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Constructive algebra is algebra done in the context of intuitionistic logic
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(1) Connection with logic and Hilbert’s program

Use of non effective methods, “ideal” methods to prove “concrete” statements

Hilbert’s program seems to work on actual examples in algebra

Statements in algebra often have a simple logical form
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(2) Topos theory and sheaf models

Leray-Cartan (ca.1950), Beth (1956), Kripke (1958), Grothendieck (ca.1960)

Logic of topos = intuitionistic logic

Interesting algorithms, connected to sheaf models, e.g. Gröbner basis
computation for Z[X1, . . . , Xn] (I. Yengui) connected to the notion of “dynamical”
computations (D. Duval)
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In a parallel universe, mathematicians have not found out that they can use
excluded middle as a proof method in algebra

They put the emphasis on simple (definable in a first-order way) structures

-l-groups (F. Riesz, Lorenzen, Prüfer, Stone)

-Prüfer domains (more fundamental than Dedekind domain: finitely generated
ideals are invertible)

Fundamental notions, such as the Zariski spectrum of a ring, are defined using
notions of universal algebra
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Ideal methods, Ex. 1

The intersection of all prime ideals is the set of nilpotent elements

Hence if x2 = 0 and y3 = 0 we should be able to find n such that (x+y)n = 0

Z[X,Y ]/〈X2, Y 3〉 we have n such that (X + Y )n ∈ 〈X2, Y 3〉
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Ideal methods, Ex. 2

The intersection of all maximal ideals

J(x) defined as ∀y inv(1− xy)

This is defined in a first-order way

We should be able to prove J(x) ∧ J(y)→ J(x + y) in the theory of rings

Completeness Theorem!

Furthermore, the proof can be done in intuitionistic logic (coherent fragment)!
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Use of prime ideals

This example will motivate the point-free presentation of Zariski spectrum
and the structure sheaf of a ring

Let R be a ring. We say that a polynomial a0 + · · · + anX
n is primitive iff

〈a0, . . . , an〉 = 1

Theorem: The product of two primitive polynomials is primitive
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Use of prime ideals

Lemma: A polynomial is primitive iff it is not zero modulo any prime ideal

Lemma: If R is an integral domain then R[X] is an integral domain

Integral domain: the product of two non zero element is non zero
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Product of primitive polynomials

P = a0 + a1X Q = b0 + b1X R = c0 + c1X + x2X
2

c0 = a0b0 c1 = a0b1 + a1b0 c2 = a1b1

By completeness theorem, in the theory of rings (equational theory) we can
show the implication

a0x0 + a1x1 = 1 ∧ b0y0 + b1y1 = 1 →

∃z0 z1 z2. a0b0z0 + (a0b1 + a1b0)z1 + a1b1z2 = 1

Hence we should be able to find explicitly z0, z1, z2 (as polynomials in the
input parameters)
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Prime ideals

Recall the definition of the Zariski spectrum of a ring R!

Space of all prime ideals, with basic open D(a) for a in R

We can look at the distributive lattice of compact open

If D(a) = 0 then a is nilpotent

This lattice satisfies the relations

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a + b) 6 D(a) ∨D(b)
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Support of a ring

Let D : R→ L be a support, L distributive lattice, if we have

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a + b) 6 D(a) ∨D(b)

A. Joyal had the idea of redefining the Zariski spectrum as the universal
support

This is abstract algebra, and an effective (and simple) definition
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Support of a ring

If R is a local ring and 1 6= 0 then D(a) = inv(a) is a support

If inv(a + b) then inv(a) or inv(b)

For instance R is a local ring (not a discrete field), inv(a) is the same as a#0

D(ab) = D(a) ∧D(b) means ab#0 iff a#0 and b#0

In particular a2#0 iff a#0

Other example: R = k[[X]] and D(a0 + a1X + . . . ) is ∃n an 6= 0
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Support of a ring

We write D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an) so that the last relation can
be written D(a + b) 6 D(a, b)

We have D(a2) = D(a3) = · · · = D(a) and D(a) = 0 if a is nilpotent

All elements of the lattice are of the form D(a1, . . . , an)

In general we don’t have D(a, b) = D(a + b) only D(a + b) 6 D(a, b)

We have D(a, b) = D(a+b) if D(ab) = 0 and in general D(a, b) = D(a+b, ab)

Also D(a, b, c) = D(a + b + c, ab + bc + ca, abc)
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Support

If D : R → L we can define the (abstract) content of a polynomial as
c(a0 + · · ·+ anX

n) = D(a0, . . . , an)

Theorem: (Gauss-Joyal) c(PQ) = c(P ) ∧ c(Q)

We think of D : R→ L as a L-valued predicate (sheaf model)

In this sense R becomes an integral domain
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Boolean algebra

If L is a distributive lattice we build the free Boolean algebra over L

How to add freely a complement of a

La = L/〈a〉 × L[1/a]

L→ La embedding and isomorphism iff a has a complement in L

We have (La)b = (Lb)a = La,b

Inductive limit of all La1,...,an is free Boolean algebra over L
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Constructible topology

So if we have a support D : R→ L we can compose with L→ B

B free Boolean algebra over L

We get a Boolean valued model and if we interpret D(a) as a 6= 0 we can
reason exactly like classically for an integral domain

We get Gauss-Joyal’s result c(PQ) = c(P ) ∧ c(Q)!
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Logical interpretation

“Lattice-valued” model: the predicate a 7−→ D(a) is a predicate on the ring
R with values in the Zariski lattice

This predicate defines a prime filter on the ring

This is a generic prime filter. This prime filter exists, but in a forcing
extension/sheaf model over the Zariski spectrum
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Zariski lattice

All this can be derived from the relations, but we did not use that the lattice
is generated by these relations

We have to show that if D(a1, . . . , an) = 1 holds then a0, . . . , an is unimodular
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Zariski lattice

Theorem: We have D(a) 6 D(b1, . . . , bm) iff a is in the radical of the
ideal generated by b1, . . . , bm. In particular D(a1, . . . , an) = 1 iff a1, . . . , an is
unimodular

If I is an ideal the radical
√
I of I is the set of elements a that have a power

in I i.e. {a ∈ R | (∃N) aN ∈ I}

The formal Nullstellensatz states precisely that this lattice will coincide with
the lattice of compact open subsets of the Zariski spectrum
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Zariski lattice

For proving the Theorem, we give a realization of the Zariski lattice, by
interpreting D(a1, . . . , an) as the radical of the ideal 〈a1, . . . , an〉

Clearly if aN = b1v1 + · · ·+ bmvm then we have D(a) 6 D(b1, . . . , bm)

The theorem can be seen as a kind of normal form for proofs: any proof of
D(a) 6 D(b1, . . . , bm) is given by an algebraic equality aN = b1v1 + · · ·+ bmvm
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Zariski lattice

The key fact is that the cut rule

D(a) ∧D(b) 6 D(b1, . . . , bm)

D(a) 6 D(b1, . . . , bm, b)

imply D(a) 6 D(b1, . . . , bm)

is satisfied

If ab is nilpotent and a nilpotent mod. 〈b〉 then a nilpotent
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Application 1: Primitive polynomials

In particular, if both P = ΣaiX
i and Q = ΣbjX

j are primitive we have

D(a0, . . . , an) = D(b0, . . . , bm) = 1

and so, by Gauss-Joyal if ΣckX
k = PQ then

D(c0, . . . , cl) = 1

We get an elementary proof that the product two primitive polynomials is
primitive, which corresponds to the non effective argument
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Application 2: nilpotent elements

For a to be nilpotent can be rewritten D(a) = 0

We have D(a + b) 6 D(a) ∨D(b)

If D(a) 6 0 and D(b) 6 0 by two cuts we get

D(a + b) 6 0

in the lattice of radical ideals
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Use of prime ideals

It can be shown that, even if the ring is given effectively, it is not possible in
general to define effectively a prime ideal on this ring

Lawvere (ICM 1970) conjectured the existence of a prime filter for any non
trivial ring in an arbitrary topos. Joyal built topos where a ring does not have
any prime filter

This indicates that we cannot follow naively the previous proof in an effective
context or in an arbitrary topos
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Use of prime ideals

In the previous argument, we use a prime filter in a generic way

We use a method similar the one of forcing in set theory, to “force” the
existence of a generic prime ideal

Though we cannot describe the points of this space effectively in general, we
can describe the topology of the space effectively

We give a direct effective description of this lattice
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Logical interpretation

There is always a generic prime filter of this formal space, in a sheaf model
(introduction), and we can then eliminate the use of this prime filter

This is a possible interpretation of Hilbert’s method of introduction and
elimination of ideal elements
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Point-free spaces/locales

We can see the universal support D : R → L as a point-free description of
the Zariski spectrum of R

We describe only the distributive lattice of compact open

We don’t see this as an “actual” set of points
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Point-free spaces/locales

Basis of the topology: open D(a) closed by intersection D(ab) = D(a)∧D(b)

We have a canonical sheaf on this space

FR(D(a)) = R[1/a]

We can check the sheaf condition

Clear if R is a domain

In this sheaf model, FR is a local ring

FR is the structure sheaf of the ring R
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Point-free spaces/locales

A valuation domain is a domain such that a|b or b|a

In a valuation domain, divisibility is linear

A Prüfer domain is a domain such that FR is a valuation domain

Given a and b “locally” we have a|b or b|a
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Structure sheaf on Z

For instance Z as a sheaf becomes a valuation domain

Over Z[X1, . . . , Xn] we have a membership problem

P ∈ 〈Q1, . . . , Qm〉?

If this holds over Z[1/2] and Z[1/3] then it holds over Z

Use Bezout identity between 2n and 3m to glue solutions: “local-global”
principle
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Finding the right structures

What I learnt was: if R is a unique factorisation domain then so is R[X]

So if k is a field, k[X1, . . . , Xn] should be a unique factorisation domain

But if k is a discrete field, k[X] is not effectively a factorial domain

What I should have learnt instead is: if R is a gcd domain then so is R[X]

Furthermore, underlying the theory of gcd domain, we have the fundamental
notion of l-group
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l-group and ordered cancellative monoid

Let G be an ordered group (we have x + z 6 y + z if x 6 y)

Definition G is a l-group if any two elements have an inf

Can be presented in an equational way we equations z+(x∧y) = (z+x)∧(z+y)

Then any two elements have a sup (fundamental relation)

x ∨ y + x ∧ y = x + y

Thus any l-group is a lattice
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l-group and ordered cancellative monoid

If R is a gcd domain that R× is an ordered cancellative monoid and K× has
a canonical l-group structure K = fraction field of R

We define x ⊥ y if x ∧ y = 0

Lemma: (Euclide’s Lemma) If x ⊥ z and x 6 y + z then x 6 y

Corollary: (Ex.) If 0 6 2x then 0 6 x

Thus in a gcd domain if x2|y2 then x|y

Proposition: (Ex.) The lattice structure of a l-group is distributive
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l-group and ordered cancellative monoid

In any l-group we can define a+ = a ∨ 0 and a− = (−a) ∨ 0

We have a = a+ − a−

Lemma: a+ ⊥ a−

Lemma: If x = a− b and a ⊥ b then a = x+ and b = x−

Corollary: For any n > 0 we have nx+ = (nx)+ and nx− = (nx)−
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Gcd domain

Theorem: If R is a gcd domain then so is R[X]

Key Lemma: if P in R[X] define c(P ) = gcd of the coefficients of P

Lemma: c(PQ) = 1 if c(P ) = c(Q) = 1 and in general c(PQ) = c(P )c(Q)

For an elegant proof see Mines, Richman, Ruitenburg

We are going to see another proof of this result

In particular this gives an algorithm for computing gcd in k[X1, . . . , Xn]

Alternative algorithm using homological algebra (last lecture)
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Gcd domain

The notion of gcd domain is first-order

The notion of unique factorisation domain is logically much more complex
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Application 2: GCD domain

Theorem: If R is a GCD domain then so is R[X]

The Noetherian version of this theorem is that R[X] is UFD if R is UFD

The main Lemma is that if the GCD of the coefficients of ΣaiX
i is 1 and the

GCD of the coefficients of ΣbjX
j is 1 then so is the GCD of the coefficients of

the product ΣckX
K

This follows from Gauss-Joyal since we have N such that if u divides all ck
then it divides all aNi bNj

Lemma: In a GCD domain if an element is relatively prime to two elements
then it is relatively prime to their product

38



Constructive Algebra

Chevalley Theorem and quantifier elimination

The map B(R) → B(R[X]) has an adjoint which defines an existential
quantifier

The projection of V (aX−1) is D(a) (read V (r) as r = 0 and D(r) as r 6= 0)

The projection of V (aX + b) is D(a) ∨ V (b)

This corresponds to both Tarski’s quantifier elimination and Chevalley’s
projection theorem (the projection of a constructible set is constructible)
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Chevalley Theorem and quantifier elimination

Chevalley Theorem holds for any finitely presentated extensions: the following
map has an adjoint

B(R)→ B(R[X1, . . . , Xn]/〈p1, . . . , pm〉)

By composition it is enough to show it for R→ R[X] and R→ R/〈p〉

Thus Chevalley Theorem can be seen as a refinement of Tarski quantifier
elimination

B(Z[X1, . . . , Xn]) is Sn(T ) where T is the theory of algebraically closed fields
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Kronecker Theorem

Any element of the Zariski lattice is of the form

D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an)

We have seen that D(a, b) = D(a + b) if D(ab) = 0

In general we cannot write D(a1, . . . , an) as D(a) for one element a

We can ask: what is the least number m such that any element of Zar(R)
can be written on the form D(a1, . . . , am). An answer is given by the following
version of Kronecker’s Theorem: this holds if Kdim R < m
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