We present a notion typical of constructive mathematics: the notion of \textit{coherent ring}

It can be seen as a constructive approximation of the notion of Noetherian ring. It was introduced explicitly in Bourbaki.

It illustrates the connection between \textit{constructive reasoning} and \textit{algorithms}. All the proofs I will present can be thought of/rewritten as programs.

Coherence is not a first-order notion, but there are various first-order conditions that imply coherence

\textit{Prüfer} domain is a first-order approximation of Dedekind domain
Coherent ring: motivation

Over a field, we know how to solve a linear system

\[AX = 0 \quad \quad AX = B \]

Gauss elimination

Over a ring, one approximation of this is to be able to generate all solutions, i.e. to find \(L \) such that

\[AX = 0 \iff \exists Y . X = LY \]

The columns of \(L \) generate all the solutions
Coherent ring: motivation

If the ring R is Noetherian, it can be shown that any submodule of R^n is finitely generated.

In particular, the submodule $\{X \in R^n \mid AX = 0\}$ is finitely generated.

Classically, $AX = B$ has at least one solution X_0, and then $AX = B$ iff $A(X - X_0) = 0$, or no solution.

In particular over $k[X_1, \ldots, X_n]$, one can generate the solutions of any linear system.

But since we use Noetherianity, and classical logic, we do not get any algorithm.
Coherent ring: definition

A ring R is coherent iff for any A we can find L such that

$$AX = 0 \leftrightarrow \exists Y. X = LY$$

Theorem: *The ring $k[X_1, \ldots, X_n]$ is coherent*

e.g. using Gröbner basis
Any Noetherian ring is coherent

If B infinite Boolean algebra, then B is coherent and not Noetherian

More generally, if R is vN regular (forall a there exists b such that $a^2b = a$) then R is coherent as well as $R[X_1, \ldots, X_n]$
A ring is strongly discrete iff we can decide membership to any finitely generated ideal, i.e. we can decide if a system

\[a_1 x_1 + \cdots + a_n x_n = b \]

has a solution or not.

Theorem: The ring \(k[X_1, \ldots, X_n] \) is strongly discrete using Gröbner basis.
Strongly discrete and coherent ring

Theorem: If the ring R is coherent and strongly discrete we can decide if a system $AX = B$ has a solution.
What is good for?

Symbolic representation of differential equations

Method of separation of symbols (Argobast, Boole)

An equation like \(\partial_x f + \partial_y g + \partial_z h = 0 \) is seen symbolically as an equation on \(\mathbb{Q}[\partial_x, \partial_y, \partial_z] \) seeing \(\partial_x, \partial_y, \partial_z \) as indeterminates.

One is then lead to the system \(XU + YV + ZW = 0 \) on \(\mathbb{Q}[X, Y, Z] \).

The solutions are generated by \((-Y, X, 0), (0, -Z, Y), (Z, 0, -X)\).

Cf. divergence, gradient and curl in physics.
One important application of algorithms on coherent rings is in the (algebraic) analysis of systems of differential equations.

To each system is associated a matrix A over a polynomial ring.

For instance, the problem of whether the system is parametrizable can be analyzed algebraically.
What is good for?

The system $\partial_x f + \partial_y g + \partial_z h = 0$ is parametrizable

The system $f' = -g, \ g' = f$ is not parametrizable

A. Quadrat, System HOMALG (Aachen) is a computer system for solving these kind of questions

The notion of coherent and strongly discrete ring is essential
Proposition 1: If we can generate solutions of one line system $AX = 0$ then we can generate solutions of any system $AX = 0$.

Proposition 2: If the intersection of two finitely generated ideals is finitely generated over a domain R then R is coherent. Conversely if R is a coherent ring then the intersection of two finitely generated ideals is finitely generated.

Proposition 3: In general, a ring R is coherent iff the intersection of two finitely generated ideals is finitely generated and for any element a the ideal $Ann(a) = \{x \in R \mid ax = 0\}$ is finitely generated.
This notion is not so well behaved constructively: any ideal is principal, quantification on all subsets

It is replaced by a first-order approximation, of Bezout domain: any finitely generated ideal is principal

This can be expressed by a first-order (positive) condition

$$\forall p \ q. \exists g \ u \ v \ a \ b. \ p = gu \land q = gv \land g = ap + bq$$

Theorem: The ring $k[X]$ is a Bezout domain
Coherent Ring

Principal Ideal Domain?

Theorem: Any Bezout domain is coherent

Theorem: A Bezout domain is strongly discrete iff we can decide divisibility
Coherent Ring

We have a norm $N : (R - \{0\}) \rightarrow \mathbb{N}$ such that if $a \neq 0$

$$\forall b. \exists q, r. a = bq + r \land (r = 0 \lor N(r) < N(a))$$

Example: \mathbb{Z} and $k[X]$

Theorem: *Any Euclidean domain is a Bezout domain*

Hence any Euclidean domain is coherent
$k[X,Y]$ is not a Bezout domain: $\langle X, Y \rangle$ cannot be generated by one element

R is a **GCD domain** iff any two elements have a gcd

Theorem: If R is a GCD domain then so is $R[X]$

Hence $k[X_1, \ldots, X_n]$ is a GCD domain

Classically this is an Unique Factorization Domain; GCD domain is a first-order approximation of UFD
Coherent domain

It is *not true* in general that if R is coherent then so is $R[X]$.

If R is coherent and $A : R^m \to R^n$ we can find $A_1 : R^{m_1} \to R^m$ such that

$$AX = 0 \iff \exists Y. X = A_1 Y$$

We build in this way a sequence

$$\ldots \longrightarrow R^{m_3} \xrightarrow{A_3} R^{m_2} \xrightarrow{A_2} R^{m_1} \xrightarrow{A_1} R^m \xrightarrow{A} R^n$$
In particular if we have a finitely generated ideal I we have a map

$$R^m \xrightarrow{A} I \xrightarrow{} 0$$

and we can build a sequence

$$\ldots \rightarrow R^{m_3} \xrightarrow{A_3} R^{m_2} \xrightarrow{A_2} R^{m_1} \xrightarrow{A_1} R^m \xrightarrow{A} I \xrightarrow{} 0$$

This is called a free resolution of the ideal

This measures the “complexity” of the ideal: relations between generators, then relations between relations, and so on.
If we have $m_k = 0$ for $k > N$ we say that I has a **finite free resolution**

$$0 \rightarrow R^{m_N} \xrightarrow{A_N} \ldots \rightarrow R^{m_2} \xrightarrow{A_2} R^{m_1} \xrightarrow{A_1} R^m \xrightarrow{A} I \rightarrow 0$$

Theorem: If $\langle a_1, \ldots, a_l \rangle$ has a finite free resolution then a_1, \ldots, a_l have a gcd

For fixed sizes this is a first-order statement!

Not so easy even for $0 \rightarrow R^2 \rightarrow R^3 \rightarrow I \rightarrow 0$
Finitely presented modules

Over a field, \textit{finitely generated} vector spaces

If \(u : F \rightarrow G \) and \(F, G \) are finitely generated then so are \(\text{Ker} \ u \) and \(\text{CoKer} \ u \)

Over coherent rings, we consider \textit{finitely presented} modules

If \(u : F \rightarrow G \) and \(F, G \) are finitely presented then so are \(\text{Ker} \ u \) and \(\text{CoKer} \ u \)
Finitely presented modules

Concretely a finitely presented module is given by a matrix

\[
R^n \xrightarrow{A} R^m \xrightarrow{} M \xrightarrow{} 0
\]

The module \(M \) is isomorphic to \(R^m/\text{Im} \ A \)

We have \(m \) generators and \(n \) relations

Example: \(R = \mathbb{Q}[X] \) and \(A = \begin{pmatrix} X & -1 \\ 1 & X \end{pmatrix} \)
Finitely presented modules

Theorem: The category of finitely presented modules over a coherent ring is an abelian category
Finitely presented modules

If R is a ring like $\mathbb{Q}[\partial_1, \partial_2, \partial_3]$ a matrix represents a system of differential equations.

The properties of this system are reflected in the properties of the finitely presented module associated to this matrix.

For instance, to have an algorithm for Quillen-Suslin Theorem is interesting in this context.
If M is finitely presented over a coherent and strongly discrete ring R we can decide whether $M = 0$ or not.

Indeed, we can decide whether $R^n \xrightarrow{A} R^m$ is surjective or not.
If M is a module over a domain R we define

$$t(M) = \{ m \in M \mid \exists r \neq 0 \; rm = 0 \}$$

Theorem: If R is a coherent domain and M is finitely presented then so is $t(M)$.

Corollary: If R is a coherent and strongly discrete domain and M is finitely presented then we can decide whether $t(M) = 0$ or not.
For instance if we take $R = \mathbb{Q}[X]$ and $A = \begin{pmatrix} X & -1 \\ 1 & X \end{pmatrix}$

Then we have $(X^2 + 1)m = 0$ for all m in M and so we have $t(M) = M$
Algorithm for computing a presentation of $t(M)$

$\begin{align*}
R^n & \xrightarrow{A} R^m \xrightarrow{} M \xrightarrow{} 0 \\
\end{align*}$

We compute B such that $\text{Im } B = \text{Ker } A^T$ which is possible since R is coherent.

We then have $\text{Im } A \subseteq \text{Ker } B^T$ and $t(M)$ is isomorphic to the quotient $\text{Ker } B^T / \text{Im } A$.

Indeed, over $K = \text{Frac}(R)$ we have $\text{Im } A = \text{Ker } B^T$ by usual linear algebra over a field.
What is the meaning in term of differential equations?

Let \mathcal{F} be a module of “functions”

- If \mathcal{F} is injective and the module presented by A has no torsion (we have $\text{Im } A = \text{Ker } B^T$) then the system defined by A is parametrizable (by B^T)

- If \mathcal{F} is a cogenerator, i.e. $\text{Hom}(M, \mathcal{F}) = 0$ implies $M = 0$, and the system defined by A is parametrizable, then the module presented by A has no torsion

Example: $C^\infty(\mathbb{R}^3)$ is an injective cogenerator over $\mathbb{R}[\partial_x, \partial_y, \partial_z]$
In commutative algebra, an important notion is the one of *Dedekind domain* Noetherian integrally closed such that any non zero prime ideal is maximal

This definition is quite far from what Dedekind considered important about his notion, and not easy to interpret computationally

J. Avigad *Methodology and metaphysics in the development of Dedekind’s theory of ideals*
For Dedekind what was important was the possibility of finding an inverse to any finitely generated ideal

This is algorithmic: for any a_1, \ldots, a_n we can find b_1, \ldots, b_m such that the product ideal

$$\langle a_1, \ldots, a_n \rangle \langle b_1, \ldots, b_m \rangle = \langle a_1 b_1, \ldots, a_n b_m \rangle$$

is a principal ideal

Theorem: Prüfer domain are coherent
Algorithm to compute $I \cap J$

$$(I \cap J)(I + J) = IJ$$

Let K be an inverse of $I + J$: we have $K(I + J) = \langle c \rangle$

Then $c(I \cap J) = KIJ$ and c divides all elements in KI so we find generators for $I \cap J$
Examples: $\mathbb{Z}[\sqrt{-5}]$ (algebraic numbers)

$\mathbb{Q}[x, y]$ with $y^2 = 1 - x^4$ (algebraic curves)
Dedekind domain are exactly \textit{Noetherian} Pr"{u}fer domain so that the previous result does not appear in the usual presentation of Dedekind domain.

There is a simple first-order characterisation of Pr"{u}fer domain

$$\forall a \ b. \exists u \ v \ w. \ au = bv \land aw = b(1 - u)$$

Intuitively, we write that any localization at any prime is a valuation domain (divisibility is a total order) in a finite way.

An equivalent condition is: the lattice of ideal is distributive.
Theorem: If R is a Prüfer domain then $R[X_1, \ldots, X_n]$ is coherent.

This is proved in classical mathematics using complex methods (Gruson-Raynaud).

I. Yengui has recently found an algorithm for showing that $R[X]$ is coherent if R is a Prüfer domain.