Logic in Computer Science

Another presentation of natural deduction

We use the letters Γ, Δ, \ldots for sequences of formulae of the form ϕ_1, \ldots, ϕ_n (*n* may be 0 in which case the sequence is empty). If Γ is ϕ_1, \ldots, ϕ_n we write Γ, ϕ for $\phi_1, \ldots, \phi_n, \phi$.

We give another definition of $\Gamma \vdash \phi$, by inference rules. The axioms are

 $\overline{\Gamma \vdash \phi}$

whenever ϕ is one of the formula ϕ_1, \ldots, ϕ_n (notice that it may appear several times). For instance

$$p,q \vdash p \qquad \qquad p,q,p \vdash q \qquad \qquad p,q,p \vdash p$$

We have then the following rules

$$\begin{array}{cc} \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi} \ (\rightarrow i) & \qquad \frac{\Gamma \vdash \phi \rightarrow \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi} \ (\rightarrow e) \\ \\ \frac{\Gamma, \phi \vdash \bot}{\Gamma \vdash \neg \phi} \ (\neg i) & \qquad \frac{\Gamma \vdash \neg \phi \quad \Gamma \vdash \phi}{\Gamma \vdash \bot} \ (\neg e) \end{array}$$

 $\frac{\Gamma \vdash \phi_1}{\Gamma \vdash \phi_1 \lor \phi_2} (\lor i) \qquad \frac{\Gamma \vdash \phi_2}{\Gamma \vdash \phi_1 \lor \phi_2} (\lor i) \qquad \frac{\Gamma \vdash \phi_1 \lor \phi_2 \quad \Gamma, \phi_1 \vdash \psi \quad \Gamma, \phi_2 \vdash \psi}{\Gamma \vdash \psi} (\lor e)$ $\frac{\Gamma \vdash \phi_1 \land \phi_2}{\Gamma \vdash \phi_1} (\land e) \qquad \frac{\Gamma \vdash \phi_1 \land \phi_2}{\Gamma \vdash \phi_2} (\land e) \qquad \frac{\Gamma \vdash \phi_1 \quad \Gamma \vdash \phi_2}{\Gamma \vdash \phi_1 \land \phi_2} (\land i)$

This defines intuitionistic logic. In order to get classical logic, we have to add the law of double negation elimination

$$\frac{\Gamma\vdash\neg\neg\phi}{\Gamma\vdash\phi}$$

Here is for instance a derivation of $\vdash p \rightarrow (q \rightarrow p)$:

- 1. $p, q \vdash p$ axiom
- 2. $p \vdash q \rightarrow p$ by $\rightarrow i$
- 3. $\vdash p \rightarrow (q \rightarrow p)$ by $\rightarrow i$

Formally a derivation is a sequence of sequents (!) s_1, \ldots, s_n such that any s_k is either an axiom or can be derived using one the rule above from some s_i , i < k. Let us give another example:

- 1. $p \land q \vdash p \land q$ axiom
- 2. $p \wedge q \vdash p$ by $\wedge e:1$
- 3. $p \wedge q \vdash q$ by $\wedge e:1$
- 4. $p \land q \vdash q \land p$ by $\land i:2,3$

Here is an instance of a *derived* (or *admissible*) rule:

$$\frac{\Gamma, \neg \phi \vdash \bot}{\Gamma \vdash \phi}$$

and here is the derivation

1. $\Gamma, \neg \phi \vdash \bot$ assumption

2.
$$\Gamma \vdash \neg \neg \phi \neg i$$

3. $\Gamma \vdash \phi \neg \neg e$

The advantage of this presentation is that we can give a nicer proof of the soundness Theorem.

Theorem: If $\Gamma \vdash \phi$ then $\Gamma \models \phi$

We prove this by course of value induction. If we have a derivation $\Gamma_1 \vdash \phi_1, \ldots, \Gamma_n \vdash \phi_n$ then we have also $\Gamma_1 \models \phi_1, \ldots, \Gamma_n \models \phi_n$. This is direct if $\Gamma_k \models \phi_k$ is an axiom, because then ϕ_k appears in the sequence Γ_k . If we derive $\Gamma_k \models \phi_k$ from previous sequents, the Theorem holds by induction. We have to look at all possible rules. I give only two examples:

If we derive $\Gamma_k \vdash \phi_k$ by $\rightarrow e$ then we have i, j < k with $\phi_j = \phi_i \rightarrow \phi_k$ and $\Gamma_k = \Gamma_i = \Gamma_j$. By induction hypothesis we have $\Gamma_i \models \phi_i$ and $\Gamma_j \models \phi_j$. So $\Gamma_k \models \phi_i$ and $\Gamma_k \models \phi_i \rightarrow \phi_k$. If we have a valution ρ that makes T all formulae in Γ_k then ϕ_i and $\phi_i \rightarrow \phi_k$ get the value T. So ϕ_k gets the value T. We have shown $\Gamma_k \models \phi_k$ as required.

If we derive $\Gamma_k \vdash \phi_k$ by $\wedge i$ then we have i, j < k with $\phi_k = \phi_i \wedge \phi_j$ and $\Gamma_k = \Gamma_i = \Gamma_j$. By induction hypothesis we have $\Gamma_i \models \phi_i$ and $\Gamma_j \models \phi_j$. So $\Gamma_k \models \phi_i$ and $\Gamma_k \models \phi_j$. If we have a valuation ρ that makes T all formulae in Γ_k then ϕ_i and ϕ_j get the value T. So $\phi_k = \phi_i \wedge \phi_j$ gets the value T. We have shown $\Gamma_k \models \phi_k$ as required.

Application of the soundness Theorem

Theorem: Propositional calculus is consistent; we cannot have both $\vdash \phi$ and $\vdash \neg \phi$

Indeed it is clear that we cannot have both $\models \phi$ and $\models \neg \phi$

The soundness Theorem is also useful to show that a formula *cannot be* proved. For instance, we don't have

$$D \to \neg G, W \to D \vdash \neg W \to G$$
 (*)

because the assignment W = True, G = False makes the premisses True and the conclusion False (independently of the assignment to the formula D).

Here is an example of a reformulation of (*), which may show that it is not always so easy to guess if an argument is correct or not: "it is not good if I am depressed, and if I watch the news I am depressed; hence it is good that I don't watch the news".

Natural deduction for first-order logic

Here are the rules for universal quantification

$$\frac{\Gamma \vdash \forall x.\phi}{\Gamma \vdash \phi[x/t]} \ (\forall e)$$

provided t is free for x in ϕ and

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall x.\phi} \ (\forall i)$$

provided x is not free in any formula of Γ .

The rules for existential quantification are

$$\frac{\Gamma \vdash \phi[x/t]}{\Gamma \vdash \exists x.\phi} \ (\exists i)$$

provided t is free for x in ϕ and

$$\frac{\Gamma \vdash \exists x. \phi \quad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi} \ (\exists e)$$

provided x is not free in ψ and not free in any formula of Γ .