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Abstract

With increasing concerns about security, the need

for highly secure physical biometrics-based au-

thentication systems utilizing cancelable biomet-

ric technologies is on the rise. Because the

problem of cancelable template generation deals

with the trade-off between template security and

matching performance, many state-of-the-art al-

gorithms successful in generating high quality

cancelable biometrics all have random projection

as one of their early processing steps. This paper

therefore presents a formal analysis of why ran-

dom projections is an essential step in cancelable

biometrics. By formally defining the notion of

an Independent Subspace Structure for datasets,

it can be shown that random projection preserves

the subspace structure of data vectors generated

from a union of independent linear subspaces.

The bound on the minimum number of random

vectors required for this to hold is also derived

and is shown to depend logarithmically on the

number of data samples, not only in indepen-

dent subspaces but in disjoint subspace settings

as well. The theoretical analysis presented is sup-

ported in detail with empirical results on real-

world face recognition datasets.

1. Introduction

As physical biometrics-based authentication such as the use

of fingerprints, faces, iris scans etc., has gained significant
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popularity in last few decades, there is a growing need for

cancelable biometric technologies. Cancelable biometrics

refers to the systematic, intentional, repeatable distortion

of biometrics features in order prevent the notion of “stolen

biometrics”. A person’s biometrics are stolen for a specific

modality, when the feature template used in assigning the

biometric to that user is compromised by a masquerading

attacker, thus giving the attacker access privileges to the

user’s resources. Cancelable biometrics are especially im-

portant when there is a need to store biometric templates,

because if compromised, it is virtually impossible for a user

to regenerate the physical traits that were used in creating

the templates during enrollment.

Thus, in an attempt to reduce the vulnerability of such se-

curity systems, there has been increased research activity in

the areas of cancelable biometrics where the problem deals

with the trade-off between template security and match-

ing performance. The state-of-the-art algorithms that have

been successful so far in generating high quality cancelable

biometrics are all based on random projection (Feng et al.,

2010; Teoh et al., 2006; Goh & Ngo, 2003). Of course,

the random projection technique alone is not sufficient for

generating highly secure and discriminating biometric tem-

plates, but is the first fundamental step which occurs before

other more complex techniques, such as class-preserving

transforms, template hashing, etc., are implemented.

With increasing technological advancements in computa-

tional speed and memory, and with increasing volumes of

disparate data being collected for security purposes, more

high dimensional feature vectors are being used in many

This work was partially funded by the National Science
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biometrics-driven security systems. However, since com-

putational time increases with dimensionality, real-life bio-

metric systems (employing large volumes of high dimen-

sional feature vectors) are highly susceptible to perfor-

mance degradation over time. Dimensionality reduction

techniques (such as PCA, LDA, LLE (Roweis & Saul,

2000), LPP (He & Niyogi, 2004)) can be employed to over-

come this problem, however, for applications that perform

tasks such as generating secure and discriminating bio-

metric templates, where the subspace structure of the data

should be preserved after dimensionality reduction, many

of these techniques will fail. We foresee the use of random

projections as a core component of future security systems

using biometric modalities such as face recognition for au-

thentication.

For this reason and more, in this paper, we formally de-

fine the notion of a Independent Subspace Structure for

datasets, and based on this definition, we show that random

projection preserves the subspace structure of data vectors

generated from a union of independent linear subspaces.

Thus the technique can be employed as a cancelable trans-

form to project an original biometric template into a sub-

space and generate a new cancelable template, while main-

taining discriminability. While an extensive number of pa-

pers in the literature has employed random projection for

data dimensionality reduction for tasks such as k-means

clustering (Boutsidis et al., 2010), classification (Balcan

et al., 2004) (Shi et al., 2012) etc., these papers have shown

that for the respective tasks, certain desired properties of

the data vectors are preserved under random projection.

However, to the best of our knowledge, a more general

and formal analysis of linear subspace structure preserva-

tion under random projections has not been reported thus

far; this is the main thrust for this paper.

2. Definitions

A linear subspace in R
n of dimensions (d) can be rep-

resented using a matrix B ∈ R
n×d where the columns

of B form the support of the subspace. Then any vector

in this subspace can be represented as x = Bw ∀w ∈
R

d. Let there be K independent subspaces denoted by

S1, S2, . . . , SK . Any subspace Si is said to be independent

of all other subspaces if there does not exist any non-zero

vector in Si which is a linear combination of vectors in the

other subspaces. Formally,

K
∑

i=1

Si = ⊕K
i=1

Si

where, ⊕ denotes direct sum of subspaces.

While the above definition states the condition under which

two or more subspaces are independent, it does not specifi-

cally tells us quantitatively how well they are separated and

this leads us to the definition of the margin between a pair

of subspaces.

Definition 1 (Subspace Margin)

Subspaces Si and Sj are separated by margin γij if

γij = max
u∈Si,v∈Sj

〈u, v〉
‖u‖2‖v‖2

(1)

Geometrically, the above definition says that margin be-

tween any two subspaces is defined as the maximum dot

product between two unit vectors, one from either sub-

space. The vector pair u and v that maximize this dot prod-

uct is known as the principal vector pair between the two

subspaces while the angle between these vectors is called

the principal angle. Notice that γij ∈ [0, 1] such that

γij = 0 implies that the subspaces are maximally sepa-

rated while γij = 1 implies that the two subspaces are not

independent.

Having defined these concepts, our goal is to learn a sub-

space from any given dataset that is sampled from a union

of independent linear subspaces such that this independent

subspace structure property is approximately preserved in

the dataset. We will make this idea more concrete shortly.

Notice that the above definitions of independent subspaces

and separation margin (definition 1) apply explicitly to well

defined subspaces. So a natural question is: How do we de-

fine these concepts for datasets? We define the Independent

Subspace Structure for a dataset as follows,

Definition 2 (Independent Subspace Structure)

Let X = {xj}Nj=1
be a K class dataset of N data vectors

in R
n and Xi ⊂ X (i ∈ {1 . . .K}) such that data vectors

in Xi belong to class i. Then we say that the dataset X has

Independent Subspace Structure if each ith class data x ∈
Xi is sampled from a linear subspace Si (i ∈ {1 . . .K}) in

R
n such that each subspace is independent.

Again, the above definition only specifies that data samples

from different classes belong to independent subspaces. To

estimate the margin between subspaces these, we define

Subspace Margin for datasets as follows:

Definition 3 (Subspace Margin for datasets)

For a dataset X with Independent Subspace Structure,

class i (i ∈ {1 . . .K}) data is separated from all the other

classes with margin γi, if ∀x ∈ Xi and ∀y ∈ X \ {Xi},
〈x,y〉

‖x‖2‖y‖2

≤ γi, where γi ∈ [0, 1).

With these definitions, we will now make the idea of in-

dependent subspace structure preservation more concrete.

Specifically, by subspace structure preservation, we refer

to the case where we are originally given a set of data vec-

tors sampled from a union of independent linear subspaces
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and subsequently, after projection, the projected data vec-

tors also belong to a union of independent linear subspaces.

Formally, let X be a K class dataset in R
n with indepen-

dent subspace structure such that class i samples (x ∈ Xi)

are drawn from subspace Si, then the projected data vec-

tors (using projection matrix P ∈ R
n×m) in the sets

X̄i := {PTx : x ∈ Xi} for i ∈ {1 . . .K} are such that

data vectors in each set X̄i belong to a linear subspace (S̄i

in R
m) and the subspaces S̄i (i ∈ {1 . . .K}) are indepen-

dent, i.e.,
∑K

i=1
S̄i = ⊕K

i=1
S̄i.

3. Random Projections

Random Projection has gained significant popularity in re-

cent years due to its low computational costs and the guar-

antees it comes with. Specifically, it has been shown in

cases of linearly separable data (Shi et al., 2012) (Balcan

et al., 2004) and data that lies on a low dimensional com-

pact manifold (Baraniuk & Wakin, 2009) (Hegde et al.,

2007), that random projection preserves the linear separa-

bility and manifold structure respectively, given that certain

conditions are satisfied. Notice that a union of independent

linear subspaces is a specific case of manifold structure and

hence the results of random projection for manifold struc-

ture apply in general to our case. However, as those results

are derived for a more general case, their results are weak

when applied to our problem setting. Further, to the best

of our knowledge, there has not been any prior analysis

of random projection on the margin between independent

subspaces.

The various applications of random projection for dimen-

sionality reduction are rooted in the following version of

the Johnson-Lindenstrauss (JL) lemma (Vempala, 2004):

Lemma 4 For any vector x ∈ R
n, matrix R ∈ R

m×n where

each element of R is drawn i.i.d. from a standard Gaussian

distribution, Rij ∼ 1√
m
N (0, 1) and any ε ∈ (0, 1/2)

Pr
(

(1− ε)‖x‖2 ≤ ‖Rx‖2 ≤ (1 + ε)‖x‖2
)

≥ 1− 2 exp
(

−m

4

(

ε2 − ε3
)

) (2)

This lemma states that the `2 norm of any randomly pro-

jected vector is approximately equal to the `2 norm of the

original vector. While conventionally, elements of the ran-

dom matrix are generated from a Gaussian distribution, it

has been proved (Achlioptas, 2003) (Li et al., 2006) that

one can indeed use sparse random matrices (with most of

the elements being zero with high probability) to achieve

the same goal.

Aside, in relation to adopting random projection in the pre-

liminary steps to providing template cancelability, if given

a cancelable biometric template x̄ = Rx constructed from

an original template x with the projection matrix R, and the

initial cancelable template x̄ is compromised, a new tem-

plate x̄′ = R′x is issued with a new projection matrix R′

as a replacement. Lemma 4 indicates that discriminability

of the original feature vector is preserved for each template,

however the conditions required for this still need to be in-

vestigated.

Before studying the conditions required for independent

subspace structure preservation for a multiclass problem,

we first state our cosine preservation lemma which simply

states that the cosine of angle between any two fixed vec-

tors is approximately preserved under random projection.

A similar angle preservation theorem is stated in (Shi et al.,

2012), but we will state the difference between the two after

presenting the lemma.

Lemma 5 (Cosine preservation)

For all x, y ∈ R
n, any ε ∈ (0, 1/2) and matrix R ∈ R

m×n

where each element of R is drawn i.i.d. from a standard

Gaussian distribution, Rij ∼ 1√
m
N (0, 1), one of the fol-

lowing inequalities holds true

1

(1− ε)

〈x, y〉
‖x‖2‖y‖2

− ε

1− ε
≤ 〈Rx,Ry〉

‖Rx‖2‖Ry‖2
≤ 1

(1 + ε)

〈x, y〉
‖x‖2‖y‖2

+
ε

1 + ε

(3)

if
〈x,y〉

‖x‖2‖y‖2

< −ε,

1

(1− ε)

〈x, y〉
‖x‖2‖y‖2

− ε

1− ε
≤ 〈Rx,Ry〉

‖Rx‖2‖Ry‖2
≤ 1

(1− ε)

〈x, y〉
‖x‖2‖y‖2

+
ε

1− ε

(4)

if −ε ≤ 〈x,y〉
‖x‖2‖y‖2

< ε, and

1

(1 + ε)

〈x, y〉
‖x‖2‖y‖2

− ε

1 + ε
≤ 〈Rx,Ry〉

‖Rx‖2‖Ry‖2
≤ 1

(1− ε)

〈x, y〉
‖x‖2‖y‖2

+
ε

1− ε

(5)

if
〈x,y〉

‖x‖2‖y‖2

≥ ε. Further the inequality holds true with

probability at least 1− 8 exp
(

−m
4

(

ε2 − ε3
))

.

Proof: See appendix.

We would like to point out that cosine of both acute and ob-

tuse angles are preserved under random projection as is ev-

ident from the above lemma. However, if the cosine value

is close to zero, the additive error in the inequalities 3, 4

and 5 distorts the cosine significantly after projection. On

the other hand, (Shi et al., 2012) in their paper state that

obtuse angles are not preserved. As evidence, the authors

empirically show cosines with negative value close to zero.

However, as already stated, cosine values close to zero are
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not well preserved. Hence this does not serve as an evi-

dence that obtuse angles are not preserved under random

projection which we show empirically otherwise to be true.

Notice that this is not the case for the JL lemma (4) where

the error is multiplicative and hence length of vectors are

preserved to a good degree invariantly for all vectors.

In general, the inner product between vectors is not well

preserved under random projection irrespective of the an-

gle between the two vectors. This can be analyzed using

Equation 12. Rewriting this equation in the following form,

we have that,

〈x, y〉 − ε‖x‖2‖y‖2 ≤ 〈Rx,Ry〉 ≤ 〈x, y〉+ ε‖x‖2‖y‖2
(6)

holds with high probability. Clearly, because the error term

itself depends on the length of the vectors, inner product be-

tween arbitrary vectors after random projection is not well

preserved. However, as a special case, inner product of

vectors with length less than 1 is preserved (corollary 2 in

(Arriaga & Vempala, 2006)) because the error term gets di-

minished in this case.

For ease of representation, in all further analysis, we will

use Equation 5 while making use of the cosine preservation

lemma. We will now go on to examine the conditions under

which independent subspace structure can be preserved for

any linearly separatable dataset.

3.1. Subspace Margin Preservation

In order for independent subspace structure to be preserved

for any dataset, we need two conditions to hold simulta-

neously. First, data sampled from each subspace should

continue to belong to a linear subspace after projection.

Second, the subspace margin for the dataset should be pre-

served.

Remark 6 (Individual Subspace preservation)

Let Xi denote the set of data vectors (x) drawn from the

subspace Si, and let R ∈ R
m×n denote the random pro-

jection matrix as defined before. Then after projection, all

the vectors in Xi continue to lie along the linear subspace

in the span of RBi, where the columns of Bi denote the

span of Si.

The above straight forward remark states that the first re-

quirement always holds true. Now we need to derive the

condition needed for the second requirement to hold true.

Theorem 7 (Multiclass Subspace Preservation) Let X =
{xj}Nj=1

be a K class dataset with Independent Subspace

structure and the ith class have margin γi. Then for any

ε ∈ (0, 1/2), the subspace structure of the entire dataset is

preserved after random projection using matrix R ∈ R
m×n

(Rij ∼i.i.d.
1√
m
N (0, 1)) with margin γ̄i for class i as fol-

lows

Pr

(

γ̄i ≤
1

(1− ε)
γi +

ε

1− ε
, ∀i ∈ {1 . . .K}

)

≥ 1− 6N2 exp
(

−m

4

(

ε2 − ε3
)

)

(7)

Proof: See appendix.

Recall from our discussions on the cosine preservation

lemma (5), that cosine values close to zero are not well pre-

served under random projection. However, from our above

error bound on the margin (eq 7), it turns out that this is not

a problem - two subspaces separated with a margin close to

zero implies that the principal angle between them is almost

orthogonal, i.e., they are maximally separated. Therefore,

under these circumstances, the projected subspaces are also

well separated.

Formally, let γ = 0, so that after projection, γ̄ ≤ ε
1−ε

is

further upper bounded by 1 as ε tends to 0.5. In practice we

set ε to be a much smaller quantity, hence γ̄ is well below

1.

While the analysis so far only relates to structure preserva-

tion for datasets with independent subspace structure, it is

not hard to see that the same bounds also apply to datasets

with disjoint subspace structure, i.e., each subspace (class)

is pairwise disjoint with each other but not independent

overall.

4. Sparse Representation based Recognition

Sparse representation (SR) has been widely used for classi-

fication purposes in various machine learning applications,

including face recognition tasks in biometric security ap-

plications. The idea of SR is based on the theory of com-

pressed sensing. This theory claims that if a system of lin-

ear equations with an overcomplete dictionary has a sparse

solution then it can be achieved by solving the basis pursuit

algorithm:

w∗ = argmin
w

‖w‖1 s.t. y = Dw (8)

where y ∈ R
m is the measurement vector, D ∈ R

m×n is

overcomplete dictionary and w ∈ R
n is the variable for

which we want a sparse solution. This property is very

useful for classification because one can use all the training

samples as the columns of the overcomplete dictionary D,

test sample as y and solve the above optimization to obtain

the sparse reconstruction coefficient w∗ over the training

samples. The advantage of representing a test sample as

a sparse linear combination of the training samples is that

fewer non-zero coefficients over the training samples will
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Figure 1. Empirical rejection probability for cosine preserva-

tion of acute (a,b) and obtuse angles (c,d). See section 5.1.1 for

details.

be more discriminative in terms of the class of the test sam-

ple.

More recently, Sparse Subspace clustering (SSC) has been

used for subspace clustering applications. The subspace

clustering domain assumes that each individual class lies

along a linear independent subspace and under this assump-

tion we want to cluster a given set of data samples such that

each cluster corresponds to samples from one such sub-

space. The authors of SSC approach (Elhamifar & Vidal,

2009) show that, the basis pursuit optimization guarantees

the correct reconstruction of a test sample (y) using an over-

complete dictionary of training samples (D). Formally this

is stated in the following theorem:

Theorem 8 (Theorem 1 in (Elhamifar & Vidal, 2009))

Let D ∈ R
m×n be a matrix whose columns are drawn from

a union of K independent linear subspaces. Assume that

the points within each subspace are in general position.

Let y be a new point in subspace i. The solution to the

`1 problem in 8, w∗ ∈ R
n is sparse such that wj 6= 0 iff

Dj belongs to the ith subspace and wj=0 otherwise.

where Dj denotes the jth column of matrix D. This the-

orem gives us the sufficient condition under which one is

guaranteed to recover the correct coefficients for a given

test sample using SR. This property is used in the SSC al-

gorithm for clustering. However, this also clearly shows

why it makes sense to use sparse representation for the task

of classification under the assumption that our classes lie

along independent linear subspaces. This assumption is

widely used for applications like face recognition and mo-

tion segmentation.

Since the above algorithms make use of the underlying sub-

space assumption for datasets, it is natural to investigate if

there exists a dimensionality reduction method that is guar-
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Figure 2. Empirical rejection probability for inner product

preservation of acute (a,b) and obtuse angles (c,d). See sec-

tion 5.1.2 for details.

anteed to preserve this structure in the dataset. If so, we

can apply the aforementioned algorithms in a much smaller

feature space without losing accuracy while simultaneously

being much faster.

In the preceding section, we showed that random projec-

tion preserves the underlying structure in datasets and thus

can be effectively used for dimensionality reduction. No-

tice that the advantage of random projections is three fold:

it allows for the classification/recognition algorithm to run

faster; (ii) it is extremely inexpensive to compute; and (iii)

it yields classification results with accuraies at par with that

in the original dimensions of the data. While most di-

mensionality reduction algorithms are expensive in terms

of computing the projection vectors (e.g. PCA takes cu-

bic time in the size of feature space), random projection

needs each element of its projection vectors to be sam-

pled randomly independent of the data at hand. This non-

adaptive nature of random projection makes it a very pow-

erful dimensionality reduction tool. These qualities indi-

cate why random projections is becoming such an essential

technique for developing very efficient and highly secure

biometric applications.

5. Empirical Analysis

In this section, we present empirical evidence to support

our theoretical analysis (from Section 3) of why random

projections work for cancelable biometrics. We perform

experiments to show both cosine preservation and subspace

structure preservation under random projections, using dif-

ferent face recognition datasets.

5.1. Cosine and Inner product Preservation

5.1.1. COSINE PRESERVATION

In lemma 5, we concluded that the cosine of the angle be-

tween any two vectors remains preserved under random
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Table 1. Time taken (in msec) for dimensionality reduction on

Extended Yale dataset B. See section 5.2 for details.
method/dimensions 100 150 300 500

RP 1.59 2.76 11.11 25.78

PCA 322.04 328.58 332.64 341.10

Table 2. Classification accuracy on Extended Yale dataset B.

See section 5.2 for details.
method/dimensions 100 150 300 500

RP 94.61 95.85 96.53 97.93

PCA 94.27 94.95 95.94 96.86

projection irrespective of the angle being acute or obtuse.

However, we also stated that cosine values close to zero are

not well preserved. Here, we perform empirical analysis

on vectors with varying angles (both acute and obtuse) and

arbitrary length to verify the same. In order to achieve this,

we use settings similar to (Shi et al., 2012). We generate

2000 random projection matrices Ri ∈ R
m×n (i = 1 to

2000) where we vary m = {30, 60, . . . 300} and n = 300
is the dimension of the original space. We define empirical

rejection probability for cosine preservation similar to (Shi

et al., 2012) as,

P̂ = 1− 1

2000

2000
∑

i=1

1((1− ε) ≤ 〈Rix,Riy〉‖x‖2‖y‖2
‖Rix‖2‖Riy‖2〈x, y〉

≤ (1 + ε))

where we vary ε ∈ {0.1, 0.3} and 1(.) is the indicator op-

erator.

For acute angle, we randomly generate vectors x and

y of arbitrary length but with fixed cosine values γ =
{0.019021, 0.37161, 0.67809, 0.92349}. For obtuse angle,

we similarly generate vectors x and y with fixed cosine val-

ues γ = {−0.036831,−0.45916,−0.65797,−0.92704}.

We then compute the empirical rejection probability as

mentioned above for different values of ε. Figure 1 shows

the results on these vectors. In the figure, notice that the re-

jection probability decreases as the absolute value of cosine

of the angle (γ) increases (from 0 to 1), as well as for higher

value of ε. Notice, for cosine values close to zero, the re-

jection probability is close to 1 even at high dimensions.

These results corroborate with our theoretical analysis in

lemma 5.

5.1.2. INNER PRODUCT UNDER RANDOM PROJECTION

We use the same experimental setting as in section 5.1.1.

We define the empirical rejection probability of inner prod-

uct similar to (Shi et al., 2012) as

P̂ = 1− 1

2000

2000
∑

i=1

1((1− ε) ≤ 〈Rix,Riy〉
〈x, y〉 ≤ (1 + ε))

We use the same vectors as in 5.1.1 for experiments in this

Table 3. Time taken (in msec) for dimensionality reduction on

PIE dataset See section 5.2 for details.
method/dimensions 30 50 70 100

RP 0.35 0.60 0.73 1.3

PCA 317.3 315.9 318.8 319.6

Table 4. Classification accuracy on PIE dataset. See section 5.2

for details.
method/dimensions 30 50 70 100

RP 96.67 97.45 98.04 98.04

PCA 97.06 97.45 97.45 97.25

section. We then compute the empirical rejection probabil-

ity as mentioned above for different values of ε. Figure 2

shows the results on these vectors. As is evident from the

figure, inner product between vectors is not well preserved

(even when cosine values are close to 1). This result is in

line with our theoretical bound in equation 6 as the vector

lengths in our experiment are arbitrarily greater than 1.

5.1.3. REQUIRED NUMBER OF RANDOM VECTORS

We study the number of random vectors required for sub-

space preservation by varying different parameters. The

lower bound on the number of random vectors required for

theorem 7 to hold is given by,

m ≥ 8

(ε2 − ε3)
ln

√
6N

1− δ
(9)

It can be seen that for N = 1000 and ε = 0.15, random pro-

jection to lower dimensions is effective only if m > 6000
while for ε = 0.4, m > 900 suffices. The choice of ε
depends on the robustness of the algorithm (for the respec-

tive task) towards noise and is a trade-off between noise

(allowed) and the number of random vectors (m) required.

5.2. Subspace Structure preservation

In this section, our goal is to show that random projec-

tions achieve accuracy better or at least at par with the most

widely used dimensionality reduction technique (PCA). We

report comparative analysis on the accuracy results and per-

formance times between random projections and PCA. We

selected PCA alone for detailed analysis mainly because

we found the performance of the other nonlinear dimen-

sionality reduction techniques to be significantly less than

the two techniques. Testing on the Extended Yale dataset B

(described below), we initially used LPP (Locality Preserv-

ing Projections), NPE (Neighborhood Preserving Embed-

ding) (He et al., 2005), and Laplacian Eigenmaps (Belkin

& Niyogi, 2003) to reduce the data to 150 dimensions. The

best performing of these reduction techniques yielded a re-

sult of only 73% compared to the close to 96% accura-

cies resulting from random projections and PCA. In fair-

ness, these other techniques make no claim to preserving

the original subspace structure of the data, rather they pre-
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serve some general manifold structure, and do not neces-

sarily guarantee subspace separability.

With this intent of showing that random projections achieve

accuracy better or at least at par with PCA, we use sparse

representation based classification (SRC, (Wright et al.,

2009)) technique that exploits the subspace structure in

the data. One can always use a better classification algo-

rithm that exploits this structure to achieve higher accuracy.

However, our aim here is not to compare different classifi-

cation algorithms but to show that random projection is a

computationally inexpensive dimensionality reduction tool

with performance guarantees supported by our theoretical

analysis.

Cancelable biometrics on face templates is our testbed-

of-choice because it is generally assumed that face im-

ages with illumination variation lie along linear indepen-

dent subspaces (Shakhnarovich & Moghaddam, 2004). We

use the following datasets for evaluation:

1. Extended Yale dataset B (Georghiades et al., 2001):

It consists of ∼ 2414 frontal face images of 38 individu-

als (K = 38) with 64 images per person. These images

were taken under constrained but varying illumination con-

ditions. We crop all the images to 32× 32 and concatenate

all the pixel intensity to form our feature vectors. We use a

50%− 50% train-test split for evaluation.

2. PIE dataset (Sim et al., 2002): The CMU pose, illu-

mination, and expression (PIE) database consists of 41368
images of 68 people (K = 68) under 13 different poses, 43
illumination conditions and 4 different expressions. How-

ever, we utilize only the first 10 classes from this dataset

with 70%−30% train-test split for evaluation. We cropped

to size 32×32 pixels. The pixel intensities are concatenated

to form the feature vectors.

We perform two types of experiments. First, we compare

the time taken for dimensionality reduction by PCA and

random projections for both datasets. This time is the sum

of the time taken by either algorithm to compute it’s pro-

jection vectors and then to project the entire dataset down

to these projection vectors. The results are shown in Table

1 and 3 for the Extended Yale B dataset and PIE dataset

respectively. The results show that random projections is

faster than PCA by at least an order of 10 times.

Secondly, we show classification accuracies on both the

datasets after dimensionality reduction. These results are

shown in Table 2 and 4 for Extended Yale B dataset and

PIE dataset respectively. Clearly, random projections per-

forms better than PCA while being significantly faster.

These results substantiate our claim that random projec-

tions preserve the subspace structure of any given dataset.

Also notice that even a very low number of random vectors

used for projection yields good accuracy. This observa-

tion can be explained using Lemma 10 of (Sarlós, 2006)

where the authors show that if a given data lies along a d
dimensional subspace then one only needs O(d log d) ran-

dom vectors. In most real applications the value of d is

usually low, i.e., classes usually lie along a low dimensional

subspace. Thus it is not surprising that even small number

of random vectors yield high accuracy.

6. Discussion

A major advantage of random projections occurs for

streaming data where N is constantly changing. Also, as

long as the data lies in a d-dimensional subspace, as stated

in Lemma 10 of (Sarlós, 2006), O(d log d) random projec-

tion vectors preserve the length of all the vectors in that

subspace, hence our structure preservation results still hold

true. Thus our results not only hold true for a fixed size

dataset, but also for an infinite stream of data vectors, as

long as a sufficient (but finite and small, O(d log d)) num-

ber of random vectors are used and the underlying data

structure remains the same.

As originally stated in Section 1, the random projections

technique by itself is not a complete solution to generat-

ing highly secure and discriminating biometric templates.

Although the random projection step is secure against the

brute-force attack because original templates are often real-

valued and high-dimensional, if the projection matrix is

not well protected, an attacker could construct its pseudo-

inverse to recover an approximation to the original data.

Nevertheless, with the advantages of random projections

namely: allowing for the classification/recognition algo-

rithm to run faster; (ii) being extremely inexpensive to

compute; and (iii) yielding classification results with ac-

curacies at par with that in the original dimensions of the

data, random projections is quickly becoming an essential

early-step technique in the development of very efficient

and highly secure biometric applications.

7. Conclusion

In this paper, we presented a formal analysis of why ran-

dom projections are an essential initial step for generat-

ing cancelable biometrics, especially in a real-life scenario

where security, discriminability and cancelability are re-

quired. Using random projections for dimensionality re-

duction ensures that the independent subspace structure of

datasets are preserved. We derived the bound on the mini-

mum number of random vectors required for this to hold

(Section 5.1.3) and concluded that this number depends

logarithmically on the number of data samples. All the

above arguments hold under disjoint subspace settings as

well. As a side analysis, we also showed that while cosine

values (lemma 5)are preserved under random projection for
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both acute and obtuse angles, inner product (equation 6)

between vectors are not well preserved in general.

Although we describe our work in the context of cancelable

biometrics, the discussion and evaluations presented is a

detailed analysis of linear subspace structure preservation

under random projections, irrespective of the task-at-hand.
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