
Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) consists of

1. a finite set of states (often denoted Q)

2. a finite set Σ of symbols (alphabet)

3. a transition function that takes as argument a state and a

symbol and returns a state (often denoted δ)

4. a start state often denoted q0

5. a set of final or accepting states (often denoted F)

We have q0 ∈ Q and F ⊆ Q

1

Deterministic Finite Automata

So a DFA is mathematically represented as a 5-uple

(Q, Σ, δ, q0, F)

The transition function δ is a function in

Q × Σ → Q

Q × Σ is the set of 2-tuples (q, a) with q ∈ Q and a ∈ Σ

2

Deterministic Finite Automata

How to present a DFA? With a transition table

0 1

→q0 q2 q0

∗q1 q1 q1

q2 q2 q1

The → indicates the start state: here q0

The ∗ indicates the final state(s) (here only one final state q1)

This defines the following transition diagram

q0
0

1

q2
1

0

q1 0,1

3

Deterministic Finite Automata

For this example

Q = {q0, q1, q2}

start state q0

F = {q1}

Σ = {0, 1}

δ is a function from Q × Σ to Q

δ : Q × Σ → Q

δ(q0, 1) = q0

δ(q0, 0) = q2

4

Example: password

When does the automaton accepts a word??

It reads the word and accepts it if it stops in an accepting state

q0
t

6=t

q1
h

6=h

q2
e

6=e

q3
n

6=n

q4

q5

Only the word then is accepted

Here Q = {q0, q1, q2, q3, q4}

Σ is the set of all characters

F = {q4}

We have a “stop” or “dead” state q5, not accepting

5

How a DFA Processes Strings

Let us build an automaton that accepts the words that contain 01

as a subword

Σ = {0, 1}

L = {x01y | x, y ∈ Σ∗}

We use the following states

A: start

B: the most recent input was 1 (but not 01 yet)

C: the most recent input was 0 (so if we get a 1 next we should go

to the accepting state D)

D: we have encountered 01 (accepting state)

6

We get the following automaton

A
1

0

B

1

0

C
1

0

D 0,1

Transition table

0 1

→A C B

B C B

C C D

∗D D D

Q = {A,B,C,D}, Σ = {0,1}, start state A, final state(s) {D}

7

Extending the Transition Function to Strings

In the previous example, what happens if we get 011? 100? 10101?

We define δ̂(q, x) by induction

δ̂ : Q × Σ∗ → Q

BASIS δ̂(q, ε) = q for |x| = 0

INDUCTION suppose x = ay (y is a string, a is a symbol)

δ̂(q, ay) = δ̂(δ(q, a), y)

Notice that if x = a we have

δ̂(q, a) = δ(q, a) since a = aε and δ̂(δ(q, a), ε) = δ(q, a)

8

Extending the Transition Function to Strings

δ̂ : Q × Σ∗ → Q

We write q.x instead of δ̂(q, x)

We can now define mathematically the language accepted by a

given automaton Q, Σ, δ, q0, F

L = {x ∈ Σ∗ | q0.x ∈ F}

On the previous example 100 is not accepted and 10101 is accepted

9

Minimalisation

The same language may be represented by different DFA

A
1

0

B

1

0

C
1

0

D 0,1

and

A

1

0

B
1

0

C 0,1

10

Minimalisation

Later in the course we shall show that there is only one machine

with the minimum number of states (up to renaming of states)

Furthermore, there is a (clever) algorithm which can find this

minimal automaton given an automaton for a language

11

Example

Mn the “cyclic” automaton with n states on Σ = {1} such that

L(Mn) = {1l | n divides l}

12

Functional representation: Version 1

Q = A|B|C and E = 0|1 and W = [E]

One function next : Q × E → Q

next (A, 1) = A, next (A, 0) = B

next (B, 1) = C, next (B, 0) = B

next (C, b) = C

One function run : Q × W → Q

run (q, b : x) = run (next (q, b), x), run (q, []) = q

accept x = final (run (A, x)) where

final A = final B = False, final C = True

13

Functional representation: Version 2

E = 0|1, W = [E]

Three functions FA, FB, FC : W → Bool

FA (1 : x) = FA x, FA (0 : x) = FB x, FA [] = False

FB (1 : x) = FC x, FB (0 : x) = FB x, FB [] = False

FC (1 : x) = FC x, FC (0 : x) = FC x, FC [] = True

We have a mutual recursive definition of 3 functions

14

Functional representation: Version 3

data Q = A | B | C

data E = O | I

next :: Q -> E -> Q

next A I = A

next A O = B

next B I = C

next B O = B

next C _ = C

run :: Q -> [E] -> Q

run q (b:x) = run (next q b) x

run q [] = q

15

Functional representation: Version 3

accept :: [E] -> Bool

accept x = final (run A x)

final :: Q -> Bool

final A = False

final B = False

final C = True

16

Functional representation: Version 4

We have

Q -> E -> Q ~ Q x E -> Q

~ E -> (Q -> Q)

17

Functional representation: Version 4

data Q = A | B | C

data E = O | I

next :: E -> Q -> Q

next I A = A

next O A = B

next I B = C

next O B = B

next _ C = C

run :: Q -> [E] -> Q

run q (b:x) = run (next b q) x

run q [] = q

18

Functional representation: Version 4

-- run q [b1,...,bn] is

-- next bn (next b(n-1) (... (next b1 q)...))

-- run = foldl next

19

A proof by induction

A very important result, quite intuitive, is the following.

Theorem: for any state q and any word x and y we have

q.(xy) = (q.x).y

Proof by induction on x. We prove that: for all q we have

q.(xy) = (q.x).y (notice that y is fixed)

Basis: x = ε then q.(xy) = q.y = (q.x).y

Induction step: we have x = az and we assume q′.(zy) = (q′.z).y

for all q′

20

The other definition of δ̂

Recall that a(b(cd)) = ((ab)c)d; we have two descriptions of words

We define δ̂′(q, ε) = q and

δ̂′(q, xa) = δ(δ̂′(q, x), a)

Theorem: We have q.x = δ̂(q, x) = δ̂′(q, x) for all x

21

The other definition of δ̂

Indeed we have proved

q.ε = q and q.(xy) = (q.x).y

As a special case we have q.(xa) = (q.x).a

This means that we have two functions f(x) = q.x and

g(x) = δ̂′(q, x) which satisfy

f(ε) = g(ε) = q and

f(xa) = f(x).a g(xa) = g(x).a

Hence f(x) = g(x) for all x that is q.x = δ̂′(q, x)

22

Automatic Theorem Proving

f(0) = h(0) = 0, g(0) = 1

f(n + 1) = g(n), g(n + 1) = f(n), h(n + 1) = 1 − h(n)

We have f(n) = h(n)

We can prove this automatically using DFA

23

Automatic Theorem Proving

We have 8 states: Q = {0, 1} × {0, 1} × {0, 1}

We have only one action Σ = {1} and δ((a, b, c), s) = (b, a, 1 − c)

The initial state is (0, 1, 0) = (f(0), g(0), h(0))

Then we have (0, 1, 0).1n = (f(n), g(n), h(n))

We check that all accessible states satisfy a = c (that is, the

property a = c is an invariant for each transition of the automata)

24

Automatic Theorem Proving

A more complex example

f(0) = 0 f(1) = 1 f(n+2) = f(n)+f(n+1)−f(n)f(n+1)

f(2) = 1 f(3) = 0 f(4) = 1 f(5) = 1 . . .

Show that f(n + 3) = f(n) by using Q = {0, 1} × {0, 1} × {0, 1}

and the transition function (a, b, c) 7−→ (b, c, b + c − bc) with the

initial state (0, 1, 1)

25

Product of automata

How do we represent interaction between machines?

This is via the product operation

There are different kind of products

We may then have combinatorial explosion: the product of n

automata with 2 states has 2n states!

26

Product of automata (example)

The product of A

p0

p1 B

p0

p1 and

C

p1

p0 D

p1

p0 is A, C
p0

p1

B, C

p0

p1

A, D

p0

p1

B, D
p0

p1

If we start from A, C and after the word w we are in the state A,D

we know that w contains an even number of p0s and odd number of

p1s

27

Product of automata (example)

Model of a system of users that have three states I(dle),

R(equesting) and U(sing). We have two users for k = 1 or k = 2

Each user is represented by a simple automaton

rk

ik

uk

28

Product of automata (example)

The complete system is represented by the product of these two

automata; it has 3 × 3 = 9 states

i1, i2 r1, i2 u1, i2

i1, r2
r1, r2 u1, r2

i1, u2
r1, u2 u1, u2

29

The Product Construction

Given A1 = (Q1, Σ, δ1, q1, F1) and A2 = (Q2, Σ, δ2, q2, F2) two DFAs

with the same alphabet Σ we can define the product A = A1 × A2

set of state Q = Q1 × Q2

transition function (r1, r2).a = (r1.a, r2.a)

intial state q0 = (q1, q2)

accepting states F = F1 × F2

30

The Product Construction

Lemma: (r1, r2).x = (r1.x, r2.x)

We prove this by induction

BASE: the statement holds for x = ε

STEP: if the statement holds for y it holds for x = ya

31

The Product Construction

Theorem: L(A1 × A2) = L(A1) ∩ L(A2)

Proof: We have (q1, q2).x = (q1.x, q2.x) in F iff q1.x ∈ F1 and

q2.x ∈ F2, that is x ∈ L(A1) and x ∈ L(A2)

Example: let Mk be the “cyclic” automaton that recognizes

multiple of k, such that L(Mk) = {an | k divides n}, then

M6 × M9 ' M18

Notice that 6 divides k and 9 divides k iff 18 divides k

32

Product of automata

It can be quite difficult to build automata directly for the

intersection of two regular languages

Example: build a DFA for the language that contains the subword

ab twice and an even number of a’s

33

Variation on the product

We define A1 ⊕ A2 as A1 × A2 but we change the notion of

accepting state

(r1, r2) accepting iff r1 ∈ F1 or r2 ∈ F2

Theorem: If A1 and A2 are DFAs, then

L(A1 ⊕ A2) = L(A1) ∪ L(A2)

Example: multiples of 3 or of 5 by taking M3 ⊕ M5

34

Complement

If A = (Q, Σ, δ, q0, F) we define the complement Ā of A as the

automaton

Ā = (Q, Σ, δ, q0, Q − F)

Theorem: If A is a DFA, then L(Ā) = Σ∗ − L(A)

Remark: We have A ⊕ A′ = A × A′

35

Languages

Given an alphabet Σ

A language is simply a subset of Σ∗

Common languages, programming languages, can be seen as sets of

words

Definition: A language L ⊆ Σ∗ is regular iff there exists a DFA

A, on the same alphabet Σ such that L = L(A)

Theorem: If L1, L2 are regular then so are

L1 ∩ L2, L1 ∪ L2, Σ∗ − L1

36

Remark: Accessible Part of a DFA

Consider the following DFA

q0

1

0

q1

0

1 q2

0

0

q3

0

1

it is clear that it accepts the same language as the DFA

q0

1

0

q1

0

1

which is the accessible part of the DFA

The remaining states are not accessible from the start state and

can be removed

37

Remark: Accessible Part of a DFA

The set

Acc = {q0.x | x ∈ Σ∗}

is the set of accessible states of the DFA (states that are accessible

from the state q0)

38

Remark: Accessible Part of a DFA

Proposition: If A = (Q, Σ, δ, q0, F) is a DFA then and

A′ = (Q ∩ Acc, Σ, δ, q0, F ∩ Acc) is a DFA such that L(A) = L(A′).

Proof: It is clear that A′ is well defined and that L(A′) ⊆ L(A).

If x ∈ L(A) then we have q0.x ∈ F and also q0.x ∈ Acc. Hence

q0.x ∈ F ∩ Acc and x ∈ L(A′).

39

Automatic Theorem Proving

Take Σ = {a, b}.

Define L set of x ∈ Σ∗ such that any a in x is followed by a b

Define L′ set of x ∈ Σ∗ such that any b in x is followed by a a

Then L ∩ L′ = {ε}

Intuitively if x 6= ε in L we have

. . . a . . . → . . . a . . . b . . .

if x in L′ we have

. . . b . . . → . . . b . . . a . . .

40

Automatic Theorem Proving

We should have L ∩ L′ = {ε} since a nonempty word in L ∩ L′

should be infinite

We can prove this automatically with automata!

L is regular: write a DFA A for L

L′ is regular: write a DFA A′ for L

We can then compute A × A′ and check that

L ∩ L′ = L(A × A′) = {ε}

41

Application: control system

We have several machines working concurrently

We need to forbid some sequence of actions. For instance, if we

have two machines MA and MB, we may want to say that MB

cannot be on when MA is on. The alphabets will contain: onA,

offA, onB, offB

Between onA, on2 there should be at least one offA

The automaton expressing this condition is

p0

onB onA

6=onA,onB

p1

offA

onB

6=onB,offA

p3

offB

onA
p2

42

Application: control system

What is interesting is that we can use the product construction to

combine several conditions

For instance, another condition maybe that onA should appear

before onB appear. One automaton representing this condition is

q0
onA

6=onA,onB

onB

q1

q2

We can take the product of the two automata to express the two

conditions as one automaton, which may represent the control

system

43

