Chalmers Machine Learning Summer School Approximate message passing and biomedicine

# Part 2: Multivariate fMRI analysis using a sparsifying spatio-temporal prior

#### Tom Heskes

#### joint work with Marcel van Gerven and Botond Cseke

Machine Learning Group, Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands

April 15, 2015

## Outline

#### Bayesian Linear Models

Large *p*, small *N* Lasso vs. ridge regression Bayesian interpretation

#### Multivariate sparsifying priors

Motivation: brain reading Scale mixture models Multi-variate extensions Approximate inference

#### Experiments

fMRI classification MEG source localization

#### Conclusions

## Outline

#### Bayesian Linear Models

Large *p*, small *N* Lasso vs. ridge regression Bayesian interpretation

#### Multivariate sparsifying priors

Motivation: brain reading Scale mixture models Multi-variate extensions Approximate inference

#### Experiments

fMRI classification MEG source localization

#### Conclusions

Many datasets grow wide, with many more features than samples.

Neuroimaging: p = 20K pixels, N = 100 experiments/subjects. Document classification: p = 20K features (bag of words), N = 5K documents.

Micro-array studies: p = 40K genes measured for N = 100 subjects.

In all of these we use linear models, e.g., linear regression, logistic regression, that we have to regularize when  $p \gg N$ .

## The Lasso

Given observations  $\{y_i, x_{i1}, \ldots, x_{ip}\}_{i=1}^N$ , minimize

$$E(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left( y_i - \theta_0 - \sum_{j=1}^{p} x_{ij} \theta_j \right)^2 + \gamma \sum_j |\theta_j|.$$

5 consity 5

03



 Lasso leads to sparse solutions (many θ<sub>i</sub>'s to zero), whereas ridge regression only shrinks.







Lasso



# Probabilistic Interpretation

Likelihood:

$$p(Y|\boldsymbol{\theta}, X) = \prod_{i=1}^{N} \mathcal{N}(y_i; \boldsymbol{\theta}^{T} \mathbf{x}_i, \beta^{-1}).$$





Ben of the second secon

Gaussian prior



Prior, for Lasso,

$$p(\boldsymbol{ heta}) = \prod_{j=1}^{p} \mathcal{L}(\theta_j; \mathbf{0}, \lambda) ,$$

whereas for ridge regression,

$$p(\boldsymbol{\theta}) = \prod_{j=1}^{p} \mathcal{N}(\theta_j; \mathbf{0}, \lambda^2).$$

# Posterior Distribution

 Bayes' rule yields the posterior distribution

 $p(\theta|Y,X) \propto p(Y|\theta,X)p(\theta)$ .

- The solution of Lasso/ridge regression corresponds to the maximum a posteriori solution.
- The Bayesian framework provides a principled approach for computing errorbars, optimizing hyperparameters, incorporating prior knowledge, experiment selection, ...



## Outline

#### **Bayesian Linear Models**

Large *p*, small *N* Lasso vs. ridge regression Bayesian interpretation

#### Multivariate sparsifying priors

Motivation: brain reading Scale mixture models Multi-variate extensions Approximate inference

#### Experiments

fMRI classification MEG source localization

#### Conclusions

# Brain Reading

Deduce a person's intentions by "reading his brain".

- Brain-computer interfaces based on on-line EEG analysis.
- Classification of brain activity measured through fMRI into prespecified categories.





- Assumption: if a particular voxel/electrode/frequency is relevant, then we expect its neighbors to be relevant as well.
- How do we incorporate such knowledge into our priors?

## Scale Mixture Models

The Laplace distribution (as many others) can be written as a scale mixture distribution:

$$\mathcal{L}( heta; 0, \lambda) = \int_0^\infty d\sigma^2 \, \mathcal{E}(\sigma^2; 2\lambda) \, \mathcal{N}( heta; 0, \sigma^2) \, .$$

We interpret the scales σ<sub>j</sub> as the "relevance" or "importance" of feature j: higher σ<sub>j</sub> implies more important.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

By coupling the scales, we will couple the relevances.

## Multivariate Extension

 Exponential distribution is equivalent to chi-square distribution in two dimensions:

if 
$$\{u,v\}\sim\mathcal{N}(0,\lambda)$$
 then  $\sigma^2=u^2+v^2\sim\mathcal{E}(2\lambda)\,,$ 

and thus

$$\mathcal{L}(\theta; 0, \lambda) = \int du \mathcal{N}(u; 0, \lambda) \int dv \mathcal{N}(v; 0, \lambda) \mathcal{N}(\theta; 0, u^2 + v^2).$$

We define a multivariate Laplace distribution by coupling the u and the v's:

$$\mathcal{L}(m{ heta};0,m{\Lambda}) = \int d\mathbf{u}\mathcal{N}(\mathbf{u};m{0},m{\Lambda})\int d\mathbf{v}\mathcal{N}(\mathbf{v};m{0},m{\Lambda})\prod_{j=1}^p \mathcal{N}( heta_j;0,u_j^2+v_j^2),$$

with  $\Lambda$  a covariance matrix.

## The Joint Posterior

$$p(\boldsymbol{\theta}, \mathbf{u}, \mathbf{v} | X, Y) \propto \prod_{i=1}^{N} \mathcal{N}(y_i; \mathbf{x}_i^T \boldsymbol{\theta}, \beta^{-1})$$

likelihood (Gaussian)

$$\times \qquad \underbrace{\prod_{j=1}^{p} \mathcal{N}(\theta_j; 0, u_j^2 + v_j^2)}_{}$$

couplings between coefficients and scales

$$\times \underbrace{\mathcal{N}(\textbf{u}; \textbf{0}, \boldsymbol{\Lambda}) \mathcal{N}(\textbf{v}; \textbf{0}, \boldsymbol{\Lambda})}_{\mathcal{N}(\textbf{v}; \textbf{0}, \boldsymbol{\Lambda})}$$

#### multi-variate Gaussian

#### Interested in:

- mean of θ for mean predictions;
- co-variance of θ for errorbars;
- variance of u and v for relevance.

#### By symmetry:

- mean of u and v are zero;
- co-variance of u and v are the same;
- u and v are uncorrelated;

 {u, v} and θ are uncorrelated.

# Factor Graph



- *f<sub>i</sub>* for the likelihood term corresponding to data point *i*.
- $g_i$  implements the linear constraint  $z_i = \theta^T \mathbf{x}_i$ .
- *h<sub>j</sub>* corresponds to the coupling between regression coefficients and scales.
- *i*<sub>1,2</sub> represent the multi-variate Gaussians on {**u**, **v**}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Approximate Inference

- The joint posterior is essentially a (possibly huge) Gaussian random field with some (low-dimensional) nonlinear interaction terms.
- Exact inference is intractable, even with independent scales.
- Method of choice: expectation propagation.
- Approximate exact joint posterior by a multi-variate Gaussian.



# **Expectation** Propagation



- Iteratively approximate non-Gaussian terms by Gaussian terms.
- Each approximation boils down to (low-dimensional) moment matching.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Some clever sparse matrix tricks make this computationally doable.
- Main operation: Takahashi procedure for computing the diagonal elements of its inverse.

Cseke and Heskes: Journal of Machine Learning Research, 2011.

# Possible Extensions

- Logistic regression instead of linear regression:
  - likelihood terms have to be approximated as well;
  - further no essential difference.
- Spike-and-slab prior instead of Laplace prior:
  - scale mixture with two scales;
  - couplings between discrete latent variables or squashed Gaussian variables;
  - similar ideas in Hernández
    (2×) & Dupont, JMLR 2013.



# Outline

#### **Bayesian Linear Models**

Large *p*, small *N* Lasso vs. ridge regression Bayesian interpretation

#### Multivariate sparsifying priors

Motivation: brain reading Scale mixture models Multi-variate extensions Approximate inference

#### Experiments

fMRI classification MEG source localization

#### Conclusions

# fMRI classification

- fMRI activations for different handwritten digits.
- ► 50 "six" trials and 50 "nine" trials, i.e., N = 100.
- ► Full dataset: 5228 voxels measured over 7 consecutive 2500 ms time steps, i.e., p ≈ 35000.



Hemodynamic (BOLD) response



Typical data samples

Van Gerven, Cseke, de Lange,

and Heskes: Neuroimage, 2010.

# Spatial Importance Maps



- Data averaged 10 to 15 s after stimulus onset.
- Decoupled (top) versus spatial coupling of scale variables (bottom).
- Most relevant voxels in the occipital lobe (Brodmann Areas 17 and 18).

## Importance over Time



- Importance shown for 10 most relevant voxels.
- Decoupled (left) versus temporal coupling of scale variables (right).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Increasing importance corresponds with lagged BOLD response.

# Intermezzo: Decoding fMRI using DBM's



Van Gerven, de Lange, and Heskes: Neural Computation, 2010.

## Reconstructions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Source Localization

 Sensor readings Y are related to source currents S through

 $\mathbf{Y} = \mathbf{XS} + \mathsf{noise}$ 

with  $\mathbf{X}$  a known lead field matrix, corresponding to the forward model derived from a structural MRI.



- Essentially an (ill-posed) linear regression problem in which S plays the role of the regression coefficients θ.
- Different regression problems for different time points.
  N = 275, the number of sensors. p = 1K (a bit depending on the discretization), the number of sources.

Van Gerven, Cseke, Oostenveld, and Heskes: NIPS, 2009.

## Without Constraints



Not so clear

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

# With Spatial Constraints



Sources where you'd expect them to see

・ロト ・ 戸 ・ ・ ヨ ・ ・

## Outline

#### **Bayesian Linear Models**

Large *p*, small *N* Lasso vs. ridge regression Bayesian interpretation

#### Multivariate sparsifying priors

Motivation: brain reading Scale mixture models Multi-variate extensions Approximate inference

#### Experiments

fMRI classification MEG source localization

#### Conclusions

## Conclusions and Discussion

Take-home-message:

- A novel way to specify multi-variate sparsifying priors through scale-mixture representations.
- Posterior estimates of these scales can be used for relevance determination.
- Efficient techniques for approximate inference.
- Increased interpretability when analyzing neuroimaging data.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Future directions:

- Extensions to (correlated) spike-and-slab priors.
- Improved stability of expectation propagation.