Prüfer domain

Thierry Coquand

August 2008
A valuation domain is an integral domain R such that for any u, v in R either v divides u or u divides v.

Another formulation is that for any $s \neq 0$ in the field of fraction of R we have s in R or $1/s$ in R.

Theorem: A valuation domain is integrally closed.

Indeed assume $s \neq 0$ is integral over R. We have an equation

$$s^n + a_1 s^{n-1} + \cdots + a_0 = 0$$

Then either s is in R (and we have finished) or $1/s$ is in R. But we have $s = a_1 + a_2 / s + \cdots + a_0 / s^{n-1}$ and hence s is in R.
Classically a Prüfer domain R is a domain R such that for any prime p of R the localisation R_p is a valuation domain.

This means that for any $u, v \neq 0$ in R then we have v/u in R_p or u/v in R_p.

How to write this in a finite way (without points)?

We remark that if we have v/u in R_p then there exists a in R such that p is in $D(a)$ and v/u is in $R[1/a]$.
Hence for any u, v and any p there exists a such that p is in $D(a)$ and v/u is in $R[1/a]$ or u/v is in $R[1/a]$.

By compactness of the Zariski spectrum we have finitely many elements a_1, \ldots, a_n in R such that $1 = D(a_1, \ldots, a_n)$ and for each i, we have u/v is in $R[1/a_i]$ or v/u is in $R[1/a_i]$.

This is a finite condition but we can simplify it a little

We can first assume $\sum a_i = 1$. Then taking b to be the sum of all a_i such that u/v is in $R[1/a_i]$ we see that u/v is in $R[1/b]$ and v/u is in $R[1/1 - b]$.

We have used the fact that if $u_1/v_1 = u_2/v_2$ then $u_1/v_1 = u_2/v_2 = u_1 + u_2/v_1 + v_2$.
Thus we get the point-free condition: for any u, v we can find b such that u/v is in $R[1/b]$ and v/u is in $R[1/1 - b]$

This means $u/v = p/b^N$ and $v/u = q/(1 - b)^N$ for some N

Since $1 = D(b^N, (1 - b)^N)$ we can still simplify this to $u/v = d/c$ and $v/u = e/1 - c$

This gives the other equivalent condition: for any u, v there exists c, d, e such that $uc = vd$ and $v(1 - c) = eu$

Notice that this is a simple first-order (and even coherent) condition

A ring satisfying this condition is called *arithmetical*
Let R be a Prüfer domain

We know that, locally, R is a valuation domain

We know also that a valuation domain is integrally closed

Hence we deduce from a local-global principle that R is integrally closed

We can follow this reasoning and get a direct proof that R is integrally closed from the fact that R is arithmetic (this is yet another illustration of the completeness of coherent logic)
Classically a Dedekind Domain can be defined to be a Noetherian Prüfer domain.

A Noetherian valuation domain is exactly a discrete valuation domain, which happens to be of Krull dimension ≤ 1.

Hence (local-global property) a Dedekind domain is of Krull dimension ≤ 1: a non zero prime ideal is maximal.

But several important properties of Dedekind domain hold already for Prüfer domain, which is a first-order notion (and which is not necessarily of dimension ≤ 1).
A valuation domain is such that the divisibility relation is linear

Hence if we have finitely many elements x_1, \ldots, x_n one of them divides all the other.

Over a Prüfer domain R we deduce that we have a_1, \ldots, a_n such that $1 = D(a_1, \ldots, a_n)$ and x_i divides all x_j in $R[1/a_i]$

As before we can simplify this condition by $1 = \sum a_i$ and there exists b_{ij} such that $b_{ij} x_j = a_i x_i$
In this way we get the existence of a matrix a_{ij} such that $1 = \sum a_{ii}$ and $a_{ij}x_j = a_{ii}x_i$

Such a matrix is called a principal localization matrix of the sequence x_1, \ldots, x_n

If all x_i are $\neq 0$ we get $a_{ji}x_j = a_{jk}x_i$ and we have

$$<a_{1i}, \ldots, a_{ni}><x_1, \ldots, x_n> = <x_i>$$

In particular we have an inverse of the ideal $<x_1, \ldots, x_n>$ (the product is a non zero principal ideal)
Dedekind himself thought that the existence of such an inverse was *the* fundamental result about the ring of integers of an algebraic field of numbers (see J. Avigad’s historical paper on Dedekind)

Our argument is constructive, thus can be seen as an *algorithm* which computes this inverse over an arbitrary Prüfer domain

All we need is to know constructively

\[\forall x \ y \exists u \ v \ w. \ xu = yv \land y(1 - u) = xw \]
Application

If $I \subseteq J$ are 2 f.g. ideals we can compute a f.g. ideal K such that $J.K = I$

Indeed this is simple if J is principal, and we can find J' such that $J.J'$ is principal, and then $I.J' \subseteq J.J'$

In particular, if I, J are f.g. ideals since we have $I.J \subseteq I + J$ we can find K f.g. such that $I.J = (I + J).K$. It follows then that $K = I \cap J$

Hence: the intersection of two f.g. ideals is f.g. and we have an algorithm to find the generators of this intersection
This can be stated as: *any Prüfer Domain is coherent*

Classically one works with Dedekind Domain, that are Noetherian, and this remarkable fact is usually not stressed (Noetherian implies coherent in a trivial way)
The center map for a Prüfer Domain

Theorem: If R is a Prüfer Domain then the center map $\psi : \text{Zar}(R) \rightarrow \text{Val}(R)$ is an isomorphism.

We show that ψ is surjective.

We consider $s = x/y$ with x, y in R.

We have u, v, w such that $ux = vy$ and $(1 - u)y = wx$.

We can then check that we have $V_R(x/y) = \psi(D(u, w))$ and $V_R(y/x) = \psi(D(1 - u, v))$.
It may be that ψ is surjective but R is not a Prüfer Domain.

An example is $R = \mathbb{Q}[x, y]$ with $y^2 = x^3$ which is not integrally closed.

Proposition: If R is integrally closed and the center map is surjective then R is a Prüfer Domain.
We present now a simple sufficient condition for R to be a Prüfer domain

For any non zero s in the field of fraction of R we have to find u, v, w in R such that $u = vs$ and $(1 - u)s = w$

Theorem: If s is a zero of a primitive polynomial in $R[X]$ then we can find u, v, w integral over R such that $u = vs$ and $(1 - u)s = w$

This is a fundamental result for producing integral elements
Prüfer domain

Gilmer-Hoffmann’s Theorem

We write $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$

We define

$$b_n = a_n, \quad b_{n-1} = b_n s + a_{n-1}, \quad \ldots, \quad b_1 = b_2 s + a_1$$

We then check that $b_n, b_n s, \ldots, b_1, b_1 s$ are all integral over R

We consider the ring $S = R[b_n, b_n s, \ldots, b_1, b_1 s]$. In this ring we have $1 = D(b_n, b_n s, \ldots, b_1, b_1 s)$ and we have s in $S[1/b_i]$ and $1/s$ in $S[1/b_i s]$

Hence we can find u, v, w in S such that $u = vs$ and $(1 - u)s = w$
Applications

Theorem: If S is the integral closure of a Bezout Domain R in a field extension of its field of fractions then S is a Prüfer Domain

Indeed if s is in the field of fractions of S then s satisfies a polynomial equation $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$, since R is a Bezout Domain

Two particular important cases are $R = \mathbb{Z}$ (algebraic integers) and $R = k[X]$ (algebraic curves)
Applications

Proposition: If R is a Prüfer Domain and s is in the field of fraction of R then there exists u, w in R such that $R[s] = R[1/u] \cap R[1/w]$. In particular $R[s]$ is integrally closed, and hence, by the Gilmer-Hoffmann’s Theorem, $R[s]$ is a Prüfer Domain.

Indeed the equality $R[s] = R[1/u] \cap R[1/w]$ follows from $us = v$, $1 - u = ws$.
We apply our results to the case of algebraic curves: we consider an algebraic extension L of a field of rational functions $k(x)$.

If a is an element of L we have an algebraic relation $P(a, x) = 0$.

If x does not appear in this relation then a is algebraic over k: it is a constant of L. We let k_0 be the field of constants of L.

If x appears, then x is algebraic over $k(a)$ and a is a parameter and then L is algebraic over $k(a)$. We write $E(x_1, \ldots, x_n)$ the elements integral over $k[x_1, \ldots, x_n]$.
Algebraic curves

We consider the formal space \(X = \text{Val}(L, k) \)

Over \(X \) we define a sheaf of rings: if \(U \) is a non zero element of \(\text{Val}(L, k) \) it is a disjunction of elements of the form \(V(a_1) \land \cdots \land V(a_n) \).

We define \(\mathcal{O}_X(U) \) to be the set of elements \(f \) in \(L \) such that \(U \leq V(f) \) in \(\text{Val}(L, k) \).
Intuitively any f in L is a meromorphic function on the abstract Riemann surface X and $U \subseteq V(f)$ means that f is holomorphic over the open U

In particular we have $\Gamma(X, \mathcal{O}_X) = k_0$

This is an algebraic counterpart of the fact that the global holomorphic functions on a Riemann surface are the constant functions
Algebraic curves

If p is a parameter and b is in $E(p)$ then we have $E(p, 1/b) = E(p)[1/b]$.

More generally

$$\Gamma(V(p) \wedge V(1/b_1, \ldots, 1/b_m)) = E(p)[1/b_1] \wedge \cdots \wedge E(p)[1/b_m]$$
Since $E(p)$ is the integral closure of the Bezout Domain $k[p]$ we have that $E(p)$ is a Prüfer Domain.

Hence the sublattice $\downarrow V(p)$ of $\text{Val}(L, k)$ is isomorphic, via the center map, to $\text{Zar}(E(p))$.

The sheaf \mathcal{O}_X restricted to the basic open $V(p)$ is isomorphic to the affine scheme $\text{Zar}(E(p))$, \mathcal{O}.
Algebraic curves as schemes

The pair X, \mathcal{O}_X is thus a most natural example of a scheme, which is the glueing of two affine schemes.

For any parameter p the space X is the union of the two basic open $U_0 = V(p)$ and $U_1 = V(1/p)$.

U_0 is isomorphic to $\operatorname{Zar}(E(p))$.

U_1 is isomorphic to $\operatorname{Zar}(E(1/p))$.

The sheaf \mathcal{O}_X restricts to the structure sheaf over each open U_i.
The Genus of an Algebraic Curve

Following the usual cohomological argument, one can show

Theorem: The \(k_0 \)-vector space \(H^1(p) = E(p, 1/p)/(E(p) + E(1/p)) \) is independent of the parameter \(p \) and hence defines an invariant \(H^1(X, \mathcal{O}_X) \) of the extension \(L/k \).

In particular for \(L \) defined by \(y^2 = 1 - x^4 \) we find \(H^1(x) = \mathbb{Q} \)

For \(L = \mathbb{Q}(t) \) we find \(H^1(t) = 0 \)