Constructive algebra

Thierry Coquand

May 2018

Structure sheaf

Classically we have a family of rings R_{lpha} varying continuously in lpha point of the Zariski spectrum of R

 $R_{\alpha} = \varinjlim_{\alpha \in D_Z(a)} R[1/a]$

We defined sheaf $F_R(D(a)) = R[1/a]$ only on basic open; in general

 $F_R(U) = \varprojlim_{D(a) \subseteq U} R[1/a]$

Double negation

We defined $a \Vdash \varphi$

 $\llbracket \varphi \rrbracket$ as an open set is the union of D(a) such that $a \Vdash \varphi$

 $\Vdash \neg \neg \varphi \text{ iff } \llbracket \varphi \rrbracket \text{ is } dense$

U is dense iff $U \cap D(a) = 0$ implies D(a) = 0

Double negation

Theorem: (Ingo Blechschmidt, 2016) If M is a finitely generated module on R then the set of a such that M[1/a] is free over R[1/a] is dense in this sense

The proof is direct by induction on the number of generators of R

This generalizes the Grothendieck generic freeness Lemma, EGA IV, lemme 6.9.2 stated there only for *Noetherian* integral domain

Sheaf property

If we have $D(a) = D(a_1, \ldots, a_l)$ and

 $x = \frac{u_1}{a_1^N} = \dots = \frac{u_l}{a_l^N}$

then we have M such that $a^M = \Sigma v_i a_i^N$ and then

$$x = \frac{\Sigma v_i u_i}{\Sigma v_i a_i^N} = \frac{\Sigma v_i u_i}{a^M}$$

is in R[1/a]

High-school fact: if m/n = p/q then m/n = p/q = (m+n)/(p+q)

Local-global property

A property $\psi(R)$ of a ring R is *local-global* iff

if $D(a) = D(a_1, \ldots, a_n)$ then ψ holds for R iff it holds for all $R[1/a_i]$

Local-global property

(1) "To be a local ring" if *not* a local-global property!

(2) That a given linear system of equations AX = B has a solution is a local-global propery

(3) That a given element is a square is not a local-global property

(4) To be integrally closed is a local-global property

Prüfer domain are integrally closed

We follow the proof that valuation domains are integrally closed and use that this is a local global property

Given x = a/b such that $x^2 = u_1x + u_2$ we have (Prüfer property)

$$a/b = s/u$$
 and $b/a = t/v$ with $u + v = 1$

We have $x = u_1 + u_2/x$ so $a/b = u_1 + u_2t/v = (u_1v + u_2t)/v$

Hence $a/b = s/u = (u_1v + u_2t)/v = s + u_1v + u_2t$

High-school fact: if m/n = p/q then m/n = p/q = (m+n)/(p+q)