Warshall’s algorithm

See *Floyd-Warshall* algorithm on Wikipedia

The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest paths in a weighted, directed graph

Warshall algorithm finds the transitive closure of a directed graph
Warshall’s algorithm

We have a graph with \(n \) nodes \(1, 2, \ldots, n \)

We define \(E_{ij} = 1 \) iff there is an edge \(i \to j \)

\(E_{ij} = 0 \) if there is no edge from \(i \) to \(j \)

We define \(E^1_{ij} = E_{ij} \) and

\[
E^{k+1}_{ij} = E^k_{ij} \lor E^k_{ik} E^k_{kj}
\]

Then \(E^k_{ij} = 1 \) iff there exists a path \(i \to i_1 \cdots \to i_l \to j \) with \(i_1, \ldots, i_l \) all \(< k \)
Warshall’s algorithm

This is best implemented with a fixed array of \(n \times n \) booleans

For \(k = 1 \) to \(n \)

\[
E_{ij} := E_{ij} \lor E_{ik}E_{kj}
\]
Floyd’s algorithm

Now E_{ij} is a positive number (the cost or the distance of going from i to j; it is ∞ if there is no edge from i to j).

For $k = 1$ to n

$$E_{ij} := \min(E_{ij}, E_{ik} + E_{kj})$$
Now E_{ij} is a regular expression, and we compute all possible paths from i to j. We initialize by $E_{ij} := E_{ij}$ if $i \neq j$ and $E_{ii} := \epsilon + E_{ii}$.

For $k = 1$ to n

$$E_{ij} := E_{ij} + E_{ik}E_{kk}^*E_{kj}$$
Regular expression

For the automata with accepting state 2 and defined by

\[1.0 = 2, \ 1.1 = 1, \ 2.0 = 2.1 = 2 \]

We have \(E_{11} = \epsilon + 1, \ E_{12} = 0, \ E_{21} = \emptyset, \ E_{22} = \epsilon + 0 + 1 \)
Then the first step is

\[E_{11} = \epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1) = 1^* \]

\[E_{12} = 0 + (\epsilon + 1)(\epsilon + 1)^*0 = 1^*0 \]

\[E_{21} = \emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1) = \emptyset \]

\[E_{22} = \epsilon + 0 + 1 + \emptyset(\epsilon + 1)^*0 = \epsilon + 0 + 1 \]
The second step is

\[E_{11} = 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset = 1^* \]
\[E_{12} = 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) = 1^*0(0 + 1)^* \]
\[E_{21} = \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset = \emptyset \]
\[E_{22} = \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) = (0 + 1)^* \]
In this way, we have seen two proofs of one direction of Kleene’s Theorem: any regular language is recognized by a regular expression.

The two proofs are:

- by solving an equation system and using Arden’s Lemma
- by using Warshall’s algorithm
Algebraic Laws for Regular Expressions

\[E + (F + G) = (E + F) + G, \quad E + F = F + E, \quad E + E = E, \quad E + 0 = E \]

\[E(FG) = (EF)G, \quad E0 = 0E = 0, \quad E\epsilon = \epsilon E = E \]

\[E(F + G) = EF + EG, \quad (F + G)E = FE + GE \]

\[\epsilon + EE^* = E^* = \epsilon + E^*E \]
We have also

\[E^* = E^* E^* = (E^*)^* \]

\[E^* = (EE)^* + E(EE)^* \]
Algebraic Laws for Regular Expressions

How can one prove equalities between regular expressions?

In usual algebra, we can "simplify" an algebraic expression by rewriting

\[(x + y)(x + z) \rightarrow xx + yx + xz + yz\]

For regular expressions, there is no such way to prove equalities. There is not even a complete finite set of equations.
Example: \(L^* \subseteq L^*L^* \) since \(\epsilon \in L^* \)

Conversely if \(x \in L^*L^* \) then \(x = x_1x_2 \) with \(x_1 \in L^* \) and \(x_2 \in L^* \).

\(x \in L^* \) is clear if \(x_1 = \epsilon \) or \(x_2 = \epsilon \). Otherwise

So \(x_1 = u_1 \ldots u_n \) with \(u_i \in L \)

and \(x_2 = v_1 \ldots v_m \) with \(v_j \in L \)

Then \(x = x_1x_2 = u_1 \ldots u_n v_1 \ldots v_m \) is in \(L^* \)
Algebraic Laws for Regular Expressions

Two laws that are useful to simplify regular expressions

Shifting rule

\[E(FE)^* = (EF)^*E \]

Denesting rule

\[(E^*F)^*E^* = (E + F)^* \]
Variation of the denesting rule

One has also

\[(E^*F)^* = \epsilon + (E + F)^*F\]

and this represents the words empty or finishing with \(F\)
Algebraic Laws for Regular Expressions

Example:

\[a^*b(c + da^*b)^* = a^*b(c^*da^*b)^*c^* \]

by denesting

\[a^*b(c^*da^*b)^*c^* = (a^*bc^*d)^*a^*bc^* \]

by shifting

\[(a^*bc^*d)^*a^*bc^* = (a + bc^*d)^*bc^* \]

by denesting. Hence

\[a^*b(c + da^*b)^* = (a + bc^*d)^*bc^* \]
Algebraic Laws for Regular Expressions

Examples: $10?0? = 1 + 10 + 100$

$$(1 + 01 + 001)^* (\epsilon + 0 + 00) = ((\epsilon + 0)(\epsilon + 0)1)^* (\epsilon + 0)(\epsilon + 0)$$

is the same as

$$(\epsilon + 0)(\epsilon + 0)(1(\epsilon + 0)(\epsilon + 0))^* = (\epsilon + 0 + 00)(1 + 10 + 100)^*$$

Set of all words with no substring of more than two adjacent 0's
Let Σ be $\{a, b\}$

Lemma: For all n we have $a(ba)^n = (ab)^n a$

Proof: by induction on n

Theorem: $a(ba)^* = (ab)^* a$

Similarly we can prove $(a + b)^* = (a*b)^* a^*$
Complement of a(n ordinary) regular expression

For building the “complement” of a regular expression, or the “intersection” of two regular expressions, we can use NFA/DFA

For instance to build E such that $L(E) = \{0, 1\}^* - \{0\}$ we first build a DFA for the expression 0, then the complement DFA. We can compute E from this complement DFA. We get for instance

$$\epsilon + 1(0 + 1)^* + 0(0 + 1)^+$$
Abstract States

Two notations for the derivative L/a or $a \setminus L$

Last time I have used

$L/a = \{ x \in \Sigma^* \mid ax \in L \}$

I shall use now the following notation (cf. exercice 4.2.3)

$a \setminus L = \{ x \in \Sigma^* \mid ax \in L \}$

and more generally if z in Σ^*

$z \setminus L = \{ x \in \Sigma^* \mid zx \in L \}$
Abstract States

Example: $L = \{a^n \mid 3 \text{ divides } n\}$ we have

$\epsilon \setminus L = L$, $a \setminus L = \{a^{3n+2} \mid n \geq 0\}$

$aa \setminus L = \{a^{3n+1} \mid n \geq 0\}$, $aaa \setminus L = L$

Although Σ^* is infinite, the number of distinct sets of the form $u \setminus L$ is finite
Another example

\[\Sigma = \{0, 1\} \]
\[L = \{0^n1^n \mid n \geq 0\} \]
\[\epsilon \setminus L = L, \ 0 \setminus L = \{0^n1^{n+1} \mid n \geq 0\} \]
\[00 \setminus L = \{0^n1^{n+2} \mid n \geq 0\}, \ 000 \setminus L = \{0^n1^{n+3} \mid n \geq 0\} \]
\[1 \setminus L = \emptyset, \ 11 \setminus L = \emptyset \]

In this case there are infinitely many distinct sets of the form \(u \setminus L \)
Abstract States

The sets $u \setminus L$ are called the abstract states of the language L.

Myhill-Nerode theorem: A language is regular iff its set of abstract states is finite.

This is a characterisation of regular sets, and a powerful way to show that a language is not regular.
Proof of the Myhill-Nerode theorem

Assume L is such that its set of abstract states $u \setminus L$ is finite.

We define Q to be the set of all $u \setminus L$. By hypothesis Q is a finite set.

We define q_0 to be $L = \epsilon \setminus L$.

We define $\delta(M, a) = a \setminus M$ for $a \in \Sigma$ and $M \subseteq \Sigma^*$ an arbitrary language.

In particular $\delta(u \setminus L, a) = ua \setminus L$.

Remark: We have $a \setminus (u \setminus L) = ua \setminus L$ and more generally $v \setminus (u \setminus L) = uv \setminus L$.

Proof of the Myhill-Nerode theorem

Define $F \subseteq Q$ to be the set of abstract states $u \setminus L$ such that ϵ is in the set $u \setminus L$. Thus $u \setminus L \in F$ iff $u \in L$

Lemma: We have $L.u = u \setminus L$

Proof: By induction on u. This holds for $u = \epsilon$ and if it holds for v and $u = av$ then

$L.(av) = (a \setminus L).v = v \setminus (a \setminus L) = av \setminus L$

If $A = (Q, \Sigma, \delta, q_0, F)$ we have $u \in L(A)$ iff $u \setminus L \in F$ iff $u \in L$. Thus $L = L(A)$ and L is regular
Proof of the Myhill-Nerode theorem

This proves one direction: if the set of abstract sets is finite then \(L \) is regular.

Conversely assume that \(L \) is regular then \(L = L(A) \) for some DFA \(A = (Q, \Sigma, \delta, q_0, F) \).

We have

\[
u \setminus L(A) = L(Q, \Sigma, \delta, q_0.u, F)\]

Indeed \(v \) is in \(u \setminus L(A) \) iff \(uv \) is in \(L(A) \) iff \(q_0.(uv) = (q_0.u).v \) is in \(F \).

Since \(Q \) is finite since there are only finitely many possibilities for \(u \setminus L \).
Proof of the Myhill-Nerode theorem

Hence we have shown that L is regular iff there are only finitely many abstract states $u \setminus L$.

This is a powerful way to prove that a language is not regular.

For instance $L = \{0^n1^n \mid n \geq 0\}$ is not regular since there are infinitely many abstract states $0^k \setminus L$.
Proof of the Myhill-Nerode theorem

You should compare this with the use of the “pumping Lemma” (section 4.1) that I will present next time
Proof of the Myhill-Nerode theorem

This can be used also to show that a language is regular and indicate how to build a DFA for this language

\[L = \{ a^n | 3 \text{ divides } n \} \]

We have three abstract states \(q_0 = L, \ q_1 = a \setminus L, \ q_2 = aa \setminus L \) hence a DFA with 3 states
A corollary of Myhill-Nerode’s Theorem

Corollary: If L is regular then each $u \setminus L$ is regular

Proof: Since we have

$$v \setminus (u \setminus L) = uv \setminus L$$

each abstract state of $u \setminus L$ is an abstract state of L. If L is regular it has finitely many abstract states by Myhill-Nerode’s Theorem. So $u \setminus L$ has finitely many abstract states and is regular by Myhill-Nerode’s Theorem.
A corollary of Myhill-Nerode’s Theorem

Another direct proof of

Corollary: If L is regular then each $u \setminus L$ is regular

Proof: L is regular so we have some DFA $A = (Q, \Sigma, \delta, q_0, F)$ such that $L = L(A)$. Define

$$u \setminus A = (Q, \Sigma, \delta, q_0.u, F)$$

We have seen that $L(u \setminus A) = u \setminus L(A)$.
Symbolic Computation of $u \setminus L$

\[
\begin{align*}
 a \setminus \emptyset &= \emptyset \\
 a \setminus \epsilon &= \emptyset \\
 a \setminus a &= \epsilon \\
 a \setminus b &= \emptyset \text{ if } b \neq a \\
 a \setminus (E_1 + E_2) &= a \setminus E_1 + a \setminus E_2 \\
 a \setminus (E_1E_2) &= (a \setminus E_1)E_2 \text{ if } \epsilon \notin L(E_1) \\
 a \setminus (E_1E_2) &= (a \setminus E_1)E_2 + a \setminus E_2 \text{ if } \epsilon \in L(E_1) \\
 a \setminus E^* &= (a \setminus E)E^*
\end{align*}
\]
Symbolic Computation of $u \setminus L$

If we introduce the notation $\delta(E) = \epsilon$ if ϵ in $L(E)$ and $\delta(E) = \emptyset$ if ϵ is not in $L(E)$

\[
\begin{align*}
 a \setminus \emptyset &= \emptyset \\
 a \setminus \epsilon &= \emptyset \\
 a \setminus a &= \epsilon \\
 a \setminus b &= \emptyset \text{ if } b \neq a \\
 a \setminus (E_1 + E_2) &= a \setminus E_1 + a \setminus E_2 \\
 a \setminus (E_1E_2) &= (a \setminus E_1)E_2 + \delta(E_1)(a \setminus E_2) \\
 a \setminus E^* &= (a \setminus E)E^*)
\end{align*}
\]
The Derivatives

Let E be $(0 + 1)^*01(0 + 1)^*$

$0 \setminus E = E + 1(0 + 1)^*$

$1 \setminus E = E$

$01 \setminus E = (0 + 1)^*$

$00 \setminus E = 0 \setminus E$

We have three languages $E, E + 1(0 + 1)^*, (0 + 1)^*$

We can build then a DFA for E
Other example: let E be $(01)^*0$

$0 \setminus E = (0 \setminus (01)^*)0 + 0 \setminus 0 = 1(01)^*0 + \epsilon = (10)^*$

$1 \setminus E = (1 \setminus (01)^*)0 + 1 \setminus 0 = \emptyset$

$00 \setminus E = 0 \setminus 1(01)^*0 + 0 \setminus \epsilon = \emptyset$

$01 \setminus E = 1 \setminus 1(01)^*0 + 1 \setminus \epsilon = E$

We have three languages $E, (10)^*, \emptyset$

We can build then a DFA for E
Closure properties

Regular languages have remarkable closure properties:

- closure by union
- closure by intersection
- closure by complement
- closure by difference
- closure by reversal
- closure by morphism and inverse morphism
The reversal of a string $a_1 \ldots a_n$ is the string $a_n \ldots a_1$.

We write x^R the reversal of x.

Thus $\epsilon^R = \epsilon$ and $0010^R = 0100$.

Lemma: $(xy)^R = y^Rx^R$
Reversal

If L is a language let L^R be the set of all x^R for $x \in L$

Theorem: If L is regular then so if L^R

Proof 1: We have $L = L(E)$ for a regular expression E. We define E^R by induction

$$(E_1 E_2)^R = E_2^R E_1^R \quad (E_1 + E_2)^R = E_1^R + E_2^R \quad (E^*)^R = (E^R)^*$$

$a^R = a \quad \emptyset^R = \emptyset \quad \epsilon^R = \epsilon$

We then prove $L(E^R) = L(E)^R$ by structural induction on E
Proof 2: We have $L = L(A)$ for a NFA A, we define then a ϵ-NFA A' such that $L^R = L(A')$

We have $A = (Q, \Sigma, \delta, q_0, F)$

We take $q_1 \notin Q$ and define $A' = (Q \cup \{q_1\}, \Sigma, \delta', q_1, \{q_0\})$ which is an ϵ-NFA with

$r \in \delta'(s, a)$ iff $s \in \delta(r, a)$ for $r, s \in Q$

$r \in \delta'(q_1, \epsilon)$ iff $r \in F$

Example: The reverse of the language defined by $(0 + 1)0^*$ can be defined by $0^*(0 + 1)$
Let Σ be an alphabet

Σ^* is a monoid

It has a binary operation $(x, y) \rightarrow xy$ which is associative $x(yz) = (xy)z$

It has a neutral element ϵ: we have $x\epsilon = \epsilon x = x$

It is not commutative in general $ab \neq ba$
Definition of Homomorphisms

Let Σ and Θ be two alphabets.

Definition: an homomorphism $h : \Sigma^* \rightarrow \Theta^*$

is an application such that, for all $x, y \in \Sigma^*$

$$h(xy) = h(x)h(y) \quad h(\epsilon) = \epsilon$$

It follows that if $h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$

Notice that $h(a) \in \Theta^*$ if $a \in \Sigma$
Closure under Homomorphisms

Let \(h : \Sigma^* \to \Theta^* \) be an homomorphism

Theorem: If \(L \subseteq \Sigma^* \) is regular then \(h(L) \) is regular

We define \(h(E) \) if \(E \) is a regular expression

\[
\begin{align*}
 h(\epsilon) &= \epsilon, \quad h(\emptyset) = \emptyset, \quad h(a) = h(a) \\
 h(E_1 + E_2) &= h(E_1) + h(E_2) \\
 h(E_1E_2) &= h(E_1)h(E_2) \\
 h(E^*) &= h(E)^*
\end{align*}
\]
Closure under Homomorphisms

Lemma: If E is a regular expression then $L(h(E)) = h(L(E))$

Proof: By structural induction on E. There are 6 cases.

This implies that given a DFA A such that $L(A) = L \subseteq \Sigma^*$ one can build a DFA A' such that $L(A') = h(L)$

This DFA exists because we have a regular expression (hence a ϵ-NFA hence a DFA by the subset construction)

Not obvious how to build directly this DFA
Closure under Homomorphisms

Theorem: If $L \subseteq \Theta^*$ is regular then $h^{-1}(L)$ is regular

Proof: Let $A = (Q, \Theta, \delta, q_0, F)$ DFA for L we define $A' = (Q, \Sigma, \delta', q_0, F)$ with

$$\delta'(q, a) = q.h(a)$$

A' is a DFA of alphabet Σ, we prove then that $L(A') = h^{-1}(L)$

Lemma: We have for all x $\hat{\delta}'(q, x) = q.h(x)$

The proof uses the fact that $q.(uv) = (q.u).v$
Closure under Homomorphisms

Notice that the proof would be difficult to do directly at the level of regular expressions. For instance if

If \(h(a) = \epsilon, \ h(b) = b, \ h(c) = \epsilon \) what is \(h^{-1}(\{\epsilon\}) \)?

If \(h(a) = abb, \ h(b) = c, \ h(c) = c \) we have \(h(ab) \in \{ab\}\{bc\} \) but we have \(h^{-1}(\{ab\}) = h^{-1}(\{bc\}) = \emptyset \)
Closure under Homomorphisms

Can we prove this using Myhill-Nerode’s Theorem?

We have to compute \(u \setminus h^{-1}(L) \)

\(v \) is in this set iff \(h(uv) = h(u)h(v) \) is in \(L \)

Hence \(u \setminus h^{-1}(L) \) is the same as \(h^{-1}(h(u) \setminus L) \)

Hence if \(L \) is regular there are only a finite number of possible values for \(u \setminus h^{-1}(L) \) and hence \(h^{-1}(L) \) is regular
Closure under Union

We have a direct construction via ϵ-NFA or variation on the product of DFA

It is interesting to notice that we have also a proof via Myhill-Nerode’s Theorem

$$u \setminus (L_1 \cup L_2) = (u \setminus L_1) \cup (u \setminus L_2)$$

If L_1, L_2 are regular, we have only a finite number of possible values for $u \setminus (L_1 \cup L_2)$, hence $L_1 \cup L_2$ is regular
Closure under Intersection, Difference, Complement

The same argument works for showing that regular languages are closed under intersection, complement and differences

\[u \setminus (L_1 \cap L_2) = (u \setminus L_1) \cap (u \setminus L_2) \]

\[u \setminus L' = (u \setminus L)' \]

Application: we have another way to compute \(0' \) We have also direct constructions on DFAs
Closure under Prefix

If $L \subseteq \Sigma^*$ is a language we write $Pre(L)$ the set

$$\{u \in \Sigma^* \mid \exists v. uv \in L\}$$

This is the set of prefixes of words that are in L

We present two proofs that $Pre(L)$ is regular if L is regular

One proof using Myhill-Nerode’s Theorem, and one proof using a DFA for L
Closure under Prefix

If \((Q, \Sigma, \delta, q_0, F)\) is a DFA for \(L\) we define a DFA for \(Pre(L)\) by taking

\[A' = (Q, \Sigma, \delta, q_0, F') \]

where \(F' = \{ q \in Q | \exists z. \hat{\delta}(q, z) \in F \} \)

We then show that \(x\) in \(L(A')\) iff \(\hat{\delta}(q_0, x) \in F'\) iff there exists \(z\) such that \((q_0.x).z = q_0.(xz)\) in \(F\) iff \(xz\) in \(Pre(L(A)) = Pre(L)\)
Closure under Prefix

We have also a proof by using regular expression: given a regular expression \(E \) we define \(p(E) \) such that \(L(p(E)) = Pre(L(E)) \)

\[
p(a) = \epsilon + a \quad p(\epsilon) = \epsilon \quad p(\emptyset) = \emptyset \]

\[
p(E_1 E_2) = p(E_1) + E_1 p(E_2) \]

\[
p(E_1 + E_2) = p(E_1) + p(E_2) \]

\[
p(E^*) = E^* p(E) \]
If L is regular, we have seen that there is a DFA which recognizes L which has for set of states the set S of abstract states of L.

S is the set of all $u \setminus L$.

$u \setminus L$ goes to $(ua) \setminus L$.

This is the minimal automaton which recognizes L.
Let $A = (Q, \Sigma, \delta, q_0, F)$ be another DFA which recognizes L

We show that Q has more elements than S

Indeed we know that $u \setminus L$ is $(Q, \Sigma, \delta, q_0.u, F)$

Thus S has less elements than there are accessible states in Q
Minimal automaton

For example, for $L = L((0 + 1)^*01(0 + 1)^*)$ we have computed three abstract states

$L, 0 \setminus L, 01 \setminus L = \Sigma^*$

Hence any automaton which recognizes L has at least three states
Minimal automaton

Let Q' be the set of states accessible from q_0

If $q_0.u = q_0.v$ I claim that we have $u \setminus L = v \setminus L$

Indeed this is the set recognized by $(Q, \Sigma, \delta, q_0.u, F) = (Q, \Sigma, \delta, q_0.v, F)$

This means that we have a surjective map $\psi : Q' \to S$, $q_0.u \mapsto u \setminus L$

Furthermore $\psi(q.a) = a \setminus \psi(q)$

This shows that connection between any automaton recognizing L and the minimal automaton of abstract states
Minimal automaton

Next time, I will present an algorithm for computing the minimal automaton for L given a DFA for L.
Accessible states

\(A = (Q, \Sigma, \delta, q_0, F) \) is a DFA

A state \(q \in Q \) is accessible iff there exists \(x \in \Sigma^* \) such that \(q = q_0 \cdot x \)

Let \(Q_0 \) be the set of accessible states, \(Q_0 = \{ q_0 \cdot x \mid x \in \Sigma^* \} \)

Theorem: We have \(q \cdot a \in Q_0 \) if \(q \in Q_0 \) and \(q_0 \in Q_0 \). Hence we can consider the automaton \(A_0 = (Q_0, \Sigma, \delta, q_0, F \cap Q_0) \). We have \(L(A) = L(A_0) \)

In particular \(L(A) = \emptyset \) if \(F \cap Q_0 = \emptyset \).
Actually we have $L(A) = \emptyset$ iff $F \cap Q_0 = \emptyset$ since if $q.x \in F$ then $q.x \in F \cap Q_0$

Implementation in a functional language: we consider automata on a finite collection of characters given by a list cs

An automaton is given by a parameter type a with a transition function and an initial state
import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]
closure cs delta qs =
 let qs’ = qs >>= (\ q -> map (delta q) cs)
in if isSup qs qs’ then qs
 else closure cs delta (union qs qs’)

Accessible states

accessible :: Eq a => [Char] -> (a -> Char -> a) -> a -> [a]

accessible cs delta q = closure cs delta [q]

-- test emptyness on an automaton

notEmpty :: Eq a => ([Char],a-> Char -> a,a,a->Bool) -> Bool

notEmpty (cs,delta,q0,final) = or (map final (accessible cs delta q0))
Accessible states

data Q = A | B | C | D | E
 deriving (Eq,Show)

 delta A '0' = A delta A '1' = B
 delta B '0' = A delta B '1' = B
 delta C _ = D
 delta D '0' = E delta D '1' = C
 delta E '0' = D delta E '1' = C

 as = accessible "01" delta A

 test = notEmpty ("01",delta,A,(==) C)
Accessible states

Optimisation

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

Closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]
Accessible states

closure cs delta qs = clos ([],qs)
where
 clos (qs1,qs2) =
 if qs2 == [] then qs1
 else let qs = union qs1 qs2
 qs’ = qs2 >>= (\ q -> map (delta q) cs)
 qs’’ = filter (\ q -> not (isIn qs q)) qs’
 in clos (qs,qs’’)