleisen, D. Friedman, E. Kohlbecker, andB. Duba. Reasoning with continuations. InProceedings of the First Symposium on Logic inComputer Science, pages 131{141. IEEE, 1986.
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