Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) consists of

1. a finite set of states (often denoted Q)
2. a finite set Σ of symbols (alphabet)
3. a transition function that takes as argument a state and a symbol and returns a state (often denoted δ)
4. a start state often denoted q_{0}
5. a set of final or accepting states (often denoted F)

We have $q_{0} \in Q$ and $F \subseteq Q$

Deterministic Finite Automata

So a DFA is mathematically represented as a 5 -uple $\left(Q, \Sigma, \delta, q_{0}, F\right)$

The transition function δ is a function in
$Q \times \Sigma \rightarrow Q$
$Q \times \Sigma$ is the set of 2-tuples (q, a) with $q \in Q$ and $a \in \Sigma$

Deterministic Finite Automata

How to present a DFA? With a transition table

	0	1
$\rightarrow q_{0}$	q_{2}	q_{0}
$* q_{1}$	q_{1}	q_{1}
q_{2}	q_{2}	q_{1}

The \rightarrow indicates the start state: here q_{0}
The $*$ indicates the final state(s) (here only one final state q_{1})
This defines the following transition diagram

Deterministic Finite Automata

For this example
$Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
start state q_{0}
$F=\left\{q_{1}\right\}$
$\Sigma=\{0,1\}$
δ is a function from $Q \times \Sigma$ to Q
$\delta: Q \times \Sigma \rightarrow Q$
$\delta\left(q_{0}, 1\right)=q_{0}$
$\delta\left(q_{0}, 0\right)=q_{2}$

Example: password

When does the automaton accepts a word??
It reads the word and accepts it if it stops in an accepting state

Only the word then is accepted
Here $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$
Σ is the set of all characters
$F=\left\{q_{4}\right\}$
We have a "stop" or "dead" state q_{5}, not accepting

How a DFA Processes Strings

Let us build an automaton that accepts the words that contain 01 as a subword
$\Sigma=\{0,1\}$
$L=\left\{x 01 y \mid x, y \in \Sigma^{*}\right\}$
We use the following states
A: start
B: the most recent input was 1 (but not 01 yet)
C: the most recent input was 0 (so if we get a 1 next we should go to the accepting state D)

D: we have encountered 01 (accepting state)

We get the following automaton

Transition table

	0	1
$\rightarrow \mathrm{~A}$	C	B
B	C	B
C	C	D
$* \mathrm{D}$	D	D

$Q=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}, \Sigma=\{0,1\}$, start state A, final state(s) $\{\mathrm{D}\}$

Extending the Transition Function to Strings

In the previous example, what happens if we get 011? 100? 10101?
We define $\hat{\delta}(q, x)$ by induction
$\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$
BASIS $\hat{\delta}(q, \epsilon)=q$ for $|x|=0$
INDUCTION suppose $x=a y$ (y is a string, a is a symbol)
$\hat{\delta}(q, a y)=\hat{\delta}(\delta(q, a), y)$

Notice that if $x=a$ we have
$\hat{\delta}(q, a)=\delta(q, a)$ since $a=a \epsilon$ and $\hat{\delta}(\delta(q, a), \epsilon)=\delta(q, a)$

Extending the Transition Function to Strings

$\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$
We write $q . x$ instead of $\hat{\delta}(q, x)$
We can now define mathematically the language accepted by a given automaton $Q, \Sigma, \delta, q_{0}, F$
$L=\left\{x \in \Sigma^{*} \mid q_{0} \cdot x \in F\right\}$
On the previous example 100 is not accepted and 10101 is accepted

Minimalisation

The same language may be represented by different DFA

and

Minimalisation

Later in the course we shall show that there is only one machine with the minimum number of states (up to renaming of states) Furthermore, there is a (clever) algorithm which can find this minimal automaton given an automaton for a language

Example

M_{n} the "cyclic" automaton with n states on $\Sigma=\{1\}$ such that

$$
L\left(M_{n}\right)=\left\{1^{l} \mid n \text { divides } l\right\}
$$

Functional representation: Version 1

$Q=A|B| C$ and $E=0 \mid 1$ and $W=[E]$
One function next : $Q \times E \rightarrow Q$
next $(A, 1)=A$, next $(A, 0)=B$
next $(B, 1)=C$, next $(B, 0)=B$
next $(C, b)=C$
One function run : $Q \times W \rightarrow Q$
$\operatorname{run}(q, b: x)=\operatorname{run}(\operatorname{next}(q, b), x), \quad$ run $(q,[])=q$
accept $x=$ final $($ run $(A, x))$ where
final $A=$ final $B=$ False,\quad final $C=$ True

Functional representation: Version 2

$E=0 \mid 1, \quad W=[E]$
Three functions $F_{A}, F_{B}, F_{C}: W \rightarrow$ Bool
$F_{A}(1: x)=F_{A} x, \quad F_{A}(0: x)=F_{B} x, \quad F_{A}[]=$ False
$F_{B}(1: x)=F_{C} x, \quad F_{B}(0: x)=F_{B} x, \quad F_{B}[]=$ False
$F_{C}(1: x)=F_{C} x, \quad F_{C}(0: x)=F_{C} x, \quad F_{C}[]=$ True
We have a mutual recursive definition of 3 functions

Functional representation: Version 3

```
data Q = A | B | C
data E = O | I
next :: Q -> E -> Q
next A I = A
next A O = B
next B I = C
next B O = B
next C _ = C
run :: Q -> [E] -> Q
run q(b:x) = run (next q b) x
run q[] = q
```


Functional representation: Version 3

```
accept :: [E] -> Bool
accept x = final (run A x)
final :: Q -> Bool
final A = False
final B = False
final C = True
```

Functional representation: Version 4
We have

$$
\begin{aligned}
Q \rightarrow E \rightarrow Q & \sim \\
& \sim E E \quad \rightarrow Q \\
& \sim(Q \rightarrow Q)
\end{aligned}
$$

Functional representation: Version 4

```
data Q = A | B | C
data E = O | I
next :: E -> Q -> Q
next I A = A
next O A = B
next I B = C
next O B = B
next _ C = C
run :: Q -> [E] -> Q
run q(b:x) = run (next b q) x
run q[] = q
```


Functional representation: Version 4

-- run q [b1,...,bn] is
-- next bn (next b(n-1) (... (next b1 q)...))
-- run = foldl next

A proof by induction

A very important result, quite intuitive, is the following.
Theorem: for any state q and any word x and y we have $q \cdot(x y)=(q \cdot x) . y$
Proof by induction on x. We prove that: for all q we have
$q \cdot(x y)=(q \cdot x) \cdot y$ (notice that y is fixed)
Basis: $x=\epsilon$ then $q \cdot(x y)=q \cdot y=(q \cdot x) . y$
Induction step: we have $x=a z$ and we assume $q^{\prime} \cdot(z y)=\left(q^{\prime} \cdot z\right) \cdot y$ for all q^{\prime}

The other definition of $\hat{\delta}$

Recall that $a(b(c d))=((a b) c) d$; we have two descriptions of words We define $\hat{\delta}^{\prime}(q, \epsilon)=q$ and
$\hat{\delta}^{\prime}(q, x a)=\delta\left(\hat{\delta}^{\prime}(q, x), a\right)$
Theorem: We have $q \cdot x=\hat{\delta}(q, x)=\hat{\delta}^{\prime}(q, x)$ for all x

The other definition of $\hat{\delta}$

Indeed we have proved
$q \cdot \epsilon=q$ and $q \cdot(x y)=(q \cdot x) \cdot y$
As a special case we have $q \cdot(x a)=(q \cdot x) \cdot a$
This means that we have two functions $f(x)=q \cdot x$ and $g(x)=\hat{\delta}^{\prime}(q, x)$ which satisfy
$f(\epsilon)=g(\epsilon)=q$ and
$f(x a)=f(x) \cdot a \quad g(x a)=g(x) \cdot a$
Hence $f(x)=g(x)$ for all x that is $q \cdot x=\hat{\delta}^{\prime}(q, x)$

Automatic Theorem Proving

$$
\begin{gathered}
f(0)=h(0)=0, \quad g(0)=1 \\
f(n+1)=g(n), g(n+1)=f(n), h(n+1)=1-h(n)
\end{gathered}
$$

We have $f(n)=h(n)$
We can prove this automatically using DFA

Automatic Theorem Proving

We have 8 states: $Q=\{0,1\} \times\{0,1\} \times\{0,1\}$
We have only one action $\Sigma=\{1\}$ and $\delta((a, b, c), s)=(b, a, 1-c)$
The initial state is $(0,1,0)=(f(0), g(0), h(0))$
Then we have $(0,1,0) \cdot 1^{n}=(f(n), g(n), h(n))$
We check that all accessible states satisfy $a=c$ (that is, the property $a=c$ is an invariant for each transition of the automata)

Automatic Theorem Proving

A more complex example

$$
\begin{array}{lll}
f(0)=0 & f(1)=1 & f(n+2)=f(n)+f(n+1)-f(n) f(n+1) \\
f(2)=1 & f(3)=0 & f(4)=1
\end{array} f(5)=1 \quad \ldots . ~ l
$$

Show that $f(n+3)=f(n)$ by using $Q=\{0,1\} \times\{0,1\} \times\{0,1\}$ and the transition function $(a, b, c) \longmapsto(b, c, b+c-b c)$ with the initial state $(0,1,1)$

Product of automata

How do we represent interaction between machines?
This is via the product operation
There are different kind of products
We may then have combinatorial explosion: the product of n automata with 2 states has 2^{n} states!

Product of automata (example)

The product of p_{1}

If we start from A, C and after the word w we are in the state A, D we know that w contains an even number of p_{0} s and odd number of $p_{1} \mathrm{~S}$

Product of automata (example)

Model of a system of users that have three states I(dle), R (equesting) and $\mathrm{U}($ sing $)$. We have two users for $k=1$ or $k=2$

Each user is represented by a simple automaton

Product of automata (example)

The complete system is represented by the product of these two automata; it has $3 \times 3=9$ states

The Product Construction

Given $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ two DFAs with the same alphabet Σ we can define the product $A=A_{1} \times A_{2}$ set of state $Q=Q_{1} \times Q_{2}$
transition function $\left(r_{1}, r_{2}\right) \cdot a=\left(r_{1} \cdot a, r_{2} \cdot a\right)$
intial state $q_{0}=\left(q_{1}, q_{2}\right)$
accepting states $F=F_{1} \times F_{2}$

The Product Construction

Lemma: $\left(r_{1}, r_{2}\right) \cdot x=\left(r_{1} \cdot x, r_{2} \cdot x\right)$
We prove this by induction
BASE: the statement holds for $x=\epsilon$
STEP: if the statement holds for y it holds for $x=y a$

The Product Construction

Theorem: $L\left(A_{1} \times A_{2}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$
Proof: We have $\left(q_{1}, q_{2}\right) \cdot x=\left(q_{1} \cdot x, q_{2} \cdot x\right)$ in F iff $q_{1} \cdot x \in F_{1}$ and $q_{2} \cdot x \in F_{2}$, that is $x \in L\left(A_{1}\right)$ and $x \in L\left(A_{2}\right)$
Example: let M_{k} be the "cyclic" automaton that recognizes multiple of k, such that $L\left(M_{k}\right)=\left\{a^{n} \mid k\right.$ divides $\left.n\right\}$, then $M_{6} \times M_{9} \simeq M_{18}$
Notice that 6 divides k and 9 divides k iff 18 divides k

Product of automata

It can be quite difficult to build automata directly for the intersection of two regular languages

Example: build a DFA for the language that contains the subword $a b$ twice and an even number of a 's

Variation on the product

We define $A_{1} \oplus A_{2}$ as $A_{1} \times A_{2}$ but we change the notion of accepting state
$\left(r_{1}, r_{2}\right)$ accepting iff $r_{1} \in F_{1}$ or $r_{2} \in F_{2}$

Theorem: If A_{1} and A_{2} are DFAs, then
$L\left(A_{1} \oplus A_{2}\right)=L\left(A_{1}\right) \cup L\left(A_{2}\right)$
Example: multiples of 3 or of 5 by taking $M_{3} \oplus M_{5}$

Complement

If $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define the complement \bar{A} of A as the automaton
$\bar{A}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$
Theorem: If A is a DFA, then $L(\bar{A})=\Sigma^{*}-L(A)$
Remark: We have $A \oplus A^{\prime}=\overline{\bar{A} \times \overline{A^{\prime}}}$

Languages

Given an alphabet Σ
A language is simply a subset of Σ^{*}
Common languages, programming languages, can be seen as sets of words

Definition: A language $L \subseteq \Sigma^{*}$ is regular iff there exists a $D F A$ A, on the same alphabet Σ such that $L=L(A)$

Theorem: If L_{1}, L_{2} are regular then so are
$L_{1} \cap L_{2}, L_{1} \cup L_{2}, \Sigma^{*}-L_{1}$

Remark: Accessible Part of a DFA

Consider the following DFA

it is clear that it accepts the same language as the DFA

which is the accessible part of the DFA
The remaining states are not accessible from the start state and can be removed

Remark: Accessible Part of a DFA

The set
$A c c=\left\{q_{0} \cdot x \mid x \in \Sigma^{*}\right\}$
is the set of accessible states of the DFA (states that are accessible from the state q_{0})

Remark: Accessible Part of a DFA

Proposition: If $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA then and
$A^{\prime}=\left(Q \cap A c c, \Sigma, \delta, q_{0}, F \cap A c c\right)$ is a DFA such that $L(A)=L\left(A^{\prime}\right)$.
Proof: It is clear that A^{\prime} is well defined and that $L\left(A^{\prime}\right) \subseteq L(A)$.
If $x \in L(A)$ then we have $q_{0} \cdot x \in F$ and also $q_{0} \cdot x \in A c c$. Hence $q_{0} . x \in F \cap A c c$ and $x \in L\left(A^{\prime}\right)$.

Automatic Theorem Proving

Take $\Sigma=\{a, b\}$.
Define L set of $x \in \Sigma^{*}$ such that any a in x is followed by a b
Define L^{\prime} set of $x \in \Sigma^{*}$ such that any b in x is followed by a a
Then $L \cap L^{\prime}=\{\epsilon\}$
Intuitively if $x \neq \epsilon$ in L we have
$\ldots a \ldots \rightarrow \ldots a \ldots b \ldots$
if x in L^{\prime} we have
$\ldots b \ldots \rightarrow \ldots b \ldots a \ldots$

Automatic Theorem Proving

We should have $L \cap L^{\prime}=\{\epsilon\}$ since a nonempty word in $L \cap L^{\prime}$ should be infinite

We can prove this automatically with automata!
L is regular: write a DFA A for L
L^{\prime} is regular: write a DFA A^{\prime} for L
We can then compute $A \times A^{\prime}$ and check that

$$
L \cap L^{\prime}=L\left(A \times A^{\prime}\right)=\{\epsilon\}
$$

Application: control system

We have several machines working concurrently
We need to forbid some sequence of actions. For instance, if we have two machines MA and MB, we may want to say that MB cannot be on when MA is on. The alphabets will contain: onA, offA, onB, offB
Between onA, on 2 there should be at least one offA
The automaton expressing this condition is

Application: control system

What is interesting is that we can use the product construction to combine several conditions

For instance, another condition maybe that onA should appear before onB appear. One automaton representing this condition is

We can take the product of the two automata to express the two conditions as one automaton, which may represent the control system

