
Logic in Computer Science

Another presentation of natural deduction

We use the letters Γ,∆, . . . for sequences of formulae of the form φ1, . . . , φn (n may be 0 in which
case the sequence is empty). If Γ is φ1, . . . , φn we write Γ, φ for φ1, . . . , φn, φ.

We give another definition of Γ ` φ, by inference rules. The axioms are

Γ ` φ
whenever φ is one of the formula φ1, . . . , φn (notice that it may appear several times). For

instance

p, q ` p p, q, p ` q p, q, p ` p

We have then the following rules

Γ, φ ` ψ
Γ ` φ→ ψ

(→ i)
Γ ` φ→ ψ Γ ` φ

Γ ` ψ
(→ e)

Γ, φ `⊥
Γ ` ¬φ

(¬i) Γ ` ¬φ Γ ` φ
Γ `⊥

(¬e)

Γ ` φ1

Γ ` φ1 ∨ φ2
(∨i) Γ ` φ2

Γ ` φ1 ∨ φ2
(∨i) Γ ` φ1 ∨ φ2 Γ, φ1 ` ψ Γ, φ2 ` ψ

Γ ` ψ
(∨e)

Γ ` φ1 ∧ φ2

Γ ` φ1
(∧e) Γ ` φ1 ∧ φ2

Γ ` φ2
(∧e) Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2
(∧i)

This defines intuitionistic logic. In order to get classical logic, we have to add the law of double
negation elimination

Γ ` ¬¬φ
Γ ` φ

Here is for instance a derivation of ` p→ (q → p):

1. p, q ` p axiom

2. p ` q → p by → i

3. ` p→ (q → p) by → i

Formally a derivation is a sequence of sequents (!) s1, . . . , sn such that any sk is either an axiom
or can be derived using one the rule above from some si, i < k. Let us give another example:

1. p ∧ q ` p ∧ q axiom

2. p ∧ q ` p by ∧e:1

3. p ∧ q ` q by ∧e:1

4. p ∧ q ` q ∧ p by ∧i:2,3
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Here is an instance of a derived (or admissible) rule:

Γ,¬φ `⊥
Γ ` φ

and here is the derivation

1. Γ,¬φ `⊥ assumption

2. Γ ` ¬¬φ ¬i

3. Γ ` φ ¬¬e

The advantage of this presentation is that we can give a nicer proof of the soundness Theorem.

Theorem: If Γ ` φ then Γ |= φ

We prove this by course of value induction. If we have a derivation Γ1 ` φ1, . . . ,Γn ` φn then
we have also Γ1 |= φ1, . . . ,Γn |= φn. This is direct if Γk |= φk is an axiom, because then φk appears
in the sequence Γk. If we derive Γk |= φk from previous sequents, the Theorem holds by induction.
We have to look at all possible rules. I give only two examples:

If we derive Γk ` φk by → e then we have i, j < k with φj = φi → φk and Γk = Γi = Γj . By
induction hypothesis we have Γi |= φi and Γj |= φj . So Γk |= φi and Γk |= φi → φk. If we have a
valution ρ that makes T all formulae in Γk then φi and φi → φk get the value T . So φk gets the
value T . We have shown Γk |= φk as required.

If we derive Γk ` φk by ∧i then we have i, j < k with φk = φi ∧ φj and Γk = Γi = Γj . By
induction hypothesis we have Γi |= φi and Γj |= φj . So Γk |= φi and Γk |= φj . If we have a valution
ρ that makes T all formulae in Γk then φi and φj get the value T . So φk = φi ∧ φj gets the value
T . We have shown Γk |= φk as required.

Application of the soundness Theorem

Theorem: Propositional calculus is consistent; we cannot have both ` φ and ` ¬φ

Indeed it is clear that we cannot have both |= φ and |= ¬φ

The soundness Theorem is also useful to show that a formula cannot be proved. For instance,
we don’t have

D → ¬G, W → D ` ¬W → G (∗)

because the assignement W = True, G = False makes the premisses True and the conclusion
False (independently of the assignement to the formula D).

Here is an example of a reformulation of (*), which may show that it is not always so easy to
guess if an argument is correct or not: “it is not good if I am depressed, and if I watch the news I
am depressed; hence it is good that I don’t watch the news”.

Natural deduction for first-order logic

Here are the rules for universal quantification

Γ ` ∀x.φ
Γ ` φ[x/t]

(∀e)
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provided t is free for x in φ and
Γ ` φ

Γ ` ∀x.φ
(∀i)

provided x is not free in any formula of Γ.
The rules for existential quantification are

Γ ` φ[x/t]
Γ ` ∃x.φ

(∃i)

provided t is free for x in φ and

Γ ` ∃x.φ Γ, φ ` ψ
Γ ` ψ

(∃e)

provided x is not free in ψ and not free in any formula of Γ.
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