Secured Offline Blockchain Transactions for the Internet of Things (IoT)

Context

Blockchain on IoT devices
- No trusted participants
- No trusted middleman
- Unsecured devices
- Distributed ledger

Challenges
- Resource constraint devices:
 - Low power capabilities
 - Communication cost
 - Radio range
 - Delayed transactions
 - Proof of Work (PoW) no feasible on IoT devices
 - Limited device storage to store the whole ledger

Offline Transactions in IoT
- No need for constant connectivity
- No human interaction
- Decentralized approach to handle of payments
- Scalability

Approach
- Secure transaction based on payment channels
- Periodic connection to proxy
- Settlement over the Blockchain

Outcome
- No-fee transactions
- Secured device-to-device transaction
- Low energy consumption per transaction
- Integration with cloud-based Blockchain

Research Area I

Example

Representation of the architecture

Research Area II

Securing IoT Devices

Environment
- Low power devices
- Computation capabilities: ARM® Cortex® - M0
- Operation system: TockOS
- Offline transactions for Blockchain

Goals
- Extensive system security:
 - Verify Boot
 - Secured OS (TockOS)
 - Application layer security
 - Trusted Blockchain transactions
 - Monitoring energy consumption

Example

IoT Device Verification Chain

- Firmware
- Bootloader
- Operating System
- Blockchain Application
- Transaction

Christos Profentzas, Olaf Landsiedel