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Large p, small N

Many datasets grow wide, with many more features than samples.

Neuroimaging: p = 20K pixels, N = 100 experiments/subjects.

Document classification: p = 20K features (bag of words),
N = 5K documents.

Micro-array studies: p = 40K genes measured for N = 100
subjects.

In all of these we use linear models, e.g., linear regression, logistic
regression, that we have to regularize when p � N.



The Lasso

Given observations {yi , xi1, . . . , xip}Ni=1, minimize

E (θ) =
N∑
i=1

yi − θ0 −
p∑

j=1

xijθj

2

+ γ
∑
j

|θj | .

I Similar to ridge regression,
with penalty

∑
j θ

2
j .

I Lasso leads to sparse
solutions (many θi ’s to zero),
whereas ridge regression only
shrinks.

Lasso

Ridge regression



Probabilistic Interpretation

I Likelihood:

p(Y |θ,X ) =
N∏
i=1

N (yi ;θ
Txi , β

−1) .

I Prior, for Lasso,

p(θ) =

p∏
j=1

L(θj ; 0, λ) ,

whereas for ridge regression,

p(θ) =

p∏
j=1

N (θj ; 0, λ2) .

Laplace prior

Gaussian prior



Posterior Distribution

I Bayes’ rule yields the posterior
distribution

p(θ|Y ,X ) ∝ p(Y |θ,X )p(θ) .

I The solution of Lasso/ridge regression
corresponds to the maximum a posteriori
solution.

I The Bayesian framework provides a
principled approach for computing
errorbars, optimizing hyperparameters,
incorporating prior knowledge, experiment
selection, . . .
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Brain Reading

Deduce a person’s intentions by
“reading his brain”.

I Brain-computer interfaces based
on on-line EEG analysis.

I Classification of brain activity
measured through fMRI into
prespecified categories.

I Assumption: if a particular voxel/electrode/frequency is
relevant, then we expect its neighbors to be relevant as well.

I How do we incorporate such knowledge into our priors?



Scale Mixture Models

I The Laplace distribution (as many others) can be written as a
scale mixture distribution:

L(θ; 0, λ) =

∫ ∞
0

dσ2 E(σ2; 2λ)N (θ; 0, σ2) .

I We interpret the scales σj as the “relevance” or “importance”
of feature j : higher σj implies more important.

I By coupling the scales, we will couple the relevances.



Multivariate Extension

I Exponential distribution is equivalent to chi-square
distribution in two dimensions:

if {u, v} ∼ N (0, λ) then σ2 = u2 + v2 ∼ E(2λ) ,

and thus

L(θ; 0, λ) =

∫
duN (u; 0, λ)

∫
dvN (v ; 0, λ)N (θ; 0, u2 + v2).

I We define a multivariate Laplace distribution by coupling the
u and the v ’s:

L(θ; 0,Λ) =

∫
duN (u; 0,Λ)

∫
dvN (v; 0,Λ)

p∏
j=1

N (θj ; 0, u2
j +v2

j ),

with Λ a covariance matrix.



The Joint Posterior

p(θ,u, v|X ,Y ) ∝
N∏
i=1

N (yi ; x
T
i θ, β

−1)︸ ︷︷ ︸
likelihood (Gaussian)

×
p∏

j=1

N (θj ; 0, u2
j + v2

j )︸ ︷︷ ︸
couplings between coefficients and scales

×N (u; 0,Λ)N (v; 0,Λ)︸ ︷︷ ︸
multi-variate Gaussian

.

Interested in:

I mean of θ for mean
predictions;

I co-variance of θ for
errorbars;

I variance of u and v for
relevance.

By symmetry:

I mean of u and v are zero;

I co-variance of u and v are
the same;

I u and v are uncorrelated;

I {u, v} and θ are
uncorrelated.



Factor Graph

f1 f2 · · · fN

z1 z2 · · · zN

g1 g2 · · · gN

θ1 θ2 · · · · · · θp

h1 h2 · · · · · · hp

u1 v1 u2 v2 · · · · · · up vp

i1 i2

I fi for the likelihood term
corresponding to data point i .

I gi implements the linear
constraint zi = θTxi .

I hj corresponds to the coupling
between regression coefficients
and scales.

I i1,2 represent the multi-variate
Gaussians on {u, v}.



Approximate Inference

I The joint posterior is essentially
a (possibly huge) Gaussian
random field with some
(low-dimensional) nonlinear
interaction terms.

I Exact inference is intractable,
even with independent scales.

I Method of choice: expectation
propagation.

I Approximate exact joint
posterior by a multi-variate
Gaussian.

f̃1 f̃2
· · · f̃N

z1 z2 · · · zN

g̃1 g̃2 · · · g̃N

θ1 θ2 · · · · · · θp

h̃1 h̃2
· · · · · · h̃p

u1 v1 u2 v2 · · · · · · up vp

ĩ1 ĩ2



Expectation Propagation

f̃1 f̃2
· · · f̃N

z1 z2 · · · zN

g̃1 g̃2 · · · g̃N

θ1 θ2 · · · · · · θp

h̃1 h̃2
· · · · · · h̃p

u1 v1 u2 v2 · · · · · · up vp

ĩ1 ĩ2

substitute
=⇒
⇐=
project

f̃1 f̃2
· · · f̃N

z1 z2 · · · zN

g̃1 g̃2 · · · g̃N

θ1 θ2 · · · · · · θp

h̃1
h2 · · · · · · h̃p

u1 v1 u2 v2 · · · · · · up vp

ĩ1 ĩ2

I Iteratively approximate non-Gaussian terms by Gaussian terms.

I Each approximation boils down to (low-dimensional) moment matching.

I Some clever sparse matrix tricks make this computationally doable.

I Main operation: Takahashi procedure for computing the diagonal
elements of its inverse.

Cseke and Heskes: Journal of Machine Learning Research, 2011.



Possible Extensions

I Logistic regression instead of
linear regression:

I likelihood terms have to be
approximated as well;

I further no essential difference.

I Spike-and-slab prior instead of
Laplace prior:

I scale mixture with two scales;
I couplings between discrete

latent variables or squashed
Gaussian variables;

I similar ideas in Hernández
(2×) & Dupont, JMLR 2013.

f̃1
f2 · · · f̃N

z1 z2 · · · zN

g̃1 g̃2 · · · g̃N

θ1 θ2 · · · · · · θp

h̃1 h̃2
· · · · · · h̃p

u1 v1 u2 v2 · · · · · · up vp

ĩ1 ĩ2
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fMRI classification

I fMRI activations for different
handwritten digits.

I 50 “six” trials and 50 “nine” trials,
i.e., N = 100.

I Full dataset: 5228 voxels measured
over 7 consecutive 2500 ms time
steps, i.e., p ≈ 35000. Hemodynamic (BOLD) response

Typical data samples

Van Gerven, Cseke, de Lange,

and Heskes: Neuroimage, 2010.



Spatial Importance Maps

I Data averaged 10 to 15 s after stimulus onset.

I Decoupled (top) versus spatial coupling of scale variables (bottom).

I Most relevant voxels in the occipital lobe (Brodmann Areas 17 and 18).



Importance over Time

I Importance shown for 10 most relevant voxels.

I Decoupled (left) versus temporal coupling of scale variables (right).

I Increasing importance corresponds with lagged BOLD response.



Intermezzo: Decoding fMRI using DBM’s

unsupervised learning phase supervised learning phase reconstruction

Van Gerven, de Lange, and Heskes: Neural Computation, 2010.



Reconstructions

stimulus

pixel level

one layer

two layers

three layers



Source Localization

I Sensor readings Y are related
to source currents S through

Y = XS + noise

with X a known lead field
matrix, corresponding to the
forward model derived from a
structural MRI.

x

yz
x

yz

X

I Essentially an (ill-posed) linear regression problem in which S
plays the role of the regression coefficients θ.

I Different regression problems for different time points.
N = 275, the number of sensors. p = 1K (a bit depending on
the discretization), the number of sources.

Van Gerven, Cseke, Oostenveld, and Heskes: NIPS, 2009.



Without Constraints

Not so clear



With Spatial Constraints

Sources where you’d expect them to see
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Conclusions and Discussion

Take-home-message:

I A novel way to specify multi-variate sparsifying priors through
scale-mixture representations.

I Posterior estimates of these scales can be used for relevance
determination.

I Efficient techniques for approximate inference.

I Increased interpretability when analyzing neuroimaging data.

Future directions:

I Extensions to (correlated) spike-and-slab priors.

I Improved stability of expectation propagation.
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