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Machine Learning: Two Extremes

Goal: For given problem, find algorithm that
works well in practice (performance, efficiency),
has favorable theoritical guarantees.

If problem is too hard, you can start from either end:
1 engineer algorithm that works well in practice

works maybe only for a particular case
often not quite clear why it works

2 create algorithm for which you can show theoretical bounds
works maybe only under additional assumptions
often computationally inefficient
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Machine Learning: Two Extremes

If problem is too hard, you can start from either end:
1 engineer algorithm that works well in practice
2 create algorithm for which you can show theoretical bounds

What is common to both approaches:
you want to do better than all others
(better performance, better bounds)
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Online Decision Making

General Setting:
At each step t = 1,2, . . . ,T

observe state st ,
choose an action at from a given action set A,
receive reward rt (might be random, typically depends on st and at ).

Goal: maximize collected reward
∑T

t=1 rt .

Observations and rewards are generated by an unknown
environment.

States, actions, and rewards is the only information available to
the learner.

 Policies map histories to action, i.e.

at = π(s1,a1, r1, . . . , st−1,at−1, rt−1).
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We’d like to have algorithms with theoretical performance
guarantees when compared to the optimal policy π∗.
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The Secretary Problem

At each step t = 1,2, . . . ,T we observe option (secretary) st .
Any option st gives (deterministic) reward r(st ).

At any step we can either choose the current option st . . .
 receive reward r(st ) and quit

. . . or continue to see the next option.
Goal: Choose the best option.
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Multi-armed bandits

Setting:
At times t = 1,2, . . . choose an arm at from a finite set of arms A.
receive for chosen arm a random reward ∈ [0,1] with mean r(a).
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Multi-armed bandits

Setting:
Learner chooses at times t = 1,2, . . . an arm at from a finite set of
arms A.
receives for chosen arm a random reward ∈ [0,1] with mean r(a).

Goal(s):

Identify optimal arm a∗ with maximal reward r∗.
Do this in an online fashion, so that collected rewards

∑T
t=1 rt are

maximized, where rt is the random reward at step t .

(This shall happen for all T , not just for T →∞.)

 Minimize the T -step regret

Tr∗ −
T∑

t=1

rt .
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Regret

Minimize the T -step regret Tr∗ −
∑T

t=1 rt .

What bounds on the regret can we expect?

Playing a suboptimal arm a all the time has linear regret

T (r∗ − r(a)).

For T →∞, we’d expect a good algorithm to identify the optimal
arm, so that the per-step regret

lim
T→∞

Tr∗ −
∑T

t=1 rt

T
= 0.

 We’d expect a good algorithm to have sublinear regret.
The smaller the regret rate, the faster the algorithm converges to
the optimal solution.
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Multi-armed bandits: Some applications

Experiment design:
different treatments for disease
would like to use best treatment

Routing in networks:
look for shortest path in network

Pricing:
would like to sell for the highest price for which a customer is willing
to buy

Placing ads on webpages:
different ads or different pics for the same product
would like to use the one which is most likely to be clicked at
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Multi-armed bandits: Algorithms I

A simple algorithm:

Choose each arm once.
Always choose the arm with the best mean reward so far.

Problem:
In case the optimal arm a∗ gets low reward at the beginning,
it wouldn’t be chosen anymore.

→ “Exploration vs. Exploitation” dilemma:

Play best arm so far, ...
... or rather explore a different arm?

Possible solution (“ε-greedy”):
With small probability ε choose a different arm.
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Confidence intervals

The empirical mean

r̂(a) :=
total reward for arm a

number of plays of arm a

gives an estimate for real mean reward r(a).

B How good is this estimate?
Use confidence intervals to get answer with high probability:

E.g., Chernov-Hoeffding bound
With probability ≥ 1− δ the true mean r(a) is contained in confidence
interval [

r̂(a)−
√

log 2
δ

2n , r̂(a) +

√
log 2

δ
2n

]
,

where n is the number of samples.
(n counts how often an arm a has been played.)

Multi-armed bandit problems Algorithms Chalmers MLSS 2015 13 / 120



Confidence intervals

The empirical mean

r̂(a) :=
total reward for arm a

number of plays of arm a

gives an estimate for real mean reward r(a).
B How good is this estimate?

Use confidence intervals to get answer with high probability:

E.g., Chernov-Hoeffding bound
With probability ≥ 1− δ the true mean r(a) is contained in confidence
interval [

r̂(a)−
√

log 2
δ

2n , r̂(a) +

√
log 2

δ
2n

]
,

where n is the number of samples.
(n counts how often an arm a has been played.)

Multi-armed bandit problems Algorithms Chalmers MLSS 2015 13 / 120



Confidence intervals

The empirical mean

r̂(a) :=
total reward for arm a

number of plays of arm a

gives an estimate for real mean reward r(a).
B How good is this estimate?

Use confidence intervals to get answer with high probability:

E.g., Chernov-Hoeffding bound
With probability ≥ 1− δ the true mean r(a) is contained in confidence
interval [

r̂(a)−
√

log 2
δ

2n , r̂(a) +

√
log 2

δ
2n

]
,

where n is the number of samples.
(n counts how often an arm a has been played.)

Multi-armed bandit problems Algorithms Chalmers MLSS 2015 13 / 120



Confidence intervals

The empirical mean

r̂(a) :=
total reward for arm a

number of plays of arm a

gives an estimate for real mean reward r(a).
B How good is this estimate?

Use confidence intervals to get answer with high probability:

E.g., Chernov-Hoeffding bound
With probability ≥ 1− δ the true mean r(a) is contained in confidence
interval [

r̂(a)−
√

log 2
δ

2n , r̂(a) +

√
log 2

δ
2n

]
,

where n is the number of samples.
(n counts how often an arm a has been played.)

Multi-armed bandit problems Algorithms Chalmers MLSS 2015 13 / 120



Multi-armed bandits: Algorithms II

Improved algorithm:

Choose arms alternatingly.
Eliminate arm, if its confidence interval is below the confidence
interval of another arm.

t
0

1 t
0

1

t
0

1

t
0

1
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Multi-armed bandits: Algorithms II

Improved algorithm:

Choose arms alternatingly.
Eliminate arm, if its confidence interval is below the confidence
interval of another arm.

Problem:
Suboptimal arm is played relatively often, and even if confidence
intervals are hardly intersecting.
(→ Play a lot of arms that are suboptimal w.h.p.)

Multi-armed bandit problems Algorithms Chalmers MLSS 2015 19 / 120



Multi-armed bandits: Algorithms III

Optimistic algorithm UCB (Auer, Fischer, Cesa-Bianchi 2002)

Choose each arm once.
Choose arm with maximal upper confidence bound.
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Multi-armed bandits: Algorithms III

Optimistic algorithm UCB (Auer, Fischer, Cesa-Bianchi 2002)

Choose each arm once.
Choose arm with maximal upper confidence bound.

Idea:

Either get high reward (→ good), or
get low reward (→ but learn something).
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Multi-armed bandits: Algorithms III

Optimistic algorithm UCB (Auer, Fischer, Cesa-Bianchi 2002)

Choose each arm once.
Choose arm with maximal upper confidence bound.

Choice of confidence intervals:

If error probability of confidence intervals is fixed, the error
probability becomes arbitrarily large.
 Choose confidence intervals so that sum of error probabilities
over all time steps remains bounded.
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Multi-armed bandits: Algorithms III

UCB Algorithmus (Auer, Fischer, Cesa-Bianchi 2002)
Choose each arm once.
Choose arm with maximal upper confidence bound, that is, at
step t choose

arg max
a∈A

{
r̂t (a) + conft (a)

}
.

Choice of confidence intervals:

For conft (a) =
√

2 log(t/δ)
nt (a)

, the error probability for the confidence

interval of one arm is δ
t4 (Chernov-Hoeffding).

In this case, the sum over all error probabilities is ≤ δ.
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Analysis I

Consider an arbitrary suboptimal arm a.
We ignore the randomness of the reward for a and consider the
pseudoregret ∑

t :at=a

(
r∗ − r(a)

)
=

∑
t :at=a

(r∗ − (r̂t (a) + conft (a)))

+
∑

t :at=a

((r̂t (a) + conft (a))− r(a))

First term: ≤ 0, since w.h.p. r̂t (a) + conft (a) ≥ r̂t (a∗) + conft (a∗) ≥ r∗

Multi-armed bandit problems Analysis Chalmers MLSS 2015 25 / 120



Analysis I

Consider an arbitrary suboptimal arm a.
We ignore the randomness of the reward for a and consider the
pseudoregret ∑

t :at=a

(
r∗ − r(a)

)
=

∑
t :at=a

(r∗ − (r̂t (a) + conft (a)))

+
∑

t :at=a

((r̂t (a) + conft (a))− r(a))

First term: ≤ 0, since w.h.p. r̂t (a) + conft (a) ≥ r̂t (a∗) + conft (a∗) ≥ r∗
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Analysis I

∑
t :at=a

(
r∗ − r(a)

)
≤

∑
t :at=a

((r̂t (a) + conft (a))− r(a))

=
∑

t :at=a

(
r̂t (a)− r(a)

)
+
∑

t :at=a

conft (a)

≤ 2
∑

t :at=a

conft (at ) ≤ 2
√

2 log T
δ ·

∑
t :at=a

1√
nt (a)

= 2
√

2 log T
δ ·

nT (a)∑
t=1

1√
t
≤ 4

√
2 log T

δ ·
√

nT (a)
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Regret Bound I

The pseudoregret w.r.t. an arbitrary suboptimal arm a is∑
t :at=a

(
r∗ − r(a)

)
≤ 4

√
2 log T

δ ·
√

nT (a).

Summing over all suboptimal arms, Jensen’s inequality gives

Theorem
With probability at least 1− δ the pseudoregret of UCB is bounded as

T∑
t=1

(
r∗ − r(at )

)
≤ 4

√
2|A|T log T

δ .
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Jensen’s inequality

Theorem
For a real convex function ϕ, numbers x1, x2, ..., xn, and positive
weights ai , it holds that

ϕ

(∑
aixi∑
ai

)
≤
∑

aiϕ(xi)∑
ai

.

On the other hand, if ϕ is concave, we have

ϕ

(∑
aixi∑
ai

)
≥
∑

aiϕ(xi)∑
ai

.

⇒

√√√√1
n

n∑
i=1

xi ≥ 1
n

n∑
i=1

√
xi ⇒

√√√√n
n∑

i=1

xi ≥
n∑

i=1

√
xi
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Regret Bound I

The regret w.r.t. an arbitrary suboptimal arm a is∑
t :at=a

(
r∗ − r(a)

)
≤ 4

√
2 log T

δ ·
√

nT (a).

Summing over all suboptimal arms, Jensen’s inequality gives

Theorem
With probability at least 1− δ the pseudoregret of UCB is bounded as

T∑
t=1

(
r∗ − r(at )

)
≤ 4

√
2|A|T log T

δ .
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Analysis II

Now we assume that conft (a) :=
√

2 log t
nt (a)

and take a look at the
expected regret.

By Wald’s lemma we can write it as

E

[
T∑

t=1

(
r∗ − r(at )

)]
=

∑
a:r(a)<r∗

E[nT (a)] · (r∗ − r(a)).

Hence, we’d like to bound E[nT (a)] for suboptimal arms a.
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Wald’s Lemma

Theorem
Let X1,X2, . . . be a sequence of i.i.d. random variables, and let N be a
nonnegative random integer that is independent of the sequence
X1,X2, . . ..

If N and the Xi have finite expectations, then

E[X1 + · · ·+ XN ] = E[N] · E[X1] .
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Analysis II

Now we assume that conft (a) :=
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2 log t
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Analysis II

Consider a suboptimal arm a and its difference r∗ − r(a) to the optimal
arm.

When a has been played

nt (a) ≈ 8 log T
(r∗ − r(a))2

times, then
√

2 log t
nt (a)

= (r∗−r(a))
2 , so that by Chernov-Hoeffding w.h.p.

r̂(a) +
√

2 log t
nt (a)

≤ r(a) + 2
√

2 log t
nt (a)

= r(a) + 2 · (r∗ − r(a))

2
= r∗.

Hence w.h.p.

r̂(a∗) +
√

2 log t
nt (a∗)

≥ r(a∗) > r̂(a) +
√

2 log t
nt (a)

,

and UCB doesn’t play arm a anymore.
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Regret Bound II

Theorem (Auer et al., 2002a)
The expected number of times a suboptimal arm a is chosen is
bounded as

E[nT (a)] ≤ 8 log T
(r∗ − r(a))2 .

Hence, the expected regret of UCB is bounded as

E

[
T∑

t=1

(
r∗ − r(at )

)]
≤

∑
a:r(a)<r∗

8 log T
r∗ − r(a)

.
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Comparison of Regret Bounds

Which one is better?

Regret Bound I for UCB

T∑
t=1

(
r∗ − r(at )

)
≤ 4

√
2|A|T log T .

Regret Bound II for UCB

E

[
T∑

t=1

(
r∗ − r(at )

)]
≤

∑
a:r(a)<r∗

8 log T
r∗ − r(a)

.

This depends on the distance r∗ − r(a)!
E.g., for r∗ − r(a) < 1/

√
T , the first bound is better.
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Lower Bounds on Regret

Theorem (Auer et al., 2002b)
For any K and any T there exists a bandit problem with K arms such
that the expected regret of any algorithm after T steps is at least

const ·
√

KT .

Theorem (Mannor & Tsitsiklis, 2004)
For any K there exists a bandit problem with K arms such that for any
T the expected regret of any algorithm is at least

const ·
∑

a:r(a)<r∗

log(T (r∗ − r(a))/K )

r∗ − r(a)
.
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Setting: Markov Decision Processes

Definition
Markov decision process (MDP)M = 〈S,A, s1,p, r〉:

S . . . state space
A . . . a set of actions available in each state

Start in initial state s1.
When choosing action a in state s:

B random reward with mean r(s,a) in [0,1],
B transition to state s′ with probability p(s′|s,a).
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The Secretary Problem as MDP

At each step t = 1,2, . . . ,T we observe option (secretary) st .
Any option st gives (deterministic) reward r(st ).
At any step we can either choose the current option st . . .

 receive reward r(st ) and quit

. . . or continue to see the next option.
Goal: Choose the best option.
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MDPs: Another Example for Illustration

Inventory management in a warehouse:

At the end of month one looks at current inventory...

... and submit orders.

Demand is random.

There are costs for storing goods.
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MDPs: Another Example for Illustration
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MDPs: Another Example for Illustration
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MDPs: One slide about history

1940s: dynamic programming for optimization problems
(Richard Bellman)

Basic idea:
Any optimal solution of a problem
induces an optimal solution for a subproblem.

 Bellman equation
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MDPs: One slide about history

1940s: dynamic programming for optimization problems
(Richard Bellman)

1950s: stochastic dynamic programming
→ MDPs (Richard Bellman)
Research:

How to compute an optimal policy?
MDPs as models in economics etc.
Applications:
Inventory management, maintenance management, routing in
networks, ...

1980s: Artificial intelligence discovers MDPs as models for
learning with delayed feedback→ Reinforcement Learning
(MDP as model for the unknown environment)
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MDPs: More examples I
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MDPs: More examples II
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MDPs: More examples III
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MDPs: More examples IV
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MDPs: More examples V
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MDPs: More examples VI
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Setting: Markov Decision Processes

Definition
Markov decision process (MDP)M = 〈S,A, s1,p, r〉:

S . . . state space
A . . . a set of actions available in each state

Start in initial state s1.
When choosing action a in state s:

B random reward with mean r(s,a) in [0,1],
B transition to state s′ with probability p(s′|s,a).
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Policies and their Average Reward

Definition
A (stationary) policy on an MDPM is a mapping π : S → A.

Definition
The average reward of a policy is

ρ(M, π) := lim
T→∞

1
T

T∑
t=1

r
(
st , π(st )

)
,

where st is a random variable for the state at step t .

We are interested in the optimal policy π∗ giving optimal average
reward ρ∗ := maxπ(M, π).
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Policies induce Markov Chains

Any (stationary) policy induces a Markov chain on the MDP.

Definition
A Markov chain on state space S is a sequence of random variables
St ∈ S such that:

(Markov property) The probability of being in state s at time t
depends only on the state at time t − 1, that is,

P{St = s|S1 = s1, . . . ,St−1 = st−1} = P{St = s|St−1 = st−1}

(Time Homogeneity) The transition probability from state s to
state s′ does not depend on the time step, that is,

P{St = s|St−1 = s′} = P{St ′ = s|St ′−1 = s′}
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Policies induce Markov Chains

Consequently, a Markov chain is defined by
the state space S,
an initial state s1 ∈ S, or more generally an initial distribution
over S,
a quadratic transition matrix P such that
Ps,s′ = P{St = s′|St−1 = s} is the probability of a transition to
state s′ when in state s.
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Markov chains: A typical example

Random walk on a graph
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Policies induce Markov Chains

Given an (irreducible, aperiodic) Markov chain there is a unique
stationary distribution µ over the state space S, such that (independent
of the initial state) the t-step probabilities approach µ for t →∞. That
is,

µ(s) = lim
t→∞

number of visits in s
t

.

Thus, if a policy π induces a Markov chain with stationary
distribution µπ, we can write the average reward as

ρ(M, π) := lim
T→∞

1
T

T∑
t=1

r
(
st , π(st )

)
=
∑
s∈S

µπ(s) · r(s, π(s))
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Finding the Optimal Policy

The stationary distribution µ of a Markov chain with transition matrix P
can be computed by solving µP = µ.

 can compute the optimal policy as follows:

For each policy π:
B Compute the stationary distribution µπ and the average reward ρπ.

Return policy with maximal ρπ.

Problem: The number of policies π : S → A is AS, where A := A and
S := S.
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Value Iteration

A better way to compute the optimal policy in a known MDP:

Value iteration
Set u0(s) := 0 for all states s ∈ S.
For i > 0 and all s ∈ S set the iterated state values to be

ui+1(s) := max
a∈A

{
r(s,a) +

∑
s′∈S

p(s′|s,a)ui(s′)

}
.

Convergence (if there is non-periodic optimal policy)
For i →∞:

The vector (ui+1 − ui) converges to 1ρ∗.
The arg max-actions converge to an optimal policy.
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Value Iteration

Convergence (if there is non-periodic optimal policy)
For i →∞:

The vector (ui+1 − ui) converges to 1ρ∗.
The arg max-actions converge to an optimal policy.
The quality of the greedy policy of the current iteration is
measured by

max
s

{
ui+1(s)− ui(s)

}
−min

s

{
ui+1(s)− ui(s)

}
.
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Value Iteration: An example

ui+1(s) := max
a∈A

{
r(s,a) +

∑
s′∈S

p(s′|s,a)ui(s′)

}
.

u0(s1) = 0 u0(s2) = 0 u0(s3) = 0 (initialization)

u1(s1) = 2 u1(s2) = 1 u1(s3) = 4
u2(s1) =

max{2 + 2,0 + 1}4 u2(s2) = max{1 + 1,0 + 4}4∗ u2(s3) = max{3 + 4,4 + 2}7∗

u3(s1) =

max{2 + 4,0 + 4}6 u3(s2) = max{1 + 4,0 + 7}7∗ u3(s3) = max{3 + 7,4 + 4}10∗

u4(s1) =

8

u4(s2) =

10∗

u4(s3) =

13∗

u5(s1) = 10(∗) u5(s2) = 13∗ u5(s3) = 16∗

u6(s1) = 13∗ u6(s2) = 16∗ u6(s3) = 19∗

u7(s1) = 16∗ u7(s2) = 19∗ u7(s3) = 22∗
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Optimal Policies and their Bias

Average reward ρ = 1
2 .

Obviously, it’s better to start in L.
Can we quantify this?
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The Poisson equation

The Poisson equation relates the average reward ρ(π) of a policy π to
the individual rewards r(s, π(s)).

Poisson equation

ρ(π)− r(s, π(s)) =
∑
s′

p(s′|s, π(s)) · λπ(s′)− λπ(s),

where λπ(s) is the bias of state s.

Intuitively, the bias indicates how much you gain/lose in accumulated
rewards w.r.t. average reward when starting in state s.
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Average reward ρ = 1
2 .

Poisson equation:

ρ− r(L) = λ(R)− λ(L)

ρ− r(R) = λ(L)− λ(R)
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Average reward ρ = 1
2 .

Bias λ(L) = 1
4 , λ(R) = −1

4 .

Interpretation: Accumulated reward after t = 1,2, . . . steps ...
... when starting in L: 1,1,2,2,3,3,4,4, . . .
... when starting in R: 0,1,1,2,2,3,3,4, . . .

accum. average reward: 1
2 ,1,

3
2 ,2,

5
2 ,3,

7
2 ,4, . . .

 diff. sequence for L: 1
2 ,0,

1
2 ,0,

1
2 ,0,

1
2 ,0, . . .→ on avg. 1

4
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... when starting in L: 1,1,2,2,3,3,4,4, . . .
... when starting in R: 0,1,1,2,2,3,3,4, . . .
accum. average reward: 1

2 ,1,
3
2 ,2,

5
2 ,3,

7
2 ,4, . . .

 diff. sequence for L: 1
2 ,0,

1
2 ,0,

1
2 ,0,

1
2 ,0, . . .→ on avg. 1

4

Markov decision processes Introduction Chalmers MLSS 2015 74 / 120



Average reward ρ = 1
2 .

Bias λ(L) = 1
4 , λ(R) = −1

4 .

Interpretation: Accumulated reward after t = 1,2, . . . steps ...
... when starting in L: 1,1,2,2,3,3,4,4, . . .

... when starting in R: 0,1,1,2,2,3,3,4, . . .

accum. average reward: 1
2 ,1,

3
2 ,2,

5
2 ,3,

7
2 ,4, . . .

 diff. sequence for L: 1
2 ,0,

1
2 ,0,

1
2 ,0,

1
2 ,0, . . .→ on avg. 1

4

Markov decision processes Introduction Chalmers MLSS 2015 74 / 120



Average reward ρ = 1
2 .

Bias λ(L) = 1
4 , λ(R) = −1

4 .

Interpretation: Accumulated reward after t = 1,2, . . . steps ...
... when starting in R: 0,1,1,2,2,3,3,4, . . .
accum. average reward: 1

2 ,1,
3
2 ,2,

5
2 ,3,

7
2 ,4, . . .

 diff. sequence for R: − 1
2 ,0,−

1
2 ,0,−

1
2 ,0, . . .→ on avg. − 1

4

Markov decision processes Introduction Chalmers MLSS 2015 75 / 120



Average reward ρ = 1
2 .

Bias λ(L) = 1
4 , λ(R) = −1

4 .

Interpretation: Accumulated reward after t = 1,2, . . . steps ...
... when starting in L: 1,1,2,2,3,3,4,4, . . .
... when starting in R: 0,1,1,2,2,3,3,4, . . .
 difference sequence: 1,0,1,0,1,0,1,0, . . .
average difference = 1

2 = λ(L)− λ(R) “bias span”
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The Bias and the Diameter

Definition
The diameter of an MDP is the maximal expected time it takes to reach
one state from any other state (using an appropriate policy).

Intuitively, the bias indicates how much you gain/lose in
accumulated rewards w.r.t. average reward when starting in
state s.

If the rewards are bounded in [0,1], the bias span of the optimal
policy is bounded by the diameter.
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Optimal Policies and the Regret

The Learner’s Goal(s):
1 Find optimal policy π∗ = arg maxπ ρ(M, π).
2 Do this online, so that you don’t lose too much w.r.t.
ρ∗ := ρ(M, π∗).

 Maximize
∑T

t=1 rt , where rt is the random reward at step t .
 Minimize the regret :

Definition
The learner’s regret after T steps is

Tρ∗ −
T∑

t=1

rt .
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A Learning Algorithm for MDPs

Consider each policy as the arm of a bandit problem.
Use a bandit algorithm to select a policy.
Play the policy for sufficiently many steps.

Problem: The number of policies π : S → A is AS.
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An Optimistic Model

Estimates:

In bandit case: estimates r̂(a) for reward of each arm a
For MDPs: estimates for rewards and transition probabilities:

r̂(s,a) :=
total reward when playing a in s

number of visits in s,a
,

p̂(s′|s,a) :=
total number of transitions to s′ when playing a in s

number of visits in s,a
.
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An Optimistic Model

Confidence intervals:

In bandit case: confidence intervals for reward of each arm
For MDPs: confidence intervals for rewards and transition
probabilities

 The set M of plausible MDPs given the estimates r̂ and p̂ is the set
of all MDPs with rewards r ′ and transition probabilities p′ such that∣∣r̂(s,a)− r ′(s,a)

∣∣ ≤ confr (s,a) :=
√

3 log(2SAt/δ)
N(s,a) ,∥∥p̂(·|s,a)− p′(·|s,a)

∥∥
1 ≤ confp(s,a) :=

√
12S log(2At/δ)

N(s,a) .
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An Optimistic Model

Optimism:

In bandit case: Choose arm with highest upper confidence
bound.
For MDPs: Choose plausible MDP M̃ ∈M that promises highest
average reward under optimal policy.

 Choose optimistic MDP M̃ ∈M and optimal policy π̃ such that

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π).
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How to find the optimistic MDP

Choose optimistic MDP M̃ ∈M and optimal policy π̃ such that

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π).

Set rewards r̃ to the upper confidence bounds.
For the transition probabilities p̃ one can use an extension of value
iteration. That is, for all states s set u0(s) := 0 and

ui+1(s) := max
a

{
r̃(s,a) + max

p∈P(s,a)

{∑
s′

p(s′)ui(s′)
}}

,

where P(s,a) is the set of all plausible transitions from s,a.
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An Optimistic Algorithm for RL in MDPs

It’s a bad idea to change the policy too often.

L
 R


0.5
 0.5


0


0


0
 0


It depends on the bias how fast we approach the average reward of the
chosen policy!
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UCRL2

UCRL2 (Jaksch et al., 2010)
For episodes k = 1,2, . . . do:

1 Maintain UCB-like confidence intervals for rewards and transition
probabilities to define set of plausible MDPs M.

2 Calculate optimal policy π̃ in optimistic model M̃ ∈M, i.e.

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π).

3 Execute π̃ until the visits in some state-action pair have doubled.
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Analysis: Some intuition

We first consider the regret in a single episode k .
Since w.h.p. the true MDPM is in M, we have for the policy π̃k chosen
in episode k

ρ̃(M̃, π̃k ) ≥ ρ∗ = ρ(M, π∗) ≥ ρ(M, π̃k ).

Intuitively, the regret is upper bounded by the sum over the confidence
intervals in each step ∑

k

∑
s,a

vk (s,a) · confk(s, a),

where vk (s,a) are the visits of s,a in episode k .
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Analysis: Regret in a single episode

We first consider the regret in a single episode k .
Since w.h.p. the true MDPM is in M, we have for the policy π̃k chosen
in episode k

ρ̃k := ρ̃(M̃, π̃k ) ≥ ρ∗ = ρ(M, π∗) ≥ ρ(M, π̃k ).

Hence, the regret in episode k is bounded by

tk+1−1∑
t=tk

(ρ∗ − rt ) ≤
tk+1−1∑

t=tk

(ρ̃k − rt ) ,

where tk is the time step when episode k starts.
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Ignoring the random fluctuation of the rewards, we can write
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Analysis: Rewards

Hence, the regret in episode k is bounded by∑
s,a

vk (s,a)
(
ρ̃k − r(s,a)

)
=

≤

∑
s,a

vk (s,a)
(
ρ̃k − r̃k (s,a)

)
+
∑
s,a

vk (s,a)
(
r̃k (s,a)− r(s,a)

)

2confr (s,a)

The second term is bounded by
|r̃k (s,a)− r̂k (s,a)|+ |r̂k (s,a)− r(s,a)| ≤ 2confr (s,a).
For the first term we use the Poisson equation

ρ̃(π̃k )− r̃k (s, π̃k (s)) =
∑
s′

p̃(s′|s, π̃k (s)) · λ̃π̃k (s′)− λ̃π̃k (s).

(Note that vk (s,a) = 0 for a 6= π̃k (s).)
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Analysis: The Bias and the Diameter

Lemma
For any two states s, s′,

λ̃π̃k (s)− λ̃π̃k (s′) ≤ D,

where D is the diameter in the true MDP.

Proof sketch: Assume that λ̃π̃k (s)− λ̃π̃k (s′) > D. Then one can define
a nonstationary policy that goes from s′ to s in at most D steps and
employs the optimal policy from there. This gives higher reward
than π̃k , contradicting optimality of π̃k .
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Analysis: Transition probabilities

Thus, we consider∑
s,a

vk (s,a)
(
ρ̃k − r̃k (s,a)

)
=

∑
s,a

vk (s,a)

(∑
s′

p̃(s′|s, π̃k (s)) · λ̃π̃k (s′)− λ̃π̃k (s)

)

= vk
(
P̃k − I

)
λ̃k

= vk
(
P̃k − P + P− I

)
λ̃k

= vk
(
P̃k − P

)
λ̃k + vk

(
P− I

)
λ̃k .
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Analysis: Transition probabilities

Thus, we consider∑
s,a

vk (s,a)
(
ρ̃k − r̃k (s,a)

)
=

∑
s,a

vk (s,a)

(∑
s′

p̃(s′|s, π̃k (s)) · λ̃π̃k (s′)− λ̃π̃k (s)

)
= vk

(
P̃k − P

)
λ̃k + vk

(
P− I

)
λ̃k .

First term is bounded like

vk
(
P̃k − P

)
λ̃k ≤

∥∥vk
(
P̃k − P

)∥∥
1 ·
∥∥λ̃k

∥∥
∞

≤ 2
∑
s,a

vk (s,a) confp(s,a) D.
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Analysis: Transition probabilities

Thus, we consider∑
s,a

vk (s,a)
(
ρ̃k − r̃k (s,a)

)
=

∑
s,a

vk (s,a)

(∑
s′

p̃(s′|s, π̃k (s)) · λ̃π̃k (s′)− λ̃π̃k (s)

)
≤ 2

∑
s,a

vk (s,a) confp(s,a)D + vk
(
P− I

)
λ̃k .

Second term can be rewritten as martingale difference sequence

vk
(
P− I

)
λ̃k =

tk+1−1∑
t=tk

(
p(·|st ,a)λ̃k − λ̃k (st )

)

=

tk+1−1∑
t=tk

(
p(·|st ,a)λ̃k − λ̃k (st+1)

)
+ λ̃k (stk+1)− λ̃k (stk )
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Analysis: Transition probabilities

Thus, we consider∑
s,a

vk (s,a)
(
ρ̃k − r̃k (s,a)

)
=

∑
s,a

vk (s,a)

(∑
s′

p̃(s′|s, π̃k (s)) · λ̃π̃k (s′)− λ̃π̃k (s)

)
= 2D

∑
s,a

vk (s,a) confp(s,a) + vk
(
P− I

)
λ̃k .

Second term can be rewritten as martingale difference sequence

vk
(
P− I

)
λ̃k =

tk+1−1∑
t=tk

(
p(·|st ,a)λ̃k − λ̃k (st+1)

)
+ λ̃k (stk+1)− λ̃k (stk )

and can be bounded by Azuma-Hoeffding inequality.
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Azuma-Hoeffding bound

Theorem
Let X1,X2, . . . be a martingale difference sequence (i.e.
E[Xi |X1, . . . ,Xi−1] = 0) with |Xi | ≤ c for all i .

Then for all ε > 0 and n ∈ N,

P

{
n∑

i=1

Xi ≥ ε

}
≤ exp

(
− ε2

2nc2

)
.
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Analysis: Summary

Since this last term is negligible compared to the main term, the regret
in episode k is bounded by∑
s,a

vk (s,a)
(
ρ̃k − r(s,a)

)
≤ const · 2D

∑
s,a

vk (s,a) confp(s,a) + const · 2
∑
s,a

vk (s,a) confr (s,a).

Summing over all episodes, the regret is bounded by∑
k

∑
s,a

vk (s,a)
(
ρ̃k − r(s,a)

)
≤ const · D

√
S log(AT/δ)

∑
k

∑
(s,a)

vk (s,a)√
Nk (s,a)

≤ const · D
√

S log(AT/δ)
√

SAT
= const · DS

√
AT log(AT/δ)
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∑
k

∑
(s,a)

vk (s,a)√
Nk (s,a)

≤ const · D
√

S log(AT/δ)
√

SAT
= const · DS

√
AT log(AT/δ)
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Regret of UCRL2

Theorem (Jaksch et al., 2010)
In an MDP with S states, A actions, and diameter D with probability of
at least 1− δ the regret of UCRL2 after T steps is bounded by

34 · DS
√

AT log
(T
δ

)
.

Proof wrap-up:
ρ̃(π̃) ≥ ρ∗ ≥ ρ(π̃),

so that the regret is upper bounded by the sum over the confidence
intervals in each step∑

k

∑
s,a

vk (s,a) · confk(s, a) ≤ const · DS
√

AT .
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Regret of UCRL2

Theorem (Jaksch et al., 2010)
In an MDP with S states, A actions, and diameter D with probability of
at least 1− δ the regret of UCRL2 after T steps is bounded by

34 · DS
√

AT log
(T
δ

)
.

Note: get sensible regret bound only for finite D!
(e.g., D =∞ in the secretary problem!)
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A Lower Bound on the Regret

Theorem (Jaksch et al. 2010)
For any algorithm and any natural numbers T , S, A > 1, and
D ≥ logA S there is an MDPM with S states, A actions, and
diameter D, such that for any initial state s ∈ S the expected regret
after T steps is

Ω
(√

DSAT
)
.

This is close to the upper bound, but there is a gap of
√

DS.
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A PAC-like bound for UCRL2

It is straightforward to obtain from the regret bound the following
sample complexity bound.

Theorem (Jaksch et al., 2010)
With probability 1− δ, after

T ≥ 4 · 492D2S2A
ε2 log

(
49DSA
δε

)
steps, the average per-step regret of UCRL2 is at most ε.
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A Logarithmic Upper Bound on the Expected Regret

Theorem (Jaksch et al., 2010)
The expected regret of UCRL2 is

O
(

D2S2A log(T )

g

)
,

where g is the gap between the optimal average reward and the
second largest average reward achievable inM, that is,

g := ρ∗(M)−max
π

{
ρ(M, π) : ρ(M, π) < ρ∗(M)

}
.
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A Logarithmic Upper Bound on the Expected Regret

The logarithmic bound can be derived by considering the
number L of suboptimal steps taken by UCRL2.
As above, one can show an upper bound of O(DS

√
LA log T ) on

the regret.
As the loss in each suboptimal step is at least g, one has
gL = O(DS

√
LA log T ), which gives

L = O
(

D2S2A log T
g2

)
.

A refined analysis of the regret in each suboptimal step improves
the exponent of g and yields the claimed bound, as the regret of
each suboptimal step is bounded by 1.
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Colored MDPs

(Finite State) MDPs with additional similarity information:

Definition
An ε-colored MDP is an MDPM = 〈S,A, s0,p, r〉 equipped with a
coloring function c : S ×A → C for a set of colors C, such that:
If c(s,a) = c(s′,a′) then

|r(s,a)− r(s′,a′)| < ε,∥∥p(·|s,a)− p(·|s′,a′)
∥∥

1 < ε.

Idea: One sample of a state-action pair (s,a) gives information for all
state-action pairs of the same color c(s,a).
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Example: Grid-world

No reduction of state space with ordinary aggregation.
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Example: Grid-world

No reduction of state space with ordinary aggregation.
Using homomorphisms (Ravindran& Barto, 2003):
15 instead of 25 states, 4 actions
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Example: Grid-world

No reduction of state space with ordinary aggregation.
Using homomorphisms (Ravindran& Barto, 2003):
15 instead of 25 states, 4 actions
Colored MDP needs only as many colors as actions.
Note: This does not necessarily reduce the MDP,

but we can learn faster!
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Colored UCRL2

Colored UCRL2 (Ortner, Ryabko, Auer, & Munos 2012)
For episodes k = 1,2, . . . do:

1 Maintain UCB-like confidence intervals (+ε) for rewards and
transition probabilities for each color to define set of plausible
MDPs M.

2 Calculate optimal policy π̃ in optimistic model M̃ ∈M, i.e.

ρ(M̃, π̃) = max
M∈M,π

ρ(M, π).

3 Execute π̃ until the visits for some color have doubled.
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Regret of Colored UCRL2

Theorem (Ortner, Ryabko, Auer, & Munos 2012)
In an ε-colored MDP with S states, C distinct colors, and diameter D,
with probability of at least 1− δ the regret of colored UCRL2 after T
steps is bounded by

const · D
√

SCT log
(T
δ

)
+εDT .

Proof Idea:
ρ̃(π̃) ≥ ρ∗ ≥ ρ(π̃),

so that the regret is upper bounded by the sum over the confidence
intervals in each step∑

k

∑
c

vk (c) ·
(
confk(c)+ε

)
≤ const · D

√
BCT +εDT .
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From Colored to Continuous State MDPs

Consider MDP with continuous state space where rewards and
transition probabilities are Lipschitz or Hölder, that is,

Assumption
There are L, α > 0 such that for any two states s, s′ and all actions a,

|r(s,a)− r(s′,a)| ≤ L|s − s′|α,∥∥p(·|s,a)− p(·|s′,a)
∥∥

1 ≤ L|s − s′|α.

Then close states behave similarly and if you discretize,
the situation is like in the colored MDP case.
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Discretization

For example, consider S = [0,1].

Then consider discretization
I1 =

[
0, 1

n

]
, I2 =

(1
n ,

2
n

]
,. . . , In =

(n−1
n ,1

]
.

States within each interval have (by Lipschitz assumption)
close rewards and transition probabilities.

Discretization corresponds to coloring.
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Problems

1 Original state space infinite.

2  The diameter is usually infinite.

Outlook From Colored to Continuous State MDPs Chalmers MLSS 2015 112 / 120



UCRL2 and the Diameter

To analyze the critical term in the regret

(tk+1 − tk )ρ̃(π̃)−
tk+1−1∑

t=tk

r̃(st , π̃(st ))

we
use the Poisson equation for the optimistic MDP M̃
upper bound the bias λ̃ in M̃ by the diameter D in true MDPM.
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Regret of UCRL2

Looking at the bound again ...

Theorem
In an MDP with S states, A actions, and diameter D with probability of
at least 1− δ the regret of UCRL2 after T steps is bounded by

34 · DS
√

AT log
(T
δ

)
.

Proof Idea:
ρ̃(π̃) ≥ ρ∗ ≥ ρ(π̃),

so that the regret is upper bounded by the sum over the confidence
intervals in each step∑

k

∑
s,a

vk (s,a) · confk(s, a) ≤ const · DS
√

AT .
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The REGAL algorithm (Bartlett&Tewari 2009)

... there is an obvious question:
Shouldn’t it be the bias span instead of the the diameter?

Yeah, but how do you relate the optimistic bias λ̃π̃ to the real one?

Well, you can cheat a bit:

Look for optimistic model with bias bounded by the real bias.
If you don’t know the bias, try to guess it.
That way you get regret bounds like for UCRL2 with the bias
instead of the diameter.

Problem: UCRL2 finds optimistic model and optimal policy by
extension of value iteration.
How about REGAL? We don’t know.
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REGAL-approach to continuous state MDPs

UCCRL (Ortner & Ryabko 2012)
Input: Upper bound H on bias span of optimal policy,

Hölder parameters L, α, discretization parameter n

1 Discretize [0,1] into n intervals I1, . . . , In of equal size.
2 For episodes k = 1,2, . . . do:

1 Maintain UCB-like confidence intervals (+ε := Ln−α) for rewards
and transition probabilities of each interval Ij .

2 Calculate optimal policy π̃ in optimistic model M̃ ∈M under
constraint that bias span of π̃ is upper bounded by H.

ρ(M̃, π̃) = max
π,M∈M:H(M)≤H

ρ(M, π).

3 Execute π̃ until the visits in some interval-action pair have doubled.
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Regret Bounds for UCCRL

Theorem (Ortner & Ryabko 2012)
With probability 1− δ the regret of UCCRL after T steps is bounded by

const · Hn
√

AT log
(T
δ

)
+ const · HLn−αT .

Choosing n = T 1/(2+2α) gives regret upper bounded by

const · HL
√

A log
(T
δ

)
T (2+α)/(2+2α).

In particular, for Lipschitz MDPs the bound is Õ(T 3/4).
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With probability 1− δ the regret of UCCRL after T steps is bounded by

const · Hn
√

AT log
(T
δ

)
+ const · HLn−αT .

Choosing n = T 1/(2+2α) gives regret upper bounded by

const · HL
√

A log
(T
δ

)
T (2+α)/(2+2α).

In particular, for Lipschitz MDPs the bound is Õ(T 3/4).
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Conclusion

Gap between algorithms for applications and algorithms with
theoretical guarantees is still very large in general MDP setting.

wouldn’t want to use UCRL2 in real-world application
Still, optimism and confidence intervals work well to deal with
exploration-exploitation problem.
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Solution to the Secretary Problem

Stopping Algorithm (Bruss 1984)
Observe the first 37% of all options (but choose neither).
Let r̂∗ be the reward for the best option among the first 37%.

Choose the first option that has higher reward than r̂∗.

Theorem (Bruss 1984)
The stopping algorithm chooses the best option in 37% of all possible
cases (permutation of the options).
This is also best possible.
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