
Constructive Mathematics
in Theory and Programming Practice

DOUGLAS BRIDGES* and STEVE

1. What is Constructive Mathematics?
The story of modern constructive mathematics begins with the publica-

tion of L. E. J. Brouwer's doctoral dissertation Over de Grondslagen dei
Wiskunde [1907], in which he gave the first exposition of his philosophy of
intuitionism (a general philosophy, not merely one for mathematics). Ac-
cording to Brouwer, mathematics is a creation of the human mind, and
precedes logic: the logic we use in mathematics grows from mathematical
practice, and is not some a priori given before mathematical activity can
be undertaken.

It is not difficult to see how, with this view of mathematics as a strictly
creative activity, Brouwer came to the view that the phrase 'there exists'
should be interpreted strictly and uniquely as 'there can be constructed' or,
in more modern parlance, 'we can compute'. In turn, this interpretation of
existence led Brouwer to reject the unbridled use of the Law of Excluded
Middle (LEM), PV-iP, in mathematical arguments. For example, consider
the following statement, the Limited Principle of Omniscience (LPO):

Va€ {0,l}N(a = 0 V a ^ 0 ) . (1)

Here, N= {0,1,2,...} is the set of natural numbers, {0,1}N is the set of all
binary sequences a = (ao, a\, 02,...),

a = 0 <* Vn{an = 0),

According to Brouwer's analysis, a proof of statement (1) would, for any
a e { 0 , l } N ,
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• either demonstrate that each term of the sequence a equals 0
• or else construct (compute) a certain natural number N, and show

that an = 1.
To see the power of such a proof, if it were available, we need only realise
that, applied to the sequence a denned by

{0 if 2n + 4 is a sum of two primes

1 otherwise,
it would, at least in principle, enable us to solve the Goldbach Conjecture.1

The intervention of the Goldbach Conjecture here is not essential: were
that conjecture to be resolved today, we could replace it in our example
by any one of a host of open problems of mathematics, including the twin
prime conjecture, the conjecture that there are no odd perfect numbers,
and the Riemann Hypothesis. A Brouwerian proof of (1) would provide a
method of literally incredible power and wide applicability; for this reason,
Brouwer would not accept as valid mathematical principles either (1) or
LEM, from which (1) is trivially deducible. In turn, he could not accept
any classical proposition that constructively entails LEM, LPO, or some
other manifestly nonconstructive principle.

It is important to stress here that, for Brouwer,
• mathematics precedes logic, which arises out of intuitionistic mathe-

matical practice, and
• a careful introspective analysis of the meaning of mathematical exis-

tence leads to the rejection of certain consequences of LEM, such as
LPO, and therefore of LEM itself.

Passing over the intervening years, in which Brouwer struggled, perhaps
too aggressively, to overcome the antipathy of Hilbert and his followers to
intuitionistic mathematics,2 we arrive at 1930, when Heyting, a former stu-
dent of Brouwer, published axioms for the intuitionistic prepositional and
predicate calculi. These axioms, which we shall describe shortly, have led
to substantial developments in intuitionistic logic, but for the Brouwerians
were of lesser importance than the mathematical activity from which they
were abstracted.

From the 1940s there also grew, in the former Soviet Union, a substantial
group of analysts, led by A. A. Markov, who practised what was essentially
recursive mathematics using intuitionistic logic. Although this group ac-
complished much, the strictures of the recursive-function-theoretic language
in which its mathematics was couched did not encourage its acceptance by
the wider community of analysts, and perhaps also hindered the production
of positive constructive analogues of traditional mathematical theories. An

1 This conjecture, first stated in a letter from Christian Goldbach to Euler in 1742,
states that every even integer > 2 is a sum of two primes.

3 See van Stigt [1990) for more details of the history of that period.
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excellent reference for the work of the Markov School is Kushner [1985].
By the mid-1960s it appeared that constructive mathematics was at best

a minor activity, with few positive developments to show in comparison with
the prodigious advances in traditional mathematics throughout the century.
Indeed, many mathematicians were virtually ignorant of Brouwer's work
outside classical topology, and those who knew something about it probably
shared Bourbaki's view:

The intuitionistic school, of which the memory is no doubt destined to remain
only as an historical curiosity, would at least have been of service by having
forced its adversaries, that is to say definitely the immense majority of mathe-
maticians, to make their position precise and to take more clearly notice of
the reasons (the ones of a logical kind, the others of a sentimental kind) for
their confidence in mathematics. (Bourbakl [1991], p. 38)

This situation changed dramatically with the publication of Errett Bi-
shop's Foundations of Constructive Analysis (Bishop [1967]). Here was
a major young mathematician, already holding a formidable reputation
among functional analysts and experts in several complex variables, who
had turned away from traditional mathematics to become a powerful advo-
cate of a radical constructive approach. Moreover, the breadth and depth
of mathematics in his monograph were breathtaking: starting with tradi-
tional calculus, Bishop gave a constructive development of a large part of
twentieth-century analysis, including the Stone-Weierstrass Theorem, the
Hahn-Banach and separation theorems, the spectral theorem for selfadjoint
operators on a Hilbert space, the Lebesgue convergence theorems for ab-
stract integrals, Haar measure and the abstract Fourier transform, ergodic
theorems, and the elements of Banach-algebra theory. At a stroke, he re-
futed the long-held belief summarised in the famous words of Hilbert:

Taking the principle of excluded middle from the mathematician would be the
same, say, as proscribing the telescope to the astronomer or to the boxer the
use of his fists. (Hilbert [1928])

Although Bishop's work led to a renewed interest in constructive mathe-
matics, especially among logicians and computer scientists (see the second
part of this paper), it would be idle to suggest that he convinced any but a
few mathematicians to take up his challenge to work systematically within
a constructive framework. Nevertheless, there have been substantial de-
velopments in Bishop-style constructive analysis since 1967, and, contrary
to Bishop's expectations (Bishop [1984], pp. 27-28), modern algebra has
also proved amenable to a natural, thoroughgoing, constructive treatment
.(Mines, Richman and Ruitenburg [1988]).

Bishop's development (BISH) was based on a primitive, unspecified no-
tion of algorithm, or 'finite routine', and on the properties of the natural
numbers:

The primary concern of mathematics is number, and this means the positive
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integers. We feel about number the way Kant felt about space. The positive
integers and their arithmetic are presupposed by the very nature of our intel-
ligence and, we are tempted to believe, by the very nature of intelligence in
general. The development of the positive integers from the primitive concept
of the unit, the concept of adjoining a unit, and the process of mathematical
induction carries complete conviction. In the words of Kronecker, the positive
integers were created by God. (Bishop [1967], p. 2)

By not specifying what he meant by an algorithm, Bishop gained two sig-
nificant advantages over other approaches to constructivism.

• He was able to develop the mathematics in the style of normal anal-
ysis, without the cumbersome linguistic restrictions of recursive func-
tion theory.

• His results and proofs were formally consistent with Brouwer's in-
tuitionistic mathematics (INT), recursive constructive mathematics
(RUSS), and classical (that is, traditional) mathematics (CLASS):
every theorem proved in Bishop is also a theorem, with the same
proof, in INT, RUSS, and CLASS.

Although Bishop has been criticised for his lack of precision about the
notion of algorithm, it is precisely that 'defect' that allows it to be inter-
preted in a variety of models. Moreover, the criticism can be overcome by
looking more closely at what we actually do, as distinct from what Bishop
may have thought he was doing, when we prove theorems in BISH: in prac-
tice, we are doing mathematics with intuitionistic logic, and we observe
from our experience that the restriction to that logic always forces us to
work in a manner that, at least informally, can be described as algorithmic.
The original algorithmic motivation for our approach led us to use intu-
itionistic logic, which, in turn, seems to produce only arguments that are
entirely algorithmic in character. In other words, algorithmic mathematics
appears to be equivalent to mathematics that uses only intuitionistic logic.3

If that is the case—and all the evidence of our experience suggests that
it is—then we can carry out our mathematics using intuitionistic logic on
any reasonably denned mathematical objects, not just some special class of
so-called 'constructive' objects.

To emphasise this point, which may come as a surprise to readers ex-
pecting here some version of hard-core constructivism, our experience of
doing constructive mathematics suggests that we are

• dealing with normal mathematical objects, and
• working only with intuitionistic logic, and not the classical logic of

normal mathematical practice.
This view, more or less, appears to have first been put forward by Richman
([1990], [1996]). It does not, of course, reflect the way in which Brouwer,
Heyting, Markov, Bishop, and other pioneers of constructive mathematics

3 Is this Bishop's 'secret still on the point of being blabbed' (Bishop [1967], epigraph)?
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regarded their activities. Indeed, it is ironic that, having first become in-
terested in constructivism through the persuasive writings of Bishop, in
which, as with Brouwer, the use of what became identified as intuitionistic
logic was derived from an analysis of his perception of meaningful math-
ematical practice, we have been led, through our practice of Bishop-style
mathematics, to a view that perhaps it is the logic that determines the kind
of mathematics that we are doing.

Note that this is a view of the practice of constructive mathematics,
and is certainly compatible with a more radical constructive philosophy of
mathematics, such as Brouwer's intuitionism, in which the objects of math-
ematics are mental constructs. Thus, in saying that constructive mathe-
matics deals with 'normal mathematical objects', we have not precluded
the possibility that the radical constructivist view of the nature of those
objects may hold; the viewpoint we have adopted is an epistemological,
rather than ontological, one.

From now on, when we speak of 'normal mathematical objects', we have
in mind the kind of things that are handled by either Heyting arithmetic—
the Peano axioms plus intuitionistic logic—or, at a higher level, a formal
system such as intuitionistic set theory (IZF), Myhill's constructive set the-
ory (CST), or Martin-Lof's type theory (the last two of which are discussed
later in this paper). When working in any axiomatic system, we must take
care to use only intuitionistic logic, and therefore to ensure that we do not
adopt a classical axiom that implies LEM or some other nonconstructive
principle. For example, in IZF we cannot adopt the common classical form
of the axiom of foundation,

Vx3y(y G i A y n i = 0),

since it entails LEM (Myhill [1973], Bridges [1987]).
A rather different approach to a constructive theory of sets (based on

A. P. Morse's beautiful classical development (Morse [1965]), in which each
statement can be read either as one in intuitionistic predicate calculus or as
one about sets, was developed in Bridges [1975]. In this approach there is a
universal class U, and the members of U correspond to those objects whose
existence has been established constructively. An outline of this theory can
be found in Bridges [1987].

We now look a little more closely at intuitionistic logic. To illustrate
how Heyting arrived at his axioms, note that in order to prove that either
the equation /(n) = 0 or the equation g(n) = 0 has a solution, where / , g
are functions on the natural numbers, it is not enough for the intuitionist
to prove the impossibility of neither having a solution: such a proof would
not enable him to find a solution of either equation. Thus we are led to
the constructive interpretation of disjunction: (P V Q) holds if and only if
either we have a proof of P or we have a proof of Q.
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Similar consideration of all the logical connectives

V (or), A (and), =s> (implies), -> (not)

in the light of constructive mathematical practice leads to the following
axioms for the intuitionistic propositioned calculus:

1. P = > ( P A P ) ,

2. ( P A < ? ) = * ( Q A P ) ,

3. (P => Q) => (P A R => Q A R),
4. (P =• Q) => {{Q =• Jl) =• (P =» R)),
5. Q=*(P^Q),

6. (PA(P=>Q))=>Q,
7. P=>(PVQ),
8. ( P v Q ) = * ( Q v P ) ,
9. ((P=>ii)A(Q=*fl))=s>((PvQ)=>fl),

10. -.P =* (P =• Q),
11. ((P =• Q) A (P =»• -nQ)) =s- - P .

To use these axioms we also need one rule of inference, modus ponens: from
P and (P =>• Q) we infer Q. To obtain axioms for the classical propositional
calculus, we need only add LEM to the foregoing intuitionistic ones.

A first-order language consists of the connectives used above, together
with the quantifiers 3 (there exists) and V (for each), a list of variables and
constants, and a list of predicate symbols. Each predicate symbol has an
associated positive integer, giving the number of places it has. We need the
notion of a well-formed formula, introduced recursively as follows.

If P is an n-place predicate, and ai , . . . , a« are variables or constants, then
P(oi,..., On) is a well-formed formula.

If A and B are well-formed formulae, then so are Av B, A/\B, A => B, and
-.A

If A is a well-formed formula, and x is a variable, then 3xA and VxA are
well-formed formulae.

We denote by A(x/t) the result of replacing every occurrence of the variable
x in A by t; here, t can be either a variable or a constant. An occurrence of
the variable x in A is bound if it appears in a subformula of the form ViB
or 3xB; otherwise, the occurrence of x in A is free. Let x be a variable, t
a variable or constant, and A a formula; we say that t is free for x in A if
no free occurrence of x in A is in a subformula of A of the form VtB.

We obtain the intuitionistic predicate calculus by adding to the axioms of
the intuitionistic propositional calculus those in the following list, together
with the rule of inference known as generalisation: from A infer WxA.
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1. Vx(A =*• B) => (A =>• VxB) if x is not free in A,
2. Vx(/i =*> £) =>• (3xX => B) if x is not free in B,
3. Vx A =» >i(x/*) if t is free for x in ̂ 4,
4. A(x/t) =>• 3x4 if t is free for x in A.
There are model theories for this logic—Kripke models and Beth models.

These models are often useful for showing that classical results, such as
LPO, cannot be derived within Heyting arithmetic; see Dummett [1977]
and Chapter 7 of Bridges and Richman [1987].

To carry out the development of mathematics, as distinct from logic,
constructively, Bishop also requires the notions of set and function.

A set is not an entity which has an ideal existence: a set exists only when it
has been defined. To define a set we prescribe, at least implicitly, what we (the
constructing intelligence) must do in order to construct an element of the set,
and what we must do to show that two elements of the set are equal. (Bishop
[1967], p. 2)

There are two points to emphasise in this quotation. First, Bishop does
not require that the property characterising a set be decidable. (Under the
recursive interpretation, to do so would be to restrict oneself to recursive
subsets of the natural numbers, which would patently destroy the viability
of the theory.) Secondly, Bishop requires the equality relation between
elements of a set to be a part of the definition of the set, provided that it
satisfies the usual rules for an equivalence relation:

• x = x,
• x = y =*> y = x,
• ((x = y)A(y = z))=>x = z.

In particular, this means that we cannot form such objects as the union of
two sets unless the sets come with equality relations that are compatible in
the obvious sense; normally, this means that the two sets will themselves
be given as subsets of a third set from which their equality relations are
induced.

In general, Bishop is not interested in intensional equality (identity) of
objects. For example, he defines a real number as a sequence (xn) of rational
numbers that is regular, in the sense that

for all m, n > 1; he then defines two real numbers (xn), (yn) to be equal if

for all n > 1. So he works directly with Cauchy sequences, rather than,
as would the classical mathematician, with equivalence classes of Cauchy
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sequences. This is akin to the standard practice of calling the fractions 5
and j j 'equal', rather than 'equivalent'.

Having dealt with sets, Bishop turns to functions:
in order to define a function from a set X to a set S, we prescribe a finite
routine which leads from an element of A to an element of B, and show that
equal elements of A give rise to equal elements of B. (Bishop [1967], p. 2)

The notion defined by dropping from this definition the last clause, about
preservation of equality, is called an operation. In the first part of this
paper we shall have little to say about operations, but they will have more
significance in the second part, when we discuss Martin-Lof's theory of
types.

The notions of positive integer, set, and function are the foundation
stones of BISH:

Building on the positive integers, weaving a web of ever more sets and more
functions, we get the basic structures of mathematics: the rational number
system, the real number system, the euclidean spaces, the complex number
system, the algebraic number fields, Hilbert space, the classical groups, and
so forth. Within the framework of these structures most mathematics is done.
Everything attaches itself to number, and every mathematical statement ulti-
mately expresses the fact that if we perform certain computations within the
set of positive integers, we shall get certain results. (Ibid., pp. 2-3)
The constructivists' rejection4 of LPO has some significant consequences

even at the level of the real number line R. For example, we cannot expect
to prove constructively that

where x ^ 0 means |x| > 0. (Here we are anticipating some elementary
constructive properties of R.) For if we could prove this statement, then,
given any binary sequence a and applying it to the real number whose
binary expansion is 0 • aj03(13 • • •, we could prove LPO.

Among other classical propositions that imply LPO are

• The law of trichotomy: Vx € K (x < 0 V x = 0 V x > 0).
• The least-upper-bound principle: each nonempty subset of R that is

bounded above has a least upper bound.
• Every real number is either rational or irrational. (To see this, con-

sider a decreasing binary sequence (a,,) and the real number

f>B/n!.)
n=l

4 There is another reason for rejecting LPO in the constructive setting: its recursive
interpretation is provably false within recursive function theory, even with classical logic
(see Bridges and Rich man [1987), Ch. 3). So if we want BISH to remain consistent with
a recursive interpretation, we must not allow LPO to be used therein.
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Another classically trivial principle that is rejected in BISH is the Lesser
Limited Principle of Omniscience (LLPO):

Va € {0,1}N (VmVnto™ = an = 1 => m = n) =•
Vn(a2n = 0) Wn(a 2 n + i = 0))

—in other words, if (a,,) is a binary sequence with at most one term equal
to 1, then either aan = 0 for all n or else a^n+i = 0 for all n. Among
the classical propositions that entail LLPO and are therefore regarded as
essentially nonconstructive are

• V i e R ( i > o v i < o ) .

• If i, y € K and xy = 0, then x = 0 or y = 0.

• The Intermediate-Value Theorem: If / : [0,1] —» R is a continuous
function with /(0) < 0 < / ( I ) , then there exists x € (0,1) such that
/(*) = 0.

For more on LPO, LLPO, and related matters, we refer the reader to Chap-
ter 1 of Bridges and Richman [1987].

It would be wrong to get the impression that constructive mathematics
only deals with negative results. For example, there are several construc-
tive substitutes for the Intermediate-Value Theorem, each of which can be
successfully applied to most of the functions that arise in practice in anal-
ysis; see Bishop and Bridges [1985] (pp. 40-41 and 63), and Bridges and
Richman [1987] (pp. 54-58). Indeed, the major effort of Bishop and his
followers has been directed at obtaining positive constructive substitutes
for classical results and theories.

In the next two sections of this paper we introduce two formal systems,
the first dealing with constructive mathematics as a whole, and the second
enabling us to derive properties of the real line R constructively from an ap-
propriate set of axioms. In describing these two formal systems, we isolate
the essential constructive properties of a theory.that can handle numbers,
sets, and functions in the first case, and those of R in the second. At the
same time, we hope to reinforce the point that constructive mathematics
can be characterised by its methods—in the case of the formal systems, con-
structive logic applied to a set of axioms—rather than by an unnecessary
restriction to 'constructive' objects.5

We follow the two formal systems with a section sketching some construc-
tive aspects of approximation theory. The remaining sections, forming the

6 Even the dedicated philosophical constructivist may be interested in formal systems;
witness the following remark of Stolzenberg [1970]: 'This is as good a place as any
to say—if it needs saying—that defining formal systems, constructively, and proving
theorems about them, constructively, is a part of constructive mathematics. This is so
regardless of the constructive content, or lack of it, in the ideas which the system is
designed to formalize.'
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second half of the paper, deal almost exclusively with Martin-Lof's theory
of types, a formal foundation for constructive mathematics that has had a
significant impact on computer programming.

2. Myhill's Constructive Set Theory
In this section we outline Myhill's constructive set theory (CST—see Myhill
[1975]), providing a formal foundation for BISH. Although this is one of
several formal systems intended to capture the spirit and method of BISH
(Feferman [1979], Friedman [1977]), it is one which we understand that
Bishop himself held in some regard.

CST is based on intuitionistic predicate logic with identity. The variables
are of three basic kinds: numbers, sets, and functions. The seven primitive
notions are

• three constants:
0 (zero),
s (successor),
N (the set of natural numbers);

• two one-place predicates:
M{a) (a is a set),
F{a) (a is a function);

• a two-place predicate:
a G b (a is an element of the set b);

• a three-place predicate:
V(a, b,c) (the function a is defined for the argument b and has the

corresponding value c).

The last of these predicates enables us to handle partial functions whose
domains are not necessarily decidable. In practice, we would normally write
a(b) = c rather than V(a, b, c).

The axioms of CST fall into several groups, the first of which clarifies
the nature of the basic objects.

Al. Everything is a number, a function, or a set: a G N V T[a)\/M(a);
A2. Numbers are not functions: a G N=J- -> J\a);

A3. Functions are not sets: T{a) =>• -> M{a);

A4. Sets are not numbers: M(a) =>• -i(a € N);
A5. Only numbers have successors: V(a, a, 6) =4> a G N;

A6. Only functions have values: V(a,b,c) =>F(a);
A7. Only sets have members: a G b => M(b);
A8. A function has at most one value for a given argument: {V(a, b, c) A

V(a,b,d)) =>c = d.
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The second group of axioms is Peano 's axioms for the natural numbers.

Bl. 0 G N;

B2. a G N=» 3y(V{8,a,y) Ay G N);

B3. -.V(«,a,0);

B4. V(a, a, c) A V(s, 6, c) =$> a = 6;
B5. (P(0) A VxVy((P(x) A V(s,x,y)) =• P(y))) =• Vx(x 6 N =» P(i)),

where P(x) is a one-place predicate.

The next axiom embodies the principle that if for each element x of a
set A there exists a unique element y of a set B such that P(x, y), then y is
obtained from x by a function from A to B. Before stating this axiom we
introduce a convenient shorthand:

dom(z) = a stands for Vx(x G a <=> 3y V(z, x, y)).

Now we have what Myhill calls an axiom of nonchoice:

Cl. (A4(a)AVxGa3!yG6P(x,y))=*
A dom(/) = aAVxGa3y€& (V(f, x, y) A P(x, y))).

In addition, we have the axiom of dependent choice:

C2. (t G a A Vx G a 3y P(x, y)) =>
3 / W ) A dom(/) = N A V(f,0,t) A
ViGNByea iea (V(f, x, y) A V(f, a(x),z) A P(y, z))),

where P is a two-place predicate. It is not hard to derive from this last
axiom the principle of countable choice:

(Vx G N 3y G a P(x, y)) =» 3 / {J\f) A dom(/) = NA
VxGN3yGaV(/,x,y)).

These three choice principles appear to be sufficient6 for the development of
analysis in Bishop [1967] and Bishop and Bridges [1985]. The full axiom of
choice, on the other hand, cannot be allowed in constructive mathematics,
since, as Goodman and Myhill [1978] have shown, it entails the law of
excluded middle.

There appears to be a conflict here with Bishop's remark (Bishop [1967],
p. 9) that

the axiom of choice... is not a real source of nonconstructivity in classical
mathematics. A choice function exists in constructive mathematics, because
a choice is implied by the very meaning of existence.

6 It appears, however, that there may be many places in the development of BISH where
substantial results are provable without the principles of countable choice or dependent
choice; see, for example, Richman [webj.
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Indeed, it is true that if to each element x of a set A there corresponds an
element y of set B such that the property P(x, y) holds, then it is implied
by the meaning of existence in constructive mathematics that there is a
finite routine for computing an appropriate y G B from a given x G A;
but this computation may depend not only on the value a but also on the
information that shows thai a belongs to the set A. The computation of
/(a) for a function / from A to B would depend only on a, and not on
the proof that a belongs to A; in other words, a function is extensional. So
Bishop's remark is correct if he admits functions whose value depends on
both a and a proof that a € A, but is not correct if, as Myhill does, one
only admits extensional functions.

Of course, the axiom of choice will hold for us if the set A is a basic
set—a set for which no computation is necessary to demonstrate that an
element belongs to it. For Myhill and Bishop, N is a basic set, a belief
reflected in their acceptance of the principle of countable choice.

Returning to Myhill's axioms, we now have a group that reflects the
usual types of axiom found in classical set theories. The first two in this
group show that the domain and range of a function are sets.

Dl. 7Xf)=>3XVx(xeX &3yV(f,x,y));

D2. ?(f) =* 3XVx(x € X *>3yV(f,y,x)).

Axiom D2 acts like the standard axiom of replacement in classical set the-
ory, since.it implies that

J\f) => 3XVy (y € X o 3x G AV(f,x,y))

—in other words, that the set {/(i) : x G A n dom(/)} exists.
Next we have the mapping set axiom:

D3. 3XVf(f€Xt*F{f)A dom(f) = AA ran(/) C B),

where
Vx{xetan{f)<*3yV(f,y,x))

and

The mapping set axiom is a weak substitute for the standard power set
axiom,

3yv«(sey««cx),

to which Myhill and others have raised serious constructive objections; see
Myhill [1973], pp. 351-352 and 364-365. The power set axiom is used
implicitly in the chapter on measure theory in Bishop and Bridges [1985],
but, as Myhill ([1973], pp. 354-355) points out, the power set axiom can
easily be avoided in constructive measure theory.
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Myhill's next axiom, asserting the existence of the pair set {a, b} formed
from two objects a and b, can actually be deduced from the one following
it (D5), Cl, and D2, but we shall not do this:

D4. 3X Vx (x 6 X <* x = a V x = b).

The existence of the ordered pair (a,b), denned as the function / with
domain {0,1} such that /(0) = a and /(I) = 6, can also be deduced from
the axioms.

For the next axiom we define the notion of a restricted formula as follows.
Atomic formulae are restricted; propositional combinations of restricted
formulae are restricted; if P is restricted and r is a parameter or N, then
Vx G T P(x) and 3x G r P(x) are restricted. We now have the axiom of
predicative separation:

D5. 3X Vx (x G X <=> x G A A P(x)), where every bound variable of P
is restricted to a set.

The purpose of the restriction is to ensure that the condition defining a set
only refers to sets that have already been defined—in other words, to avoid
circularity in the definition of sets.

The last axiom of this group is that of union:

D6. (Vx G A M{x)) =s> 3X Vx (x G X <=> 3Y (x G Y A Y G A)).

Finally, we have two axioms of extensionality for functions and sets:

El. T\a) A J\b) => (a = b <=> (dom(a) =dom(6)) A
Vx G dom{A)Vy(V(a,x,y) o V(b,x,y)));

E2. A = B «* Vx (x G A <=> x G B).

We believe that Myhill's axiomatic system captures well the spirit of
Bishop's approach to constructive mathematics, based, as it is, on the no-
tions of natural number, set, and function. However, we shall not attempt
in this paper to use the axioms to formalise any parts of BISH.

3. A Constructive Theory of the Real Line
Although the derivation of the algebraic and order properties of the real
line R using Bishop's definitions of real number, equality of real numbers,
positive, and nonnegative is reasonably smooth, it is instructive (and per-
haps pedagogically advantageous) to produce a constructive axiomatic de-
velopment of R. These axioms are intended to capture the idea that a real
number, whatever it may be, is something that can be arbitrarily closely
approximated by rational numbers. (In Bishop's formal construction, re-
ferred to above, that approximation is done by means of regular Cauchy
sequences of rational numbers.)

Our starting point is to assume the existence of a set R with
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• a binary relation > (greater than);
• a corresponding inequality relation ^ denned by

x j= y if and only if ( i > y V y > i ) ;

• binary operations (x,y) >-* x + y (addition) and (x, y) •-+ xy (multi-
plication);

• distinguished elements 0 (zero) and 1 (one) with 0 ^ 1 ;
• a unary operation x »—» — x;
• a unary operation x >-* x~1 on the set of elements x ^ 0.

The elements of R are called real numbers. We say that a real number x is
positive if x > 0, and negative if - i > 0. We define the relation > (greater
than or equal to) by

x > y if and only if Vz (y > z =*• x > z),

and we define the relations < and < in the usual way, calling x nonnegative
if x > 0. Two real numbers x, y are equal if x > y and y > x, in which
case we write x = y. Note that this notion of equality satisfies the usual
properties of an equivalence relation.

We identify the sets N of natural numbers, N+ of positive integers, Z
of integers, and Q of rational numbers with the usual subsets of R; for
example, we identify N+ with {nl : n € N+}.

These relations7 and operations satisfy three groups of axioms.

Rl. R is a Heyting field: For all x, y, z € R,

2. (x + y)+z = x + (y + z),
3. 0 + i = i,
4. x + (-x) = 0,
5. . xy = yx,
6. (xy)z = x(yz),
7. lx = x,
8. ix" 1 = 1 if x ^ 0, and
9. x(y + z) = xy + xz.

Of course, we also denote x"1 by \ or 1/x.

7 We assume that all relations and operations are extensional; for example, to say that
the relation > is extensional means that if i > y, x = x', and y = y7, then x' > \f.
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It is natural to ask whether, for the existence of x"1, it suffices to have
-i(x = 0). The answer is provided by a well known example which shows
that the statement

Vx e R (-.(i = 0) =• By € R (xy = 1))

is equivalent to Markov's Principle (MP):

VaG {0,l}N(-.(a = 0)=J»

—that is, if (an) is a binary sequence such that ->Vn (an = 0), then there
exists n such that On = 1. (See Bridges and Richman [1987], Ch. 1, Problem
8). Since Markov's Principle is a form of unbounded search and cannot be
proved in Heyting arithmetic (ibid., pp. 137-138), it is not accepted by
the majority of constructive mathematicians (although it is clearly true in
classical mathematics).

We now have the second group of axioms.

R2 Properties of >.

1. ->(x > y and y > x);

2. ( I> ] / )=»VZ(I>ZVZ> y);

3. -,(x^y)=>x = y\

4. (x > y) =» Vz( x + z > y + z)\

5. (x > 0 A y > 0) =>• xy > 0.

The second of these axioms is a substitute for the law of trichotomy, and
can be justified heuristically as follows. Given that x > y, and given any
real number z, approximate ^(x + y) and z to within \(x — y) by rational
numbers p and q respectively. Using rational arithmetic, we can decide
whether q < p or q > p. In the first case we have

z<q+\(x-y)

= x.

In the second case a similar argument shows that z > y.
In connection with axiom R2 (3), note that the statement

Vx, y e R(-.(x = » )=•* =/= y)

is equivalent to Markov's Principle (Bridges and Richman [1987], Ch. 1,
Problem 8).
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Our last two axioms describe special properties of > and >. For the
second of these we need to know that the notions bounded above, bounded
below, and bounded are defined as in classical mathematics; and that, for
example, if 5 is a nonempty subset of R that is bounded above, then its
least upper bound, if it exists, is the unique real number b such that

• 6 is an upper bound of S, and
• for each b' < b there exists a € S such that s > b'.

(Note that nonempty means inhabited—that is, we can construct an element
of the set in question.)

R3 Special properties of >.

1. Axiom of Archimedes: For each x G K there exists n € Z such that
x < n.

2. TTie Least-upper-bound Principle: Let S be a nonempty subset of R
that is bounded above relative to the relation >, such that for all real
numbers a, /? with a < /?, either /J is an upper bound of S or else
there exists 8 £ S with s > a; then 5 has a least upper bound.

The first of these two axioms would seem to require no justification; but
the second is a little harder to motivate. To do so, consider the following
attempt to construct the least upper bound of a set 5 that is bounded
above. Let so € S and let 6o be an upper bound for 5. Having constructed
sn € S and an upper bound bn for 5, consider t = ^(sn + bn) : if t is an
upper bound for 5, set sn+\ = sn and 6n+i = t; if t is not an upper bound
for S, then choose sn+1 € S such that an+i > t, and set 6n+i = 6n. This
gives an inductive construction of a sequence (sn) in 5 and a sequence (6n)
of upper bounds for S, such that for each n > 1,

[sn,bn] C [sn-i,bn-i]

and
0 < 6 n - s n <2-"(6o-»o).

Our intuition of the real number system now suggests that the sequence
(sn) and (6n) converge to a common limit that is the required least upper
bound.

Viewed constructively, this argument breaks down because we cannot
decide whether or not t is an upper bound for 5. However, if 5 has the
additional property in the hypothesis of axiom R3 (2), then we can modify
the unsuccessful classical attempt as follows. Having found sn and 6n,
consider the two numbers

= \sn + §&„.
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Since t\ < £2, either t? is an upper bound for 5, in which case we set
«n+i = sn and 6n+i = £2; or else there exists sn+i € 5 such that sn +i > t\,
in which case we set bn+\ = bn. This gives an inductive construction of a
sequence (an) in 5 and a sequence (6n) of upper bounds for 5, such that
for each n > 1,

[»n,6n] C [«n_l,6n-l]

and
0<bn-sn< (§)" (60 - so).

Again, our intuition leads us to expect that the sequences (sn) and (bn)
will approach a common limit, which will be the least upper bound of 5.
Thus we have the heuristic motivation for our axiom R3 (2).

While not exactly routine, it is nevertheless not too hard to derive from
these axioms the properties of R that Bishop establishes directly from his
definitions. In particular, we can prove that R is complete, in the usual
sense that each Cauchy sequence of real numbers has a limit in R (Bridges
[1998a]).

4. A Case Study: Approximation Theory
To illustrate Bishop's mathematics in practice, we now consider some con-
structive aspects of approximation theory. This will require of the reader
some familiarity with some basic classical notions of the theory of metric
and normed spaces.

A subset V of a metric space (X, p) is located if

p(x,V) = \nf{p(x,v):v£V}

exists (is computable!) for each x € X. It is relatively straightforward to
show that finite-dimensional subspaces of a normed space are located. But
we cannot expect to prove that every linear subset of R is located. To see
this, take any real number a and consider the linear subset

Ra = {ax : x e R}

of R. If Ra is located, then we can compute p(l,Ra). By axiom R2 (2),
either p(l,Ra) > 0 or p(l,Ra) < 1. In the first case it is absurd that a ̂  0;
so a = 0, by R2 (3). In the second, choosing x such that |1 — ax\ < 1, we
see that \ax\ > 0; so a ̂  0. (It is an elementary deduction from our axioms
for R that if xy ^ 0, then x ̂  0 or y / 0; see Bridges [1998a].)

Let Y be a located subset of the metric space (X, p), and a an element of
X. We say that b € Y is a best approximation to a in Y if p{a, b) = p(a, X);
and that Y is proximinal in X if each x 6 X has a best approximation in
Y. The fundamental theorem of classical approximation theory says that
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Each finite-dimensional sutspace of a real normed space is proximinal.

The classical proofs of this theorem depend on the theorem that a contin-
uous, real-valued function on a compact space attains its infimum, a result
that implies LLPO. In fact, as is shown in Bridges [1982], it is not just the
proofs, but the theorem itself, that is nonconstructive. So it is a serious
problem to find a good constructive substitute for that theorem.

To this end, we say that an element a of a metric space X has at most
one best approximation in the located subset Y of X if

max{p(a, y), p{a, y')} > p{a, Y)

whenever y,y' are distinct points of Y; and that Y is quasiproximinal if
each x 6 X with at most one best approximation in Y has a (unique)
best approximation in Y. Clearly, a proximinal subspace is quasiproximi-
nal. Classically, it can be shown that proximinal and quasiproximinal are
equivalent concepts: for if a given x € X has no best approximation in a
quasiproximinal subspace Y, then it has at most one, and therefore exactly
one, best approximation in Y, which is absurd.

The following constructive version of the fundamental theorem of ap-
proximation theory was proved in Bridges [1981a]:

Each finite-dimensional subspace of a real normed space is quasiproximinal.

The tricky part of the proof is a lemma dealing with a strong version of the
case where the dimension is 1; the rest is a careful induction over the di-
mension of the subspace. The result itself is an ideal constructive substitute
for the classical fundamental theorem, in that it is classically equivalent to
that theorem. It illustrates a common phenomenon: namely, that classical
unique existence often translates into constructive existence. It also covers
Chebyshev approximation, where X is the Banach space of continuous, real-
valued functions on the closed interval [0, l] and Y is the subspace spanned
by the monomials 1, x, x2,..., xn (Bridges [1980]). However, the existence,
continuity, and strong unicity of the best Chebyshev approximation can
be proved constructively without using the fundamental theorem (Bridges
[1982]).

Now, there is a famous algorithm for constructing best Chebyshev ap-
proximations—the Remes algorithm. Does that not provide a constructive
existence proof? It does not. Inspection reveals that the classical proof of
the convergence of the Remes algorithm is nonconstructive: at one crucial
step it shows that a sequence converges by assuming the contrary and
deducing a contradiction (Karlin and Studden [1966]). It is really quite
remarkable that such an important classical algorithm is presented without
estimates of its rate of convergence! Fortunately, a more careful description
and analysis of the algorithm leads to a constructive proof of its convergence
(Bridges [1981b]).
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We should be realistic about what such a proof has achieved. In or-
der to handle the convergence of the Remes algorithm in even the most
pathological cases, the estimates produced by the constructive proof are,
of necessity, extremely rough. There remains, however, the possibility that
a deeper constructive analysis will produce convergence estimates that can
be used in practical applications of the algorithm.

5. Intuitionism and Computer Science
The first explicit direct use of intuitionistic logic in connection with com-
puter science was the paper 'Constructive mathematics and computer pro-
gramming' (later reprinted as Martin-L6f [1985]), which was read by Per
Martin-L6f at the 6th International Congress for Logic, Methodology and
Philosophy of Science in Hannover in August 1979. This paper followed
the first expositions of Martin-Lofs ideas in [1975] and in some lecture
notes, made by Sambin during a course in 1980, published as Martin-L6f
[1984]. (It is interesting to note that Bishop foresaw the possibility of using
constructive mathematics as a basis for programming; in Bishop [1970] he
suggested using Godel's theory of computable functionals of finite type.)

In his series of papers Martin-L6f first develops the philosophical and
formal basis for his constructive set theory, or constructive type theory, and
then points out and exploits the similarity between mathematics and pro-
gramming. In this very clear sense Martin-Lof's work shows the truth of the
statement made in an earlier section, namely that algorithmic mathematics
—that is, computer science—appears to be equivalent to mathematics that
uses only intuitionistic logic. We now expand on this point and make clear
that the apparent equivalence is real.

Martin-Lof explains the equivalence in a table in Martin-L6f [1980], some
of which runs:

Programmi ng
program, procedure, algorithm

input
output, result

Mathematics
function

argument
value

a e A

record si : Tl; s2 : T2 end T l x T2

and he says (in the same paper):

the whole conceptual apparatus of programming mirrors that of modem math-
ematics (set theory, that is, not geometry) and yet is supposed to be different
from it. How come? The reason for this curious situation is, I think, that
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the mathematical notions have gradually received an interpretation, the inter-
pretation which we refer to as classical, which makes them unusable for pro-
gramming. Fortunately, I do not need to enter the philosophical debate as to
whether the classical interpretation of the primitive logical and mathematical
notions... is sufficiently clear, because this much at least is clear, that if a func-
tion is defined as a binary relation satisfying the usual existence and unicity
conditions, whereby classical reasoning is allowed in the existence proof... then
a function cannot be the same thing as a computer program... Now it is the
contention of the intuitionists... that the basic mathematical notions, above all
the notion of function, ought to be interpreted in such a way that the cleavage
between mathematics, classical mathematics, that is, and programming that
we are witnessing at present disappears. In the case of the mathematical no-
tions of function and set, it is not so much a question of providing them with
new meanings as of restoring old ones...

There are echoes of Bishop here since Martin-Lof is advocating the view
of functions as operations of some sort. In his case, as we will see below,
operations are going to be computer programs.

6. A Computational View of Proof
In this section we expand on some of the ideas mentioned in the above
quote, and, making comments as appropriate, give the complete version of
the foregoing table. In this way we hope to give a good, fairly non-technical
view of the effects of constructive mathematics on modern computer-science
thinking.

One large difference between mathematics and computer science that will
quickly become clear is that computer scientists, while 'all' that they are
doing is algorithmic mathematics, have to spend most of their time dealing
with a very formalised world. This is simply because, in the end, they have
to produce programs, which are of course nothing more than rather large
and very complicated formal objects. Whereas a mathematician, when
communicating with other mathematicians, can rely on knowledge, intu-
ition, insight and all those human processes that make up our ability to
reason intelligently, the computer scientist has to produce an object that
instructs a machine. Every last detail must be explicit; machines, after all,
have no intelligence and so cannot be relied on to fill in the gaps in the
programs that instruct them. So, since computer scientists spend much
of their time producing formal objects, it should not be surprising that
they create formal systems within which to work and within which their
programs can be built.

Bearing this in mind, we might adapt the characterisation of computer
science given above to: computer science is equivalent to completely for-
malised mathematics that uses only intuitionistic logic.

All we have said is by way of preparation for the reader, who must be
in the right frame of mind for accepting the need for formalisation and
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for being patient when we spend time and space getting the details of a
formalisation correct. We do this not out of any narrowness of view or
inability to think; rather we do it because we know that we are forced to
do it by the nature of the end product.8

Now we start building the formal system, based on Martin-Lof's work,
within which, later on, we create our programs. (We shall present enough
of the system to provide some examples, some mathematical points, and
comparisons with the preceding sections.) Our plan is to begin with a stan-
dard logical system (which can be seen as merely a different presentation of
Heyting arithmetic) and gradually build on this, all the while mirroring to
some extent the underlying logic in Section 1, until we arrive at a system
that is expressive enough for our task of constructing programs.

The main difference between the formal parts of .Section 1 and what
we are about to do is that we use a natural-deduction presentation of the
system. In doing this we are not only presenting the system just as Martin-
Lof did, but we are following what has (thanks precisely to Martin-LoTs
work as taken up by theoretical computer scientists) become a standard
way of elegantly presenting a language and its associated logic.

First, we need to introduce some technical terms. Since we will have to
distinguish carefully between a proof (in the sense of a witness to the fact
that some proposition has been proved) and the record of the construction
of that proof we introduce two terms: a proof object—that is, a witness
to the fact that some proposition has been proved; and a derivation—the.
record of the construction of a proof object. We will see many examples of
this use of language later.

A judgement comes in two basic forms: either it is a relation between
proof objects and propositions, or else it states a property of some proposi-
tions. In the first basic form there are two cases, the first of which records
that the mentioned proof object is a witness to the mentioned proposition.
We write this as

a: A

which we read as a is in A, or a proves A, or a witnesses A. (These
are all somewhat imprecise statements, but they are all commonly used
convenient ways of stating a common situation.) The second case records
that two proofs objects are equal and that they witness that a proposition
has been proved. We write this as

a = b:A

8 This is echoed by Martin-L5f himself in Martin-Lof [1985], p. 176, when he says,
before launching into the formal system, 'But there are also certain limits to what verbal
explanations can do when it comes to justifying axioms and rules of inference. In the
end, everybody must understand for himself.'
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The second basic form of a judgement also has two cases, the first of
which records that a certain proposition is well-formed. For reasons which
we address later, this is written as

A prop.

The second case records that two propositions are equal, and is written

A = B.

Finally, these basic forms of judgement are generalised to make them hy-
pothetical judgements by allowing finite lists of hypotheses to appear; so
the general judgement has the form

a : A[xi :Aux2 :A2,...,xn : An],

where

• the Xi are distinct variables,
• the A{ are propositions such that if Xj is in Ai then j < t, and
• a : A is any of the three other possible forms.

These form contexts which introduce variables over proof objects, the vari-
ables being available for use within the body of the judgement o : A. Again,
we will see examples of this below which should help clarify this rather gen-
eral definition.

We describe the usual connectives via natural deduction rules for their
introduction and elimination. These rules are exactly the ones we would
expect for a classical logic except that the rules allowing proofs of -<-*J) => ip
or \j) y-irp are not included. Our rules also include mention of proof objects.

We need one non-logical rule:

Aprop
T assumption.x:A[x:A]

This says that when A is a proposition, the hypothetical judgement
x : A[x : A] can be derived.

6.1 Equality Rules
At the level of judgements we have all the rules governing equality that one
would expect. For example:

a: A _, a = b:A a:A A = B

= a:A ' b = a : A " a: B
3ymm T~5 prop-eq
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C(x) prop \x : A] a: A
C(a) prop

c(x) : C{x)[x : A] a : A
c(a) : C(a)

subst-prop

subst-obj.

6.2 Propositional Rules
A prop B prop . b(x) : B(x)\x : A]

. n—£—*-=*•-form \ ' V o =>-mtw.
A=>B prop J \{b) : A=> B

The b in this rule is an abstraction of the form (v)e where t; is some variable
which, if it appears free in the expression e, will be bound in (v)e. The
usual term equality holds here:

(u)e(z) = e[x/v]

—that is, free occurrences of t; in e which are free for x are replaced by x.
In intuitionistic (and so classical) logic we have the valid proposition

A => A for any proposition A. We should expect this to have a proof in
the system we are describing, and so it does. First, consider using the
=>-intro rule without mentioning the proof objects (so that it looks like a
conventional natural-deduction rule), and build a derivation which shows
this sentence to be valid. We can build

A prop
assumption

Now we can consider the same derivation, this time with the proof objects
added:

A prop
77 jr assumption

x : A\x : A]
=t-intro\ / / T U l . A —v A

A\\JL IJL I * f\ —F' t\

So something of the form Ae is a proof object associated with an implication.
This makes concrete the idea, originating with Heyting, that the proof of
an implication is an algorithm which, given a proof of the antecedent of the
implication, constructs a proof of the consequent. (Readers familiar with
the lambda calculus (Barendregt [1984]) will appreciate why A was chosen
to denote such proof objects in this system.) Note that in this trivial case,
given a proof of A, the proof of A =*• A, A ( ( I ) I ) , does indeed return a proof
of A: from an algorithmic viewpoint it is just the identity function.

c-.A^B a:A _ .. a: A b(x) : B[x ; A] _ _
apply(c,a):B = *" d ' m apply(\(b),a) = b(a) : B
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The rule =>-elim is the formal counterpart of modus poneas, while =*-eq
(as with all the -eq rules) tells us how certain expressions simplify (reading
the equality from left to right), and so can be thought of as a computation
rule when A and apply are given their obvious algorithmic meanings.

The rule
c = d: A=> B a = b: B

apply(c,a) = apply(d,b) : B

expresses the fact that we are dealing with extensional operations in the
sense of Bishop.

If we now reconsider the rules above, replacing =>• by —» and 'prop' by
'type', then we catch a first glimpse of the propositions-as-types principle
which has been so influential. In particular, if we allow our view to switch
between propositions and types, we see that implication (a logical notion)
has identical properties to the function-space type-former (a computational
notion). This identity extends to all the other standard logical connectives.

A prop B prop . a : A b:B
- - A-form -.—rr—-—— A-mtro.

A A Bprop (a, b) : A A B

So, given a proof of a conjunction, we can construct further proofs referring
to its two component proofs.

x-.AAB d(y,z) :C((y,z))[y:A,z:B]
split{x,d):C(x) '

a : A b:B d(x,y) : C((c,y))[x : a, y : B]
split((a,b),d) = d(a,b):C((a,b)) A ' e ? '

This shows that given a pair of proofs we can project out the components.
Thus we see that the logical notion of conjunction is associated with the
computational notion of forming and manipulating a Cartesian product.
Once again, the point about propositions and types being two views of the
same idea comes through.

To illustrate this, consider the valid proposition (A A B) =>• A. We can
build a proof object for this as in the following derivation:

AABprop . A prop
assumption —. -r assumptionX:AAB[X:AAB] —"•*"— y : A\y : A)

A-elim
split{x, (y, z)y) :A\x:AAB]

X((x)split(x, (y, z)y)) : (A A B) => A

We can see how this object is used computationally by applying it to a
proof of A AB, which will have the form (a, b) where a is a proof of A and b
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is a proof of B. Instead of giving the fully formal derivation, we paraphrase
it by the following sequence:

apply (\((x)split{x, (y, z)y)), (a, b)) = split({a, 6), (y, z)y) = a.

So the proof object that witnesses (A A B) =• A again has a computational
interpretation: given a proof of A A B it returns a proof of A.

Aprop Bpropy

AV B prop
a: A . b:B . , _

V-intro —rr — - V-mtro.t ( o ) : A V B j(b):aVB

The interpretation of V is where the distinction between our logic and
a classical one becomes clear: in order to prove a proposition of the form
AVB, we have to provide either a proof of A or a proof of B, and record, for
later use, which of these we have provided. This means that the proposition
A V -u4 is not true—that is, not provable—since we cannot, for arbitrary
A, exhibit either a proof of A or one of ->A.

This point is important since, as we shall see, from a propositional point
of view, V represents a disjoint union +, and => represents —>, the function-
space constructor. If we consider the definition, perhaps in some notional
programming language,

Number =# Float + Int

and the existence of a function

add: Number —> Number

we can see that in computing addition, add needs to be able to tell, for
some argument n : Number, from which summand n originally came, since
the operation of addition which add has to carry out depends on this in-
formation.

The remaining rules for disjunction are

C-.AS/B d(x) : C(i(x))[x : A] e(y) : C{j{y))[y : B)
when{c,d,e):C{c) ^

a: A d{x):C{i{x))[x:A) e(y) : C{j{y))[y : B]
when (i(a), d, e) = d{a) : C{i(a))

(x):C(i(x))[x:A]
when(j(b),d,e) =

b:B d(x):C(i(x))[x:A] e(y) : C{j{y))\v • B\
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To give some idea of how these work (since they are somewhat notation-
ally dense) consider the following simple example. We would hope that,
given a proof of (A V B) =>• C and a proof of A, we would be able to prove
that C holds. Assuming that we have a proof of C, we can derive the
judgement

X((x)when(x,(y)c,(z)c)):C[c:C)

and assuming that A holds—that is, that a : A —we have the derivation

a: A
-r—.—-—— V-xntro.
i(a) :AVB

Given all this, we can prove C with the following derivation:

a • A
i(a): Av B V ' m f r ° \{(x)when(x(y)c, (z)c)) :(AVB)=> C[c : C)

apply(\((x)when(x, {y)c, {z)c)), i(a)) : C[c : C]

Then the various equality rules allow us to show that

apply (X((x)when (x, {y)c, (z)c)),t(a)) = when (i(a), (y)c, (z)c)

= (vHa)
= c

as required.

6.3 Rules for Quantifiers
The rules for the universal quantifier are completely standard:

A prop B(x) Prop b(x):B(x)[x:A]
V(A,B)prvp J \{b):V(A,B)

a: A c:V(A,B) a: A b(x) : B(x)[x : A]
apply(c, a) : B(a) mm apply(\{b),a) = b(a) : B(a) "*

Note that, as for implication, a proof of a universal proposition is viewed
as a function: one that, given a proof that some object is in the domain,"
returns a proof that the object has the property which is stated as being
universal. Also note that these rules are closely related to the rules for =>;
indeed the latter rules can be derived from the former just by observing
that the proposition B does not vary in the case of implication.

The rules for the existential quantifier require that, in order to justify a
claim that we have proved an existential proposition, we exhibit an object
in the required domain and a proof that it has the properties claimed.
Hence the natural way of representing the proof object for an existential
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proposition is as a pair consisting of the object whose existence is claimed
and a proof that it has the claimed property.

A prop B(x) prop^ a: A 6(a):B(a)_,
3fOrm ^3(A,B)prop 3fOrm (a,b):3(A,B)

c : 3(A,B) d(x,y) : C((x,y))[x : A,y : B{x)\
split (c,d) : C(c)

a : A b(a) : B(a) d(x,y) : C((x,y))[x : A,y : B(x)}
split((a,b),d) = d(a,b) : C((a,b)) *'"*•

Below we will use the definitions

fst =df (x)split{x, (y, z)y)

and

snd=df {x)split(x,(y,z)z).

6.4 Rules for Natural Numbers

The rules for the natural numbers follow the pattern for all the other rules
we have seen. Note that the judgement n : N is clearly most naturally
interpreted as 'n is a natural number', and N does not have a clear inter-
pretation as a proposition, though it does as a set or a type. Perhaps 'n is
a witness to the proposition that there are natural numbers' might be one
way of reading the judgement, in which, as a proposition, N is 'there are
natural numbers'.

Rather than worrying too much about how we might informally interpret
N, we just rely on the following rules to give it meaning:

N-form -—— N-xntro f-r—— N-intro
Nprop J 0: N succ(x) : N

n : N d : C(0) e(x, y) : Cjsucc (x))[x : N, y : C(x))
rec (n, d, e) : C(n)

d : C(0) e(x,y) : C(succ(x))[x : N,y : C(x)}

rec(0,d,e) = d:C(0) '^

n : N d: C(0) e(x, y) : Cjsxicc (x))[x : N, y : C(x)} ^
rec(succ (n), d, e) = e(n, rec (n, d, e)) : C(succ (n))

These, rules give us the usual interpretation of N as the set of natural
numbers. However, we often want to talk about finite sets with a known
number of elements; as we will see, the sets with zero elements, one element
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and two elements turn out to be particularly important. For this reason we
also have sets with k members (jfc > 0):

——— Nk-mtro, 0 < m < k
iNfc prop T7lfc

n:Nfc ao:C(Ot)...afc-1:C((fc-l)fc)]

Rk{n,ao,. ..aic-i) : C(n)

ao:C(Ok)...ak-i:C((k-l)k) ^ ^

No is the set containing no members; as a proposition it has no proofs,
which means that we can interpret No as absurdity. Therefore No-e/:m:

n : No ..
No-dimRo(n) : C{n)

says that if we have a proof of absurdity then any proposition C follows,
which is exactly the rule ex {also quodlibet.

As usual, we can use No to define negation:

-,p =df P =• No.

Computationally this says that a proof of ->P is a function that, given
a proof of P, will construct for us a proof of No, which is evidently not
possible since no such proof exists.

Similarly, we can interpret Ni as the proposition that is true everywhere
(though, of course, any nonempty type could be chosen for this role), and
Nj can stand for the type which in programming languages is normally
known as something like 'Boolean'—the type containing exactly two dis-
tinct elements.

6.5 Rules for Equality
The final set of rules that we examine deal with the notion of equality. We
already have equality at the judgement level, as shown by the eq rules in the
previous sections. These rules allow us to reason about how we can compute
with objects and how they transform into other objects via computation.
However, it is clear from the structure of the rules that equality at the
judgement level cannot be embedded within other judgements, since objects
and types cannot include the equality. For example, if we want to say
something simple like 'a, b, and c are all equal', we cannot write
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since judgemental equality is the only equality we have so far and there is
no notion of conjunction for judgements.

In order for the system to reach its full power, we want to have equality
as a type; this will enable us to combine equalities together to form more
complicated expressions. We need to be able to form dependent types—
types that are parametrised by objects. To do this we need to move from
an equality which appears explicitly in a judgement to its expression as a
type. That means that the equality can then appear in further types (and
objects in higher universes).

The rules for moving from judgements to types are straightforward:

a:A b : A , , a = b : A
I-form jr— rr I-mtroI(A,a,b)prop '"'"* e:I(A,a,b)

r:I(A,a,b) r = e : I(A,a,b)
— — I-elim r-r-j T7— I-eq.

a = b:A r : I(A,a,b)

Note that these rules introduce two new constants: / for forming types,
and e which witnesses that two objects are the same.

We can now show, for example, that equality is symmetric. If A is a
type and a : A and b : A, and if we assume that c : I {A, a, b), then we have
to show that there is a witness for I(A,b,a); but this follows trivially by
the rules above and the equality rules from section 6.1. We can similarly
show that all the other standard properties of equality hold at this type
level just as they do at the judgemental level.

7. Propositions as Types

It turns out that the rules given above still make sense in general if we
replace uses of 'proposition' with uses of 'set' or 'type' and the connectives
and quantifiers are replaced by various operations from set theory, as in the
following table.

Propositions Sets
V, disjunction +, disjoint union
A, conjuntion x, Cartesian product

=>, implication —», function-space constructor
3, existential £), disjoint union over a family
V, universal f]> product over a family

Indeed, Martin-Lofs original theory was intended as a constructive set
theory; the logical interpretation is recovered if we consider a proposition
to be represented by the set of all its proofs.
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This idea was written up by Howard [1980]. It came from the suggestive
similarity between the formal descriptions of, as one case, function applica-
tion and implication elimination and, as another case, abstraction within
the A-calculus and implication introduction.

Instead of going into more details here, we direct the reader to Howard
[1980], Reeves [1991] and Thompson [1991].

8. Mathematical Considerations

The axiom of choice (in an informal form of our syntax):

(Vx : A)(3y : B(x))C(x,y) => (3 / : (Vx : A)B(x))(Vx : A)C(x, apply (/,x))

is derivable in this system. Martin-Lof, in building his formal systems,
has kept rigorously to using completely presented—that is, basic (see page
76)—sets. This explains why the axiom of choice holds, since it is known
to be a sensible property for basic sets; see our remarks on page 76 above.

This area of the axiom choice and constructive mathematics is one where
the many different theories of constructive mathematics are brought most
clearly into conflict (see Beeson [1985] for examples of this). The reader
should keep in mind that Martin-Lof's theory and its consequences are by
no means accepted by all constructive mathematicians. However, he has
presented the most complete formal theory, one that comes very close to
being perfect for expressing programs and methods for their development;
hence our current treatment of his work.

It is also worth noting at this point that Bishop's concept of func-
tion is very close to Martin-Lof's in that they both bring together exten-
sional operations—that is, operations which, for equal inputs, give equal
outputs—and completely presented sets.

The proof of the axiom of choice, following the one in Martin-Lof [1984],
goes informally as follows. Assume

z : (Vx : A)(3y : B(x))C(x,y) (2)

If
x : A (3)

then we have
apply(z,x) : (3y : B{x))C(x,y).

So
fst(apply(z,x)):B{x)

and
snd{apply(z,x)) : C{x,fst(apply(z,x))).
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Now we abstract on x—that is, discharge assumption (3)—to get

X((x)snd(apply(z,x))) : (Vx: A)C(x,fst(apply(z,x))).

We also have
\{{x)jst{apply{z,x))) : (Vx : A)B(x);

so
apply (\{(x)fst (apply (z,x))),x) = fst{apply (z,x)) : B(x).

Hence, by substitution,

C(x, apply (\((x)fst(z,x)),x)) = C(x, fst (apply (z,x)));

and therefore

X((x)snd(apply (z,x))) : (Vx : A)C(x,apply(X((x)fst(z,x)),x).

Existential introduction now yields

(X((x)fst (apply (z, x))), X((x)snd (apply (z, i)))) :

(3 / : (Vx : A)B(x))(Vx : A)C(x, apply (f,x))

and so, by abstraction on z—that is, by discharging our first assumption
(2)—we get

X((z)(X((x)fst(apply(z, x))), X((x)snd(apply(z,x))))) :

(Vx : A)(3y : B(x))C(x,y) =*

(3 / : (Vx : A)B(xWx : A)C(x, apply (f,x)).

This completes the proof of the axiom of choice.
We also want to be sure that we can do arithmetic in our theory. This we

can show by considering Peano's axioms. Only one of the five axioms—the
fourth one, which says that 0 is not the successor of any natural number—
is not already available by simple constructions using the rules we have
introduced above. In order to prove this axiom, we have to introduce
universes.

These can be regarded as an extension to the system that allows the idea
'every object has a type' to appear uniformly (or, equivalently, that allows
every object to be a member of some set). In particular, the propositions
or types or sets are objects in the theory that do not themselves have sets
in which to reside.
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A more general problem is that the theory as it stands allows us to
construct only finitely many new sets—for example, we cannot construct a
function which, given some natural number n, returns the n-fold product
of N with itself: such a function has no type within the system.

For similar reasons we cannot hope to model the important and powerful
idea of abstract data types. Such types would typically be defined by stating
the existence of a type with various desired properties. So we would expect
such an object to reside in a type of the form 3(A,B). But we do not
currently have a type that B could be; in other words, we do not have a
type that could contain the abstract type. We shall say more on this, with
examples, towards the end of this paper.

Finally, we might want, for programming purposes, to be able to write
functions which take types as arguments, thereby allowing us to model ideas
like parametric polymorphism. Again, we currently have no way of writing
down the type of such a function, so it certainly cannot be constructible in
the current system.

For all these reasons we need to extend the language to include a type
that contains all our current types, so that our current types are themselves
objects in this new type. The type that contains ah" the types we have seen
so far is denoted by Uo, and we have new rules such as

U-forml 4-^TT U-form2 ——- N-/orm
Uo type J A:Uo J N : Uo

•A:Uo B{x) : Uo

*(A,B):Uo U

In the rules we had previously, all occurrences of A prop are replaced by
A : Uo.

We can now construct type-valued functions like

A((x)ra:(x,N,(z,y)(Nxy))) : N - Uo.

In particular, we can show that the fourth Peano axiom, which we express
as

/(N>0,«ucc(n))-»No [n:N],

is derivable in the theory, as follows.
First assume that

i : J(N,0, succ(n)) [n : N). (4)

We can show, using the Uo-intro rules, that

rec(m,N1,(y,z)No):t/o[m:N].
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The N-eq rules give us

rec(O,N,,(y,z)No) = N 1 :0b (5)

and
rec(5ucc(n),Ni,(y,z)No) = No : Uo [n : N]. (6)

By I-dim on (4), we have

0=succ(n) :N[n:N],

and from this it follows that

rec(0>N,l(»>z)No) = ra(«icc(n),Ni,(»,z)No): Uo [n : N].

Further, from (5) and (6) we obtain

N, = No. (7)

Since Ni -intro yields
0, :N,

we also have
0 i :N 0

by (7); so, by discharging the assumption (4), we finally have

A((x)0i) : J(N,0,succ(n)) -» N0 [n : N].

Now that we have a type Uo that contains all our old types, there remains
the question of what type Uo itself appears in and whether we can extend
the theory so that objects like V(,4, Uo) can also be admitted as elements of
some type. The answer is that we add another type Ui which contains Uo
and all the elements built from it using the usual type constructors. In fact
this sequence of types can be extended so that we get Un for any natural
number n. The one thing that we cannot have is a type that contains all
types including itself; that would make the system inconsistent.

9. Program Specification and Derivation

Having reviewed much of the formal machinery, we are, at last, in a position
to say something about how it is put to use in programming.

One of the central problems in computer science is to develop a program
p that meets—that is, correctly implements—a given specification 5. There
are of course other problems linked to this one:

• How do you develop the specification itself?
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• How do you know that the specification correctly expresses what the
customer wants?

• How do you manage change in specifications (perhaps as required by
changing customer or technological requirements) as time passes, and
how do you reflect these faithfully in the program?

All these problems are very real and important, and are the object of much
research, but we will ignore them in what follows.

The problem on which we concentrate can be expressed within the system
presented above as

given a type S , which should be viewed as a specification, derive a program p
such thatp : S.

So we view specifications as either types or propositions. Viewing them
as types, we wish to construct an element of the type. Viewing them as
propositions, we wish to show that the specification is provable (in other
words, that it does not express an impossible state of affairs); moreover,
since we are working in a constructive logic, we will then use the witness
as a program which meets the specification.

This approach has several advantages, amongst which are

• that the specification and program-development process (building a
derivation of p) all go on in one system, and

• that a program is at once a computational object (so it can carry out
the task set by the specification) and a proof that the specification
has been met.

9.1 A Simple Example
An example of a specification is one for a natural-number division algo-
rithm:

V(N, (n)V(N, (m)3(N, (fc)3(N, (r)/(N, n,plus{prod(m, k), r)))))), (8)

where we already have terms

plus=d/ (x,y)rec(x,y,(a,b)succ(b))

for addition and

=<tf (x,y)rec(x, 0, (a, b)plus(y,b))

for multiplication.
Note that (8) states that for any two natural numbers their quotient and

remainder exist, which is what we expect if we are defining division. But
note that because this is a constructive logic, the proof not only shows us
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that this is the case but also explicitly computes the quotient and remain-
der. Indeed, the proof object that we would construct for (8) would be of
the form

A((n)A((m)(fc,(r,p)))).

Applying this object to natural numbers a and b would return a structure
containing k, r and p, where k is the quotient, r the remainder, and p a
proof that a = (b x k) + r.

9.2 Abstract Data Types
One of the most important ideas to emerge from studies of good program-
ming practice is that of separation of concerns. This refers to the fact that
in building large pieces of software, we have to solve highly complex prob-
lems which usually require several people working concurrently (for reasons
of economy or efficiency, for example). This means that the division of
labour amongst the programmers has to be carefully considered so that in-
consistencies in assumptions about properties of the system being built do
not cause the system to fail when all the separately built parts are brought
together. One way of dealing with this is to identify structures which can
be logically separated out from the rest of the problem and which allow two
views of them—the view of the person implementing them, and the view
of the person using them.

These views share part of the structure, a part known as the interface.
This names the operations provided by the data type and gives their types,
so that the user knows what the type makes available. It also tells the
person implementing the program what operations and types have to be
implemented; the interface can be viewed as a contract between the two
sides. Then the user knows about the structure only as far as the interface
describes it. Since this means that, for the user, the way that the structure
is implemented is hidden and inaccessible, such a structure is known as an
abstract data type (ADT). This separation of implementation and usage for
an ADT means that if, for some later reason, perhaps a change of hardware
or an improved algorithm for some aspect of the ADT, the implementer
wants to change a part, then because the user of the ADT has used only
the operations provided by the interface and has had no access to the im-
plementation, any software the user has written does not have to change.
It also means that the user and implementer can work concurrently on the
implementation and use of the ADT, since they each only have to respect
the interface and their concerns have been separated.

Having described the importance of the ADT idea, we now have to de-
scribe how ADTs can be modelled within the system we have been present-
ing.

One ADT commonly used as a building-block for many other structures
is the list. Informally, a list is a sequence of elements from some type where
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order is significant and repeated occurrences of elements are allowed. There
is a distinguished element, the empty list, and a binary operation, usually
called cons, which adds an element to the start, or head, of a list.

In specifying the list ADT, we have to state that such a type exists and
that each of the operations that allow us to compute with lists exists also; so
it is not surprising that the type that models the ADT has the outermost
form of an existential proposition, or what has become widely known in
computer science as an existential type.

We will first consider a list of natural numbers. We can write it as

3(U0, (L)3(L, (e)3(L =* N, (h)3(L x N ^ L , (c)V(N, (n)V(L,

(i)(/(N, apply (h, apply (c, (n, /))), n) A I(L, apply (h, e), e)))))))).

An object in this type has the form

(list, (empty, (head, (cons, X((n)X((l)p)))))), (9)

where list is the type whose existence is claimed by the type (read as a
proposition), empty, head, and cons are the various operations which form
part of the ADT, and the last component is a proof that, for any natural
number and any list, the operations satisfy the equalities that define them.

We can generalise the ADT for lists of natural numbers to allow it to be
parametrised by the underlying type. This gives us a single ADT which can
be specialised to any underlying type—including, for example, the ADT for
lists itself. The generalisation is very easy: we simply add another level of
quantification, as follows.

V(£/o, (T)3(U0, (L)3(L, (e)3(L => T, (h)3(L xT^L, (c)V(r, (n)V(L,

(l)(I(T, apply (h, apply (c, (n, I))), n) A I(L, apply (h, e), e))))))).

An object of this type has the form

X((t)(list, (empty, (head, (cons, A((n)A((i)p)))))))

which, when applied to some type T (which is bound to t), has as value an
object like that in (9) but with the underlying type T instead of the fixed
type N we had before.

9.3 Further Work
An example of ongoing work in this area is that of providing simpler and
more elegant semantics for the specification language Z than currently exists
(Henson and Reeves [1997]). For reasons closely linked with the work of
Martin-Ldf presented above, this is being done by examining formal systems
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for intuitionistic logic. The point is that an intuitionistic basis for Z will
yield not only a logic for Z as a specification language but also a logic for
program derivation, in the sense that we will be able to derive programs
that meet given Z specifications in much the same way as, above, we have
been able to derive programs from the types, propositions, or sets treated
there.

Although it turns out that giving such a logic for Z is fairly straightfor-
ward, we are still left with the problem of making the process of derivation
meaningful to a programmer rather than a person working in intuitionistic
logic. The rules that give the program-derivation steps are very primitive,
and it is usually the case that many of these primitive rules are required
to make a derived rule which encapsulates one step at the level at which
a programmer would normally work. So the larger challenge is to develop,
from the primitive rules provided by the underlying logical system, derived
rules that match a programmer's view of program derivation from Z speci-
fications.

This is a clear illustration of the difference between work in formal logic
(which has the distinctive characteristic that no one ever really wants to do a
proof within the formalism, only about the formalism) and computer science
(where we do want to develop formal systems which are usable). While the
formal systems are invaluable as vehicles for expressing the semantics and
logic of our programming endeavours, they have nothing to offer in the way
of methods for actually making derivations within them.

Making such formal systems practicable has also given rise to a huge
volume of work on the development of software supporting uses of formal
systems, in the sense of syntax checkers, type checkers, proof checkers and
proof assistants and theory managers (systems which store, index, allow
retrieval of, and ensure the consistency of the huge formal theories that
programming logics depend on). A simple example of such a system is
described in Reeves [1995]. It should be noted that work in this area of proof
assistants is still at an early stage and there are many unsolved problems,
not the least of which is to develop good interfaces to such systems. Too
often the system is developed and used by a small team of people who get
to know it so well that they lose sight of the fact that new users would find
it very hard to use because little attention has been paid to the modes of
interaction with the system and, in particular, to making those modes clear
and understandable for a new user.

Computer science can be seen a discipline which has both revived the
need for formal systems and seen them put to practical use. In this respect,
constructive mathematics and its underlying formal systems have proved,
and are likely to continue, to be of paramount importance.
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ABSTRACT. The first part of the paper introduces the varieties of modem con-
structive mathematics, concentrating on Bishop's constructive mathematics
(BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a
constructive axiomatic development of the real line R. The second part of the pa-
per focusses on the relation between constructive mathematics and programming,
with emphasis on Martin-Lofs theory of types as a formal system for BISH.




