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Constructive Algebra

Constructive Algebra

Constructive algebra is algebra done in the context of intuitionistic logic
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Constructive Algebra

Support of a ring

Distributive lattice L with a map D : R→ L

D(1) = 1

D(0) = 0

D(a+ b) 6 D(a) ∨D(b)

D(ab) = D(a) ∧D(b)

We write D(a1, . . . , an) for D(a1) ∨ · · · ∨D(an)
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Constructive Algebra

Universal support

Support Z(R) (Zariski lattice) with DZ : R→ Z(R)

Satisfies the universal property

R
DZ

-Z(R)

L

∃!

?

.................-

3



Constructive Algebra

Universal support

By abstract reasoning, we know the universal support exists

Unique up to isomorphism

Can we have 1 = 0 in DZ(R)?

This is a consistency problem

We build effectively the universal support
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Constructive Algebra

Universal support

I, J,K, . . . finite subset of R

〈J〉 is the ideal generated by the elements of J

Define a ` J by: some power of a belongs to 〈J〉

I 6 J by: a ` J for all a in I
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Constructive Algebra

Universal support

Lemma: If a ` b1, . . . , bm,K and b1 ` K, . . . , bm ` K then a ` K

This is cut-elimination

It follows from this that 6 is transitive
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Constructive Algebra

Universal support

Lemma: If a ` J then ac ` Jc

Lemma: If a ` J and a ` K then then a ` JK

I ' J by: I 6 J and J 6 I

I ∧ J = IJ and I ∨ J = I, J define a lattice structure Z(R)

The canonical map DZ : R→ Z(R) is a support

This is the universal support
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Constructive Algebra

Universal support

If a2 = 0 and b3 = 0 then DZ(a) = DZ(b) = 0

We have a+ b ` a, b and a ` and b `

By cuts, a+ b `

a+ b = a+ b then (a+ b)2 = b(2a+ b) and (a+ b)6 = b3(2a+ b)3 = 0

We get (a+ b)n = 0 with n = 6!
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Constructive Algebra

Structure sheaf of a ring

Z(R) can be seen as a point-free description of the Zariski spectrum of R

The elements DZ(a) form a basis of the topology

a ` b1, . . . , bm describes the covering relation for this topology

FR(a) = R[1/a] defines a (generalized) Beth model structure

To simplify the discussion we assume that R is an integral domain: the
equality in R is decidable and R is a subring of a (discrete) field K

R[1/a] ⊆ K if a 6= 0

a ` b is the same as R[1/b] ⊆ R[1/a] for a 6= 0, b 6= 0
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Constructive Algebra

Structure sheaf of a ring

We define a  ϕ where ϕ is a formula in the language of rings with parameters
in R[1/a]

a  t = u if t = u in R[1/a]

a  ϕ→ ψ if b ` a and b  ϕ implies b  ψ

a  ϕ ∧ ψ if a  ϕ and a  ψ

a  ∀x ϕ if b ` a and u in R[1/b] imply b  ϕ(x/u)

10



Constructive Algebra

Structure sheaf of a ring

a  ϕ∨ψ if we have DZ(a) = DZ(a1, . . . , an) in Z(R) and ai  ϕ or ai  ψ

a  ∃x ϕ if we have DZ(a) = DZ(a1, . . . , an) in Z(R) and ui in R[1/ai] with
ai  ϕ(x/ui)

a ⊥ iff a = 0 “exploding” node

Note that a  1 = 0 if a = 0
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Constructive Algebra

Structure sheaf of a ring

A local ring is a ring such that

inv(x+ y)→ inv(x) ∨ inv(y)

or, equivalently, for all x

inv(x) ∨ inv(1− x)

Classically: a ring with a unique maximal ideal

Lemma: We have  ∀x (inv(x) ∨ inv(1− x))

So the structure sheaf is a local ring!
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Constructive Algebra

Structure sheaf of a ring

Classically we have prime ideals α, β, . . . in Sp(R)

For each α we define Rα = lim−→α∈DZ(a)
R[1/a]

We have a “continuous” family of local rings Rα varying with α
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Constructive Algebra

Structure sheaf of a ring, Exercise

We always have (don’t forget that R is supposed to be integral domain)

 (¬inv(x))→ x = 0

Classically (¬inv(x))→ x = 0 is equivalent to inv(x) ∨ x = 0
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Constructive Algebra

Prüfer domain

Define x|y by ∃u (y = ux)

A valuation domain is an integral domain such that ∀x y (x|y ∨ y|x)

The algorithm on a valuation domain would work with an oracle taking x and
y and producing either x|y or y|x

A Prüfer domain is an integral domain such that

 ∀x y (x|y ∨ y|x)

So a Prüfer domain is an integral domain such that its structure sheaf is a
valuation domain

15



Constructive Algebra

Prüfer domain

Note: should ∨ and ∃ be undertood as in univalent mathematics?

The issue does not appear for x = 0 ∨ ∃y (xy = 1)

y is uniquely determined if it exists
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Constructive Algebra

Prüfer domain

Let us unfold the definition

We have 1 = 〈u1, . . . , un, v1, . . . , vm〉

We have ybi = xuNi and xaj = yvNj for some N

We can find ri, sj such that Σriu
N
i + Σsjv

N
j = 1

Then y(Σribi) = xu and x(Σsjaj) = yv

u = Σriu
N
i and v = Σsjv

N
j

We get yb = xu and xa = yv with u+ v = 1
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Constructive Algebra

Prüfer domain

A Prüfer domain is an integral domain such that

∀ x y ∃ a b u v (yb = xu ∧ xa = yv ∧ u+ v = 1)

This is a first-order definition

A Dedekind domain is exactly a Noetherian Prüfer domain

However, some important algorithmic properties of Dedekind domain can be
seen at the level of Prüfer domain
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Constructive Algebra

Prüfer domain

One of the most important algorithmic property of Dedekind domain is

If a belongs to 〈J〉 then there exists K such that 〈a〉 = 〈JK〉

More generally if 〈I〉 ⊆ 〈J〉 then there exists K such that 〈I〉 = 〈JK〉
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Constructive Algebra

Prüfer domain

This holds for valuation domain

For a valuation domain, given b1, . . . , bm there exists i such that 〈bi〉 =
〈b1, . . . , bm〉

This is a local-global property

Hence it holds for a Prüfer domain!
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Constructive Algebra

Prüfer domain

Theorem: If MI ⊆MJ and M 6= 0 then I ⊆ J

This holds for a valuation domain and is a local-global property

21



Constructive Algebra

Application

We have IJ ⊆ I + J hence there exists M such that

M(I + J) = IJ

Proposition: If M(I + J) = IJ we have M = I ∩ J

We have M(I + J) ⊆ I(I + J) hence M ⊆ I

We have M(I + J) ⊆ J(I + J) hence M ⊆ J

If M ′ ⊆ I and M ′ ⊆ J then M ′(I + J) ⊆ IJ hence M ′ ⊆M
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Constructive Algebra

Application

Hence if I and J are finitely generated ideals then so is I ∩ J

This property of Prüfer and hence Dedekind domain is hidden with usual
definitions of Dedekind domain

But it was considered as a crucial property of Dedekind domain by Dedekind!

23



Constructive Algebra

Application

In a Prüfer domain we have

I ∩ (J +K) = (I ∩ J) + (I ∩K)

This follows from cancellation property

It also can be seen as a local-global property

And this is equivalent to being Prüfer

Exercise about l-group!
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Constructive Algebra

Coherent domain

An integral domain is coherent iff I ∩J is finitely generated when I and J are
finitely generated

Given a finitely generated ideal I we can then compute a resolution of I

· · · → Rm1 → Rm0 → I → 0
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Constructive Algebra

Coherent domain

Classically any Noetherian domain is coherent

Exercise: If R is an integral domain and Z(R) is a Boolean algebra (R is
0-dimensional) then any polynomial ring R[X1, . . . , Xn] is coherent (but it does
not need to be Noetherian)
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Constructive Algebra

Dedekind domain

Compare with the “usual” definition

A Dedekind domain is a domain where any proper ideal is a product of prime
ideals

From this definition it is difficult to extract an algorithm which computes
generators for I ∩ J , i.e. to prove effectively that a Dedekind domain is coherent

Dedekind has had several versions of his theory of ideals

See the papers of J. Avigad and H. Edwards on development of ideal theory
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Constructive Algebra

Integral closure

Let R ⊆ K be a domain and s an element in a field extension L of K

Let S be the integral closure of R in L

Theorem: If t is a root of a primitive polynomial in R[X] then we can find
s1, . . . , sm in L all integral over R and r1, . . . , rm in R such that Σrisi = 1 for
all i we have t or 1/t in S[1/si]

Lemma: If ant
n + · · · + a0 = 0 with an, . . . , a0 in R then all elements

bn = an, bn−1 = ant+ an−1, . . . , b1 = b2t+ a1, b0 = b1t+ a0 are in S
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Constructive Algebra

Integral closure

Corollary If R is a Bezout domain then S is a Prüfer domain

Bezout domain: given a, b in R we can find g, u, v, x, y such that a = gu, b =
gv and ux+ vy = 1

Examples: Z and k[X] is X is a field

Examples: Z[
√
−5] and k[x, y] with y2 = 1− x4 are Prüfer domain

For instance we can compute I such that 〈x〉 = 〈x, y〉I
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Constructive Algebra

Gruson-Raynaud

If V is a valuation domain (or a Prüfer domain) one can show

The intersection of two finitely generated ideals of V [X1, . . . , Xn] is finitely
generated

This is a result of a paper of Gruson-Raynaud Critères de platitude et de
projectivité, 1971

There is a direct algorithm (I. Yengui, C. Quitté, H. Lombardi, 2014)

Is it possible to extract an algorithm from Gruson-Raynaud’s proof?
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Constructive Algebra

Riemann-Roch

Conjecture: If k is a perfect field and yn + a1(x)yn−1 + · · · + an(x) = 0 a
separable polynomial in k[x, y] then the integral closure of k[x] in k(x, y) is a free
k[x]-module

This would allow a general effective treatment of Riemann-Roch Theorem
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