
Algebraically Closed Fields

Thierry Coquand

May 2018



Algebraically Closed Fields

Constructive Algebra

Constructive algebra is algebra done in the context of intuitionistic logic
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Algebraic closure

In the previous lecture, we have seen how to “force” the existence of prime
ideals, even in a weak framework where we don’t have choice axiom

A prime filter always exists in the Zariski topos

Instead of “forcing” the existence of a point of a space (a mathematical
object), we are going to “force” the existence of a model (a mathematical
structure)

2



Algebraically Closed Fields

Forcing/Beth models/Kripke models

1956 Beth models

1958 Kripke models

1962 Cohen forcing

1964 sheaf models, site models, topos

1966 Boolean valued models
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Algebraic closure

The first step to build a closure of a field k is to show that we can build a
splitting field of any polynomial P in k[X]. We have to build an extension of k
where P decomposes in linear factor.

However in the theory of discrete fields we cannot prove

∃x (x2 + 1 = 0) ∨ ∀x (x2 + 1 6= 0)
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Irreducibe polynomial

Indeed, this is not valid in the following Kripke model over 0 6 1

At level 0 we take k = Q

At level 1 we take k = Q[i]

Essentially the same argument can be found in

van der Waerden (1930) Eine Bemerkung über die Unzerlegbarkeit von
Polynomen

(before recursive functions theory was developped!)
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Algebraically closed fields

Language of ring. Theory of ring, equational

Field axioms 1 6= 0 and

x = 0 ∨ ∃y. 1 = xy

Algebraically closed ∃x. xn + a1x
n−1 + · · ·+ an = 0

For an extension of k we add the diagram of k

a 6= b stands for ¬(a = b) and ¬ϕ stands for ϕ→⊥
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Algebraically closed fields

Let k be a field of characteristic 0

We show effectively the consistency of this theory by defining a forcing relation

R 
 ϕ

where R is a finitely presented k-algebra

Thus R is of the form k[X1, . . . , Xn]/〈P1, . . . , Pm〉

This forcing relation will be sound: ` ϕ implies R 
 ϕ

We shall have R 
 1 = 0 iff 1 = 0 in R
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Algebraically closed fields

R represents a state of knowledge about the (ideal) model: we have a
finite number of indeterminates X1, . . . , Xn and a finite number of conditions
P1 = · · · = Pm = 0
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Refinement of the model

If we are at the node R = k[x]/〈x2−3x+2〉 and we want to force a = 0∨inv(a)
for a = x− 3

We can directly see that a is invertible in R by computing the GCD of
x2 − 3x+ 2 and x− 3

x2 − 3x+ 2 = x(x− 3) + 2

so that the inverse of a is −x/2
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Refinement of the model

Similarly for a = x− 1 we find

x2 − 3x+ 2 = (x− 1)(x− 2)

so that one branch is R → k[x]/〈x − 1〉 where a = x − 1 is 0 and the other
branch is R→ k[x]/〈x− 2〉 where a = x− 1 is invertible (and is equal to 1)

R[a−1] = k[x]/〈x− 2〉 R/〈a〉 = k[x]/〈x− 1〉
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Refinement of the model

Finally in characteristic 0 (or over a perfect field) we can assume that we
restrict the addition of roots to separable polynomials, by GCD computations

In this way, the nodes are all given by a finite number of indeterminates
x1, . . . , xn and polynomial constraints

p1(x1) = 0, p2(x1, x2) = 0, . . . , pn(x1, . . . , xn) = 0

and the algebra R = k[x1, . . . , xn]/〈p1, . . . , pn〉 is vN regular
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Site model

All the nodes R will be reduced (no nilpotent elements) and 0-dimensional:
Z(R) is a Boolean algebra
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Site model

Elementary covering

If 1 = e1 + · · ·+ en with e2i = ei and eiej = 0 for i 6= j then R→ R[1/ei] =
R/〈1− ei〉 is a covering

algebraically closed fields: we add R → R[X]/〈p〉 where p is a monic non
constant separable polynomial

An arbitrary covering is obtained by iterating elementary coverings (in all these
cases, we obtain only finite coverings)
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Site model

The presheaf R 7−→ R is a sheaf

In the case of the covering R→ R[x]/〈p〉 we have to show that if u(x) = u(y)
in R[x, y]/〈p(x), p(y)〉 then u(x) = u(y) is a constant in R

This sheaf is a discrete field, which is the generic algebraic closure of k
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Site model

One defines a forcing relation R 
 ϕ by induction on ϕ

R 
 ϕ(a1, . . . , an) → ψ(a1, . . . , an) iff S 
 ϕ(f(a1), . . . , f(an)) implies
S 
 ψ(f(a1), . . . , f(an)) for any map f : R→ S

R 
 ∀x.ϕ(a1, . . . , an, x) iff for any map R → S and any element b in S we
have S 
 ϕ(f(a1), . . . , f(an), b)

R 
 ϕ0 ∧ ϕ1 iff we have R 
 ϕ0 and R 
 ϕ1

15



Algebraically Closed Fields

Site model

R 
 ∃x.ϕ(a1, . . . , an, x) iff we have a covering fi : R → Ri and elements bi
in Ri such that Ri 
 ϕ(fi(a1), . . . , fi(an), bi)

R 
 ϕ0(a1, . . . , an) ∨ ϕ1(a1, . . . , an) iff we have a covering fi : R → Ri and
Ri 
 ϕ0(fi(a1), . . . , fi(an)) or Ri 
 ϕ1(fi(a1), . . . , fi(an)) for all i
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Site model

R 
 t(a1, . . . , an) = u(a1, . . . , an) iff we have a covering fi : R → Ri and
t(fi(a1), . . . , fi(an)) = u(fi(a1), . . . , fi(an)) in each Ri

R 
⊥ iff we have a covering fi : R→ Ri and 1 = 0 in each Ri
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Site model

In this way, we “force”

R 
 a = 0 ∨ inv(a) theory of fields, where inv(a) is ∃x.ax = 1

R 
 ∃x.xn + a1x
n−1 + · · ·+ an = 0 theory of algebraically closed fields
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Soundness Theorem

Theorem: If we have ϕ1, . . . , ϕn ` ϕ in intuitionistic natural deduction and
if R 
 ϕ1, . . . , R 
 ϕn then we have R 
 ϕ

This is proved by induction on the proof of ϕ1, . . . , ϕn ` ϕ

Similar to the proof of soundness for Kripke/Beth models

Hence if we have ` 1 = 0 we have R 
 1 = 0 for all finitely presented
k-algebra R
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Soundness Theorem

Lemma: If R → S and we have a covering fi : R → Ri then we can find a
corresponding covering gi : S → Si with commuting maps hi : Ri → Si

Lemma: If R 
 ϕ(a1, . . . , an) and f : R→ S then S 
 ϕ(f(a1), . . . , f(an))
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Site model

We can see this forcing relation as defining one model, similar to Beth/Kripke
model

This model (the “generic” model, similar to the initial model for equational
theories) can be described in a weak metatheory (no axiom of choice)

This gives an effective consistency proof for the theory of algebraically closed
fields

Indeed R 
 1 = 0 iff 1 = 0 in R

This builds a generic model, where the truth-values are non standard
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Completeness Theorem

We say that a formula ϕ is positive iff it does not contain ∀, →

ϕ ::= ⊥ | t = u | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ

For a positive formula, a proof of R 
 ϕ has a simple tree structure building
a covering of R

We can see this as a cut-free proof of ϕ

22



Algebraically Closed Fields

Completeness Theorem

Two approaches for completeness

(1) Henkin-Lindenbaum

(2) Löwenheim-Skolem-Herbrand-Gödel, gives completeness of cut-free proofs
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Completeness Theorem

For positive formulae, to be true in a site model means to have a cut-free
proof (well-founded tree)

Indeed, a proof theory with exactly this notion of proof tree is described in
the paper

M. Coste, H. Lombardi and M.F. Roy, Dynamical method in algebra, Ann.
Pure Appl. Logic 111 (2001), 203-256

The semantics is sound w.r.t. intuitionistic derivation, and the proof of
soundness is similar to a proof of admissibility of the cut rule
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Refinement of the model

The two covering relations are

-R→ R0 = R/〈e〉 and R→ R1 = R/〈1− e〉, so that R = R0 ×R1

-R→ R[X]/〈p〉 where p is separable
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Refinement of the model

For instance if R = k[x, y]/〈x2 − 2, y2 − 2〉 and we want to force

a = 0 ∨ inv(a)

for a = y − x we get the covering

R0 = k[x, y]/〈x2 − 2, y − x〉 R1 = k[x, y]/〈x2 − 2, y + x〉
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Refinement of the model

This gives a computational model of the algebraic closure of a field, for
which we don’t use a factorisation algorithm for polynomials over k, only GCD
computation

This might be interesting even if we have a factorization algorithm for
polynomials over k

One can think of each such finitely presented k-algebra as a finite
approximation of the (ideal) algebraic closure of k
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Dynamical evaluation

We get in this way what is known as dynamical evaluation in computer algebra
(D. Duval; one application: computation of branches of an algebraic curves)

The notion of site model gives a theoretical model of dynamical evaluation

The same technique can be used for several other first-order theories

M. Coste, H. Lombardi and M.F. Roy, Dynamical method in algebra, Ann.
Pure Appl. Logic 111 (2001), 203-256
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Dynamical evaluation

We can for instance look at Abhyankar’s proof of Newton-Puiseux Theorem
in Algebraic geometry for Scientists and Engineers

Theorem: If P (X,Y ) = 0 is a separable polynomial in Y in k[X,Y ]
of degree n then there exists m > 1 and η1, . . . , ηn in K[[X]] such that
P (Tm, Y ) = Π(Y − ηi)

This makes sense in the sheaf model we have described

We get an algorithm which given P computes a finite extension of k where
such a decomposition can be found
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Dynamical evaluation

P (X,Y ) = Y 6 + 3X2Y 4 + (3X4 − 4X2)Y 2 +X6 and k = Q

k[a, b, c, d, e] where m = 2 and

a4 − 2 = 0
b− a/5 = 0
c2 − 1/4 = 0
d3 + 2/3a2d+ 20/27a3 = 0
e2 + 3/4d2 + 2/3a2 = 0
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Site model

This is reminiscent of the description of Kronecker’s work by H. Edwards

The necessity of using an algebraically closed ground field introduced -and
has perpetuated for 110 years- a fundamentally transcendental construction at
the foundation of the theory of algebraic curves. Kronecker’s approach, which
calls for adjoining new constants algebraically as they are needed, is much more
consonant with the nature of the subject

H. Edwards Mathematical Ideas, Ideals, and Ideology, Math. Intelligencer 14
(1992), no. 2, 6–19.

Cf. T. Mora Solving Polynomial Equation Systems I, The Kronecker-Duval
Philosophy
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Other theories

Theory of local rings
inv(x) ∨ inv(1− x)

where inv(u) means ∃y. 1 = yu

The elementary covering are now R→ R[x−1] and R→ R[(1− x)−1]

Lemma: We have R 
 inv(x) iff x is invertible in R

Lemma: We have R 
 J(x) iff x is nilpotent in R

Corollary: We don’t have ` inv(x) ∨ J(x) in the (intuitionistic) theory of
local rings
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