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Abstract
In large scale learning problems it is often easy
to collect simple statistics of the data, but hard
or impractical to store all the original data. A
key question in this setting is how to construct
classifiers based on such partial information. One
traditional approach to the problem has been to
use maximum entropy arguments to induce a
complete distribution on variables from statis-
tics. However, this approach essentially makes
conditional independence assumptions about the
distribution, and furthermore does not optimize
prediction loss. Here we present a framework for
discriminative learning given a set of statistics.
Specifically, we address the case where all
variables are discrete and we have access to
various marginals. Our approach minimizes the
worst case hinge loss in this case, which upper
bounds the generalization error. We show that for
certain sets of statistics the problem is tractable,
and in the general case can be approximated
using MAP LP relaxations. Empirical results
show that the method is competitive with other
approaches that use the same input.

1. Introduction
Many machine learning algorithms operate on labeled
datasets where a set of data points x and their labels y are
provided. However, it is not always realistic to assume such
data can be gathered and stored in this form. For example,
in medical informatics we often wish to perform diagnostic
prediction based on information about the patients (e.g.,
results of blood tests, personal history etc). Obtaining
complete data instances for this case may be impossible due
to privacy concerns. However, it may be easier to obtain
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data such as the probability of a given blood test being
abnormal given that the patient has a particular disease.
As another example, consider a router of a large internet
provider. The number of packets it needs to process is huge,
and performing any learning on those would require some
sort of aggregation.

Thus, it is of interest to learn classifiers based on partial
or aggregated information. Here we focus on the important
case where features x1, . . . , xn are discrete and categorical.
A natural summary statistic in this case is low order
marginals such as p(xi, y) or p(xi, xj , y). These can
be estimated reliably given small amounts of data. The
question is then how to use these to build a classifier of
y for a complete instance x1, . . . , xn.

The challenge in the above scenario is that we only
have partial information about the true joint distribution
p(x1, . . . , xn, y). Namely, its first and second order
marginals. A common approach in this case is to assume
that the true distribution is the one with maximum entropy
subject to these marginal constraints. For first order
marginals this results in the popular Naive Bayes classifier,
whereas for second order it results in Tree Augmented
Naive Bayes (Friedman et al., 1997). However, these
approaches do not try to optimize prediction error. They
implicitly make conditional independence assumptions
about the joint distribution and then use this joint distri-
bution for prediction.

Here we take a strictly discriminative approach to the
above problem. Given a set of observed marginals µ we
consider the set of distributions P(µ) that agree with these
marginals. The assumption is that the true distribution is
in this set.1 We want to predict y from x using some
classification function.

Our goal is to find a classifier which has minimal worst case
error. The classifier that solves this minimax problem will
be robust in the sense that it obtains the best error possible

1Clearly there are finite sample issues, but these can be
addressed as in Dudı́k et al. (2007), by considering uncertainty
around the evaluated statistics.
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under our uncertainty about the true distribution.

The above problem is generally hard to solve (Bertsimas
and Sethuraman, 2000). The first difficulty is handling
the zero-one loss. Here we use the usual approach of
replacing it with a surrogate loss, which we choose to be
the hinge loss. We show that this replacement results in
a 2-approximation of the zero-one loss (see Section 4).
However, the problem still seems daunting to optimize
due to the maximization over all possible distributions in
P(µ). Surprisingly, we show that this problem is in fact
tractable, as long as the set of pairwise variables in the
marginals xi, xj correspond to a tree graph. When the
graph is not a tree, we show how the commonly used MAP
LP relaxation can be employed, resulting in an upper bound
on the original minimax problem.

We call our approach Discrete Chebyshev Classifier
(DCC), since as in Chebyshev bounds, , it considers
worst case behavior under first and second order moment
constraints. Empirical comparisons to baselines that use
the same statistical information demonstrate that DCC are
competitive on the majority of datasets considered.

2. The DCC Optimization Problem
We begin by defining the minimax optimization problem
we set out to solve.

Consider classification problems with n discrete features
corresponding to the vector random variable X =
[X1, . . . , Xn]. Assume that each Xi can take di values so
that Xi ∈ {1, . . . , di}. The set of possible values of X
will be denoted by X . Similarly, let the discrete variable Y
denote the label of X , and denote the domain of Y by Y .

Our focus is on predicting Y from X . Typically one
considers a parametric form for such predictors. However,
at this point we assume that it can be arbitrary. In
Section 2.3 we show that the optimal minimax predictor
does in fact have a certain parametric form. For now, we
assume that the predictor is defined via a function f(x, y) :
X ,Y → R where the predicted label is given by:

ŷ(x; f) = arg max
y

f(x, y). (1)

Note that any prediction function can be expressed this
way, and thus the learner has full expressive power. It
will turn out in Section 2.3 that the optimal function has
a simple parametric form, due to the fact that it needs to be
minimax optimal.

For a given function f and a pair x, y the zero-one loss
incurred by predicting y from x using f is:

`zo(f,x, y) = I
[
y 6= arg max

y′
f(x, y)

]
. (2)

Since this loss is not convex, we switch to a surrogate
convex loss. Specifically, we use the multiclass hinge loss
(e.g., see Crammer and Singer, 2002) defined as:

`h(f,x, y) = max
z∈Y

f(x, z)− f(x, y) + I [z 6= y] . (3)

Given that x, y are generated via a distribution p(x, y), the
expected loss of f is:

Ep [l(f,x, y)] =
∑
x,y

p(x, y)l(f,x, y). (4)

As mentioned earlier, we consider the setting where we are
given marginal distributions over pairs of variables Xi, Xj

and the label variable Y . Each such distribution will be
denoted by µij(xi, xj , y) in what follows. Furthermore,
we assume we have these for a set of pairs E which form
a tree. The tree assumption might seem restrictive, and we
will remove it in Section 5. Thus, our input is the set µ of
marginals:

µ = { µij(xi, xj , y) : (i, j) ∈ E } . (5)

Define P(µ) as the set of all probability distributions over
(X,Y ) that agree with the marginals µ. Namely:

P(µ) = {p ∈ ∆ : p(xi, xj , y) = µij(xi, xj , y) ∀(i, j) ∈ E}
(6)

where p(xi, xj , y) is the marginal distribution of p on
the corresponding variables, and ∆ is the set of valid
distributions on X1, . . . , Xn (i.e., p(x1, . . . , xn) is non-
negative and normalizes to one).

2.1. The Minimax Problem

We would like to find the optimal classifier f given that
the true distribution is in P(µ) (as noted earlier, this can
be relaxed by using for instance, box constraints around
µ). Since no additional information about the underlying
distribution is provided, we consider the worst case error of
f with respect to any distribution in P(µ), which is given
by:

WCE(f, µ) = max
p∈P(µ)

Ep [`zo(f,x, y)] . (7)

WCE(f, µ) is a Chebyshev type bound, since out of
all probability distributions over (X,Y ) with specific
moments µ, it provides the one that maximizes the mass
in a particular subset of X (i.e., the x where f errs).

It is then natural to seek an f that minimizes WCE(f, µ)
specifically, to solve:

DCC(µ) = min
f

WCE(f, µ) (8)

where DCC stands for “Discrete Chebyshev Classifier”.
Due to the hardness of optimizing the zero-one loss we
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consider a variant of the above where the zero-one loss in
WCE is replaced with the hinge loss. Namely:

WCEh(f, µ) = max
p∈P(µ)

∑
y∈Y,x∈X

p(x, y)`h (f,x, y) . (9)

And similarly:

DCCh(µ) = min
f

WCEh(f, µ). (10)

This type of relaxation is common and easily yields
an upper bound on the original function. Somewhat
surprisingly, in Section 4 we show a tighter connection
between the problems – DCCh(µ) is a 2-approximation of
DCC(µ).

The optimization problem DCCh(µ) still seems daunting
due to two key difficulties:

• The function f is over |X ||Y| variables, which is
exponential in n.

• The worst case error, WCEh, involves maximization
over all distributions p(x, y). Again, these would
require |X ||Y| variables to describe.

In what follows we show how these difficulties can be
overcome via careful analysis of the optimization problem,
use of convex duality, and MAP LP relaxations. The main
result is Theorem 2.3 where we present a tractable convex
optimization problem equivalent to DCCh(µ). Theorem
3.1 then provides an unconstrained formulation of the
problem.

2.2. The Dual of WCEh

Begin by rewriting WCEh in its dual form. Since WCEh
is a linear program (LP) in variables p(x, y), it has a dual
LP with the same value. The dual variables in this case are
νij(xi, xj , y) for all ij ∈ E and xi, xj , y. Thus, they can
be viewed as local functions on pairs of features and y.

Using a standard Lagrangian duality transformation we
obtain the following dual:

WCEh(f, µ) = min
ν

ν · µ

s.t. ν(x, y) ≥ `h(f,x, y) ∀x ∈ X , y ∈ Y
(11)

where we use the following notation:

ν(x, y) =
∑
ij∈E

νij(xi, xj , y)

ν · µ =
∑

ij∈E,xi,xj

νij(xi, xj , y)µij(xi, xj , y).

The dual in Eq. (11) has a nice interpretation. The function
ν(x, y) can be thought of as an energy function over x and

y which decomposes according to the set of edges E, and
constrained to be pointwise greater than the loss lh(f,x, y).
Using this observation, and since for any distribution p ∈
P(µ), Ep [ν(x, y)] = ν ·µ, it follows that ν ·µ indeed upper
bounds the expected hinge loss for any possible ν.

By switching to the dual we have not made the problem
simpler, since now instead of exponentially many variables
as in Eq. (7) we have exponentially many constraints.
These however can be dealt with efficiently, as we show in
Section 2.4. Another advantage is thatDCCh now becomes
a minimization problem (rather than minmax):

DCCh(µ) = min
f,ν

ν · µ

s.t. ν(x, y) ≥ `h(f,x, y) ∀x ∈ X , y ∈ Y.
(12)

2.3. A Simple Form for the Optimal Classifier

Here we show that there exists an optimal f∗ which can
be described using much fewer variables. Furthermore,
this f∗ can be determined via the set of dual parameters
ν defined earlier.

Theorem 2.1. The DCCh problem can be expressed as:

minν ν · µ
s.t. ν(x, z) + ν(x, y)− 2 · I [y 6= z] ≥ 0 ∀x,y,z.

(13)

Proof. We start with theDCCh problem in Eq. (12). Since
f does not appear in the objective (only in the constraints),
it can be moved to the constraints in the following way:

DCCh(µ) = minν ν · µ
s.t. ∃f ∀x, y : ν(x, y) ≥ `h(f,x, y).

(14)

If we write the constraints explicitly using the hinge loss
definition we get that there should exist a f such that:

∀x, y ν(x, y) ≥ max
z
f(x, z)− f(x, y) + I [y 6= z]

or equivalently:

∀x, y, z ν(x, y) ≥ f(x, z)− f(x, y) + I [y 6= z] .

Since each pair y, z appears twice with any given x we
regroup the inequalities to get:

ν(x, y)− I [y 6= z] ≥ f(x, z)− f(x, y)

≥ −ν(x, z) + I [y 6= z] .
(15)

We claim that for a given ν there exists a function f
satisfying the above if and only if:

ν(x, y)−I [y 6= z] ≥ −ν(x, z)+I [y 6= z] ∀x, y, z. (16)
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It is immediate that Eq. (15) implies Eq. (16). To see the
converse, we define f(x, y) = − 1

2ν(x, y) and therefore:

f(x, z)− f(x, y) = 1
2 (ν(x, y)− ν(x, z))

= ν(x,y)−I[y 6=z]−ν(x,z)+I[y 6=z]
2

(17)

which is exactly the mid point between the required lower
and upper bounds on f(x, z)− f(x, y) from Eq. (15).

This shows the equivalence between the constraints of
Eq. (13) and Eq. (14), and hence the equivalence between
the problems.

The above theorem directly implies that the form of the
optimal f∗ is given by the following corollary.

Corollary 2.2. Denote by ν∗ the minimizer of Eq. (13), the
DCCh classifier f∗ (from Eq. (10)) is given by:

f∗(x, y) = −1

2
ν(x, y) = −1

2

∑
ij∈E

ν∗ij(xi, xj , y). (18)

2.4. Efficient DCC Optimization

In order to be able to solve the DCCh problem as
formulated in Eq. (13), one must still deal with the
exponential number of constraints. Define:

hν(x, y, z) = ν(x, z) + ν(x, y)− 2 · I [y 6= z] .

Then the constraint of Eq. (13) can be written as:

min
x,y,z

hν(x, y, z) ≥ 0. (19)

The key property to note is that the function h decomposes
as a sum over factors depending on (xi, xj , y, z) and
(y, z). In other words, it can be viewed as an energy
function of a graphical model with these hyper edges. The
complexity of checking the constraints is thus equivalent to
the complexity of calculating the MAP assignment of the
corresponding model.

If the edges ij ∈ E are arbitrary, the above problem is
as hard as general MAP problems (NP hard). However,
since we assumed that E is tree structured, the graphical
model corresponding to h has tree width of 3 and can
be minimized efficiently (e.g., using the junction tree
algorithm. See Koller and Friedman, 2009).

At this point we have shown that for a given ν, the
feasibility of the DCCh constraints in Eq. (19) can be
checked efficiently. Thus, the DCCh problem is in fact
polynomial time tractable since one can use methods such
as ellipsoid or cutting plane (Bertsekas, 1995). While
we could theoretically solve the problem this way, these
methods do not scale well. We thus turn to further simplify
the problem.

A different way to solve Eq. (19) is to realize that it
can be expressed as a linear program. There is a rich
body of work on LP relaxations for the MAP problem,
and their various relaxations (e.g., see Wainwright and
Jordan, 2003; Werner, 1993; Globerson and Jaakkola,
2008; Sontag et al., 2011). In our case, such an LP
would have as variables the following fourth and second
order distributions αij(xi, xj , y, z) and τ(y, z), and the
constraints would be that these distributions agree on the
variables in their overlap. It is easy to see that constructing
this LP in the standard way will result in the exact MAP
since these are the cliques in the junction tree of the model.

We can now take the dual of the above MAP LP. The
dual variables in this case will be denoted by δij(xj) and
γij(y, z). The dual objective gν(δ, γ) is given by:

gν(δ, γ) = max
δ,γ

∑
ij

min
xi,xj
y,z

{νij(xi, xj , y) + νij(xi, xj , z)

−δij(xj , y, z)− δji(xi, y, z)− γij(y, z)}

+
∑
i

min
xi,y,z

 ∑
j∈N(i)

δji(xi, y, z)


+ min

y,z

−2 · I [y 6= z] +
∑
ij∈E

γij(y, z)


(20)

From strong duality we then have:

min
x,y,z

hν(x, y, z) = max
δ,γ

gν(δ, γ). (21)

Finally, by plugging the dual into Eq. (13) we have that
DCC can be expressed as an optimization problem with
polynomially many constraints and variables, as stated
below.

Theorem 2.3. The DCCh problem is equivalent to:

min
ν,δ,γ

ν · µ

s.t. gν(δ, γ) ≥ 0.
(22)

Proof. After substituting Eq. (21) into Eq. (13) we get:

minν ν · µ
s.t. maxδ,γ gν(δ, γ) ≥ 0.

(23)

Now we only need to notice that δ, γ can be maximized
over outside the constraints, since it suffices to find a
single assignment to those such that gν(δ, γ) ≥ 0 for the
constraint to hold. The result follows.

The above problem has polynomially many constraints and
variables, and is convex. Thus it can be solved using
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generic convex optimization tools. However, solving this
problem with off-the-shelf optimization methods does not
scale well. Next, we derive an unconstrained version of
the problem which can be solved by scalable accelerated
methods.

3. Unconstrained Optimization of DCCh
Here we provide another equivalent form of DCCh but
one which is unconstrained, and can thus be solved using
scalable accelerated methods, such as FISTA (Beck and
Teboulle, 2009). The unconstrained problem is presented
in the following result.

Theorem 3.1. The following unconstrained problem is
equivalent to DCCh:

min
ν,δ,γ

ν · µ− 1
2 max

δ,γ
gν(δ, γ). (24)

Proof. We start by writing the Lagrangian of DCCh in
Eq. (13) :

L(λ, ν) = ν · µ− λ
(

min
x∈Xz,y∈Y

hν(x, y, z)

)
. (25)

Denote by νω the uniform assignment to the ν variables
(i.e., all νij(xi, xj , y) = ω). Then some algebra gives

L(λ, νω) = ω|E|(1− 2λ) + 2λ (26)

therefore we have:

DCC(µ) ≤ max
λ

min
ω
ω|E|(1− 2λ) + 2λ (27)

which is clearly equal to −∞ for λ 6= 1
2 . We conclude that

the optimal λ value is 1
2 and the result follows from the fact

we can replace h with g.

To run FISTA (Beck and Teboulle, 2009) on Eq. (24)
we can smooth it using Nesterov’s smoothing approach
(Nesterov, 2005) and then apply FISTA since the gradients
are easy to compute.

4. A 2-Approximation of DCC
The hinge loss is commonly used as a convex upper bound
surrogate for the zero-one loss. However, in the general
case no further approximation guarantees can be provided.
For theDCC problem it in fact turns out that replacing zero-
one loss with hinge loss results in a factor 2 approximation,
as stated next.

Lemma 4.1. 1
2DCCh(µ) ≤ DCC(µ) ≤ DCCh(µ).

Proof. The upper bound follows from the fact that hinge
loss upper bounds the zero-one loss. To show the lower

bound, begin by applying the Sion Minimax Theorem
(Sion, 1957) to the definition of DCCh(using the convexity
of the hinge loss wrt f , and linearity wrt to p):

min
f

max
p∈P(µ)

Ep [`h(f,x, y)] = max
p∈P(µ)

min
f

Ep [`h(f,x, y)] .

(28)
For any p, it holds that:2

min
f

Ep [`h(f,x, y)] ≤ min
f : f(x,y)∈{0,1}

Ep [`h(f,x, y)] .

(29)
For predictor functions f with outputs in {0, 1} the
hinge loss is always exactly twice the error probability.
Therefore, as claimed:

DCCh(µ) ≤ 2 max
p∈P(µ)

min
f

Ep [`zo(f,x, y)] ≤ 2DCC(µ).

Where the second inequality follows from weak min-max
bounds.

5. Relaxing the Tree Assumption
Thus far we assumed that the set of observed marginals
correspond to a tree graph. This resulted in a tractable form
for the DCCh problem. However, the tree assumption may
be too restrictive in many cases, both because there is often
no natural tree structure, and because learning the optimal
tree (as in the Chow Liu procedure used in TAN) seems
hard for our objective. Finally, the tree assumption limits
the number of statistics we can consider to n− 1.

Fortunately, the MAP LP relaxation approach used for
handling the constraint Eq. (19) in Section 2.4 can easily
be generalized to non-tree graphs. In fact, it is one of the
most common approximation methods for MAP inference
in general graphs (e.g., see Komodakis et al., 2011). Thus,
if E is not a tree graph, we basically employ exactly the
same procedure as described above. The only difference
from the tree case is that Eq. (22) will no longer be equal
to the original DCCh but instead it will upper bound it.3

In our experiments we tried both the tree approach and the
general graph approach. See Section 8 for further details.

6. Other Applications
The DCC framework can be applied to other machine
learning settings. In what follows we consider four
different scenarios of interest.

Conditional DCC: In some settings it is of interest to
consider errors conditioned on Y , as in type I and II
errors in hypothesis testing. A minimax approach in this

2Note that this is in fact an equality.
3This is a direct result of the MAP LP relaxation upper

bounding the true MAP value.
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setting was described in Lanckriet et al. (2003) for second
order moments on continuous variables. DCC can easily be
extended to this setting, resulting in similar optimization
problems to those derived here.

Semi-Supervised DCC: In many real world applications
it is easy to collect a large volume of unlabeled data, but
labeled data is harder to obtain. In this context DCC
can naturally be extended by assuming statistics only on
the variables x. For example, assume we only have
enough labeled data to estimate µi(xi, y) (but not enough
for µij(xi, xj , y) marginals). However, we may easily
estimate marginals such as µij(xi, xj) from unlabeled data.
Using our framework it is straightforward to formulate a
WCE problem for this set of marginals. It is expected
to considerably restrict the set of distributions which we
maximize over, and thus make the minimax setting less
conservative.

Discrete Chebyshev Bounds: The Chebyshev bound, or
Chebyshev inequality is a simple yet extremely useful
theorem in probability: For any real random variable, X ,
with expectation µ and finite non-zero variance σ2, and for
any ε > 0.

P [(|X − µ| ≥ ε)] ≤ σ2

ε2
.

Many generalizations of these inequalities are known (e.g.,
Marshall and Olkin, 1960; Bertsimas and Popescu, 2005;
Vandenberghe et al., 2007). However, they all deal with
continuous distributions.

We define the Discrete Chebyshev inequality in a similar
way: Given a set of marginals over X , and a function f :
X → R we wish to bound the following probability:

max
p∈P(µ)

Pp [f(x) ≥ 0] . (30)

Using the same line of reasoning that we used to simplify
WCE we can bound the above probability by

min
ν
ν · µ s.t.

∑
ij

νij(xi, xj) ≥ max{0, 1 + f(x)} (31)

which can be computed if f decomposes.

WCE as a Regularizer: Since WCEh(f, µ) is a bound
on generalization performance of the predictor f , it makes
sense to use it as a regularizer. Given a dataset with several
fully observed examples as well as only statistics µ for the
entire data, we may optimize an objective that is a sum
of a hinge loss on the labeled examples and WCEh(f, µ).
This will combine two different estimates of generalization
error, thus effectively leveraging the two data sources.

7. Related Work
The idea of using expected values is common in gen-
erative models for prediction, but has seen much fewer

applications in discriminative approaches. One exception
is the Minimax Probabilistic Machine (MPM) (Lanckriet
et al., 2003) which solves a robust classification problem
for the case of first and second order moments. The
derivation in (Lanckriet et al., 2003) relies on Chebyshev
type bounds that upper bound the probabilities of certain
events subject to constraints (e.g., see Vandenberghe et al.,
2007). However, these apply to continuous spaces, as
opposed to the discrete case we consider here. Indeed,
a key contribution of the current paper is to consider
such bounds and their approximation for discrete graphical
models.

Information theoretic measures such as entropy and mutual
information have also been used in the context of learning
with partial information. As mentioned earlier, maximum
entropy is a classic approach to the problem. Interestingly,
it may also be interpreted as minimax optimal but under
a different (non-discriminative) loss function (Grünwald
and Dawid, 2004). Another related approach is the
minimum mutual information (MinMI) method (Globerson
and Tishby, 2004). It minimizes I(X;Y ) under marginal
constraints as we have here, but is hard to compute even for
the case of singleton marginals.

The notion of statistical queries (Kearns, 1998) is also
related to our setting. However, in these works the queries
used by the learner are chosen from a much larger family
than what we use. This is also true for the more restricted
correlational queries (Bshouty and Feldman, 2002) where
one receives expected values Ep [f(X1, . . . , Xn)Y ] and f
can be any function. This setting is thus still considerably
less constrained than ours.

There are also minimax approaches which do not consider
expected values, but rather seek minimax robustness with
respect to perturbations of data points. For example, one
may want to minimize prediction error subject to a data
point being allowed to move within some prescribed radius.
Such settings have been studied for different perturbations,
often resulting in SVM like optimization methods (e.g.,
see Xu et al., 2009; Livni et al., 2012). Note that these
approaches however require the full dataset and thus do not
operate in our restricted input setting.

Finally, robust optimization approaches are quite common
in both optimization (Ben-Tal and Nemirovski, 1998) and
statistics (Berger, 1985) but in a context different from
what is considered here.

8. Experiments
Here we evaluate our method and other baselines on both
synthetic and real world datasets.
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8.1. Toy Problem

We first provide a scenario where generative methods
fail and DCC succeeds. We considered two generative
(maximum entropy based) baselines: Naive Bayes (NB)
and Tree Augmented Naive Bayes (TAN) (Friedman et al.,
1997). The data was generated such that it will violate
the conditional independence assumptions of both the NB
and TAN approaches. We used a distribution over a label
y and n = 2k + 11 binary variables. The distribution
corresponds to the Bayesian network shown in Figure 1a,
with parameters defined as follows:

• p(Y = 1) = 1
2

• p(S = Y ) = 0.9, so that S, Y are strongly correlated.

• p(Wi = Y ) = 0.6, so that Wi, Y are weakly
correlated.

• Ci = W1 i.e. the Ci’s are identical to W1

• Di = Wji1⊕Wji2 i.e. Di is determined by its parents.
Each Di has a randomly chosen pair of parents.

The features x are all the 2k+11 non-label variables. It can
be seen that they do not satisfy the conditional assumption
of either NB or TAN. Each synthetic trial contained 5,000
examples divided equally between train and test sets. The
results reported are the average over 10 random generations
of the data. Figure 1b shows the average classification
error of the different algorithms for different numbers
of variables. As the number of variables increases, the
advantage of DCC over NB and TAN is apparent. This
experiment illustrates the poor performance of models with
implicit assumptions when the assumptions do not hold.

8.2. Comparing Marginal Based Learners

We tested the DCC classifier scheme on 12 classification
datasets from the UCI repository, nine of them are binary
and the other three are multiclass classification tasks. In
several datasets there are continuous features, in these
cases we used only the discrete features (this follows
the setup and datasets used in Globerson and Tishby,
2004). The input to the algorithms was marginals of
the form µij(xi, xj , y) for all possible pairs of features;
the marginals were computed from a train set, and the
performance of the resulting classifier was evaluated on a
test set. The error rates reported in Table 1 are the average
of 5 partitions into train and test sets.

The error rate of DCC was compared to three baseline
algorithms which take marginal distributions as inputs:
NB, TAN, and Minimax Probabilistic Machine (MPM)
(Lanckriet et al., 2003). MPM minimizes an objective
function similar to DCC, with the crucial difference that

Dataset DCC gDCC MPM TAN
adult 18 18 22 18
bcd 20 18 26 32

credit 14 13 13 17
heart-disease 21 20 18 23

hepatitis 19 15 18 17
hypo 8 8 N/A 8

kr-vs-kp 10 10 5 7
lymphography 16 8 N/A 18

mushroom 0 0 0 0
promoters 5 3 6 44

sick 6 6 23 6
votes 3 3 4 8

Best Performance 5 10 4∗ 4

Table 1. Performance (in % error) on test data for real-world
discrete classification datasets. ∗MPM error is missing for the
multiclass problems (lymphography, hypo) as MPM is a binary
classification algorithm.

MPM assumes the underlying distribution is continuous.
In addition to the vanilla version ofDCC we also examined
a greedy algorithm which we denote gDCC. This greedy
version starts with an empty set of edges E and at each
step adds the edge which minimizes the DCC error bound
until a spanning tree structure is reached.

In Table 1 the error rates of the compared algorithms
are presented. The best performing algorithm on each
dataset is shown in boldface. As can be seen, our ap-
proaches (either DCC or gDCC) outperform the competing
algorithms on 10 out of 12 datasets. To conclude, our
approach achieves better or comparable performance on
most datasets examined.

8.3. Learning with Missing Features

One of the motivations of DCC is to learn in scenarios
where not all features are available, but pairwise statistics
can be estimated. Here we simulate this setting by
repeating the experiments in the previous section while
“hiding” 25% of the features of each train example. The
following baselines are used for comparison:

• Replacing each missing feature with its mean in the
training data (i.e., imputation) and running SVM on
the resulting full observations.

• Chechik et al. (2008) propose a variant of SVM for
learning with missing features, by an appropriate
rescaling of the margin. Their algorithms have
two versions: avg-w and geom, both of which are
evaluated here.

• Running DCC on the set of single and pairwise
statistics collected from the data. Since these may
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Figure 1. Evaluation over synthetic data. (a) The Bayesian network from which the data was drawn. (b) Error rate of competing
algorithms as a function of the number of variables. NB: green circles, TAN: blue squares, DCC: red triangles.

Dataset DCC avg-w geom SVM
bcd 27 29 30 31

credit 15 16 19 19
heart-disease 27 25 20 20

hepatitis 19 23 29 22
kr-vs-kp 10 13 13 13

lymphography 22 21 26 18
promoters 12 13 13 12

votes 4 9 7 7
Best Performance 6 0 1 3

Table 2. Performance (in % error) on noisy data, 25% of
training features where erased. Only datasets with noticeable
difference between algorithms are presented. avg-w, geom are
the algorithms from Chechik et al. (2008), to run SVM we filled
the missing values with the mean value of the feature.

not be consistent (e.g., µ(x1|y) might be different
when marginalizing µ(x1, x2|y) and µ(x1, x3|y)) we
project those on the pairwise consistency constraints
(also known as the local polytope). We use `1 as the
projection metric.4

Results are shown in Table 2. It can be seen that DCC
outperforms the other methods on the majority of the
datasets.

9. Discussion
The DCC approach is motivated by learning settings where
complete observations are unavailable. Instead, access
to certain statistics of the data is provided. A minimax
approach is very natural in this setting, and yields the DCC
objective. A well known limitation of minimax methods is
that they assume a worst case adversary and may thus learn
classifiers that are suboptimal for the true distributions
that generated the data. To alleviate this shortcoming,
one must impose additional constraints on the adversaries.

4See Ravikumar et al. (2010) for other projection schemes.

The DCC approach takes a large step in this direction by
limiting the support of the adversarial distribution to only
integral assignments. This is in contrast to methods like
MPM where the adversarial distribution has unconstrained
support on the reals. Indeed, our experiments show that
DCC outperforms MPM in the majority of the cases,
presumably because of our less pessimistic approach.

Here we considered a deterministic classifier which always
returns the same y for a given x. However, in the minimax
setting the optimal strategy is actually stochastic. It would
thus be interesting to study the stochastic variant of the
DCC problem. Another advantage of the stochastic case is
that the zero one loss is linear in the classifier distribution,
possibly leading to efficient algorithms.

The DCC approach has several natural and interesting
extensions. For example, we alluded to the possibility of
using it in a semi supervised manner. Another exciting
extension is to the structured output prediction setting.
Consider for example a part of speech tagging problem, and
assume we have access to the statistics of consecutive parts
of speech, and those of words and their part of speech. How
can these be combined to build discriminative minimax
structured output predictors?

Finally, we would like to consider other forms of robust
prediction losses. As an example, consider minimizing
the regret of the classifier (e.g., see Eldar et al., 2004)
rather than its worst case loss. This will effectively reduce
the strength of the minimax adversary and may result in
improved performance. However, it remains to be seen
whether it can be solved efficiently as in the minimax case
considered here.
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