Bayesian reinforcement learning Markov decision processes and approximate Bayesian computation

Christos Dimitrakakis

Chalmers

April 16, 2015

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 1 / 60

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Overview

Subjective probability and utility

Subjective probability Rewards and preferences

Bandit problems

Bernoulli bandits

Markov decision processes and reinforcement learning

Markov processes Value functions Examples

Bayesian reinforcement learning

Reinforcement learning Bounds on the utility Planning: Heuristics and exact solutions Belief-augmented MDPs The expected MDP heuristic The maximum MDP heuristic Inference: Approximate Bayesian computation Properties of ABC

Christos Dimitrakakis (Chalmers)

(日) (同) (三) (三) (三) (○) (○)

Subjective probability and utility

Subjective probability Rewards and preferences

Bandit problems

Bernoulli bandits

Markov decision processes and reinforcement learning

Markov processes Value functions Examples

Bayesian reinforcement learning

Reinforcement learning Bounds on the utility Planning: Heuristics and exact solutions Belief-augmented MDPs The expected MDP heuristic The maximum MDP heuristic Inference: Approximate Bayesian computatio Properties of ABC

(日) (同) (三) (三) (三) (○) (○)

Objective Probability

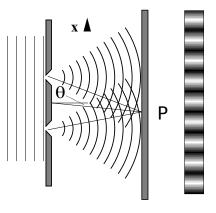


Figure: The double slit experiment

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 4 / 60

Objective Probability

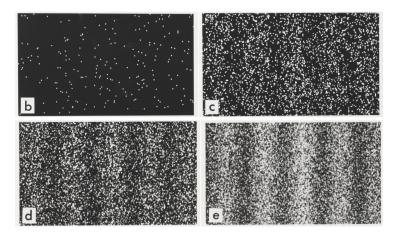


Figure: The double slit experiment

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 4 / 60

Objective Probability

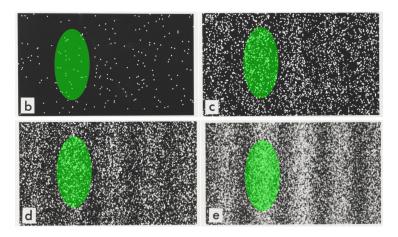


Figure: The double slit experiment

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 4 / 60

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

Subjective probability and utility Subjective probability

What about everyday life?

Making decisions requires making predictions.

- Making decisions requires making predictions.
- Outcomes of decisions are uncertain.

- Making decisions requires making predictions.
- Outcomes of decisions are uncertain.
- How can we represent this uncertainty?

- Making decisions requires making predictions.
- Outcomes of decisions are uncertain.
- How can we represent this uncertainty?

Subjective probability

- Describe which events we think are more likely.
- We quantify this with probability.

Why probability?

- Quantifies uncertainty in a "natural" way.
- A framework for drawing conclusions from data.
- Computationally convenient for decision making.

<ロ> (日) (日) (日) (日) (日) (日) (000)

Rewards

- We are going to receive a reward *r* from a set *R* of possible rewards.
- We prefer some rewards to others.

Example 1 (Possible sets of rewards R)

- *R* is a set of tickets to different musical events.
- ► *R* is a set of financial commodities.

When we cannot select rewards directly

- In most problems, we cannot just choose which reward to receive.
- We can only specify a distribution on rewards.

Example 2 (Route selection)

- Each reward $r \in R$ is the time it takes to travel from A to B.
- Route P_1 is faster than P_2 in heavy traffic and vice-versa.
- ▶ Which route should be preferred, given a certain probability for heavy traffic?

In order to choose between random rewards, we use the concept of utility.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 8 / 60

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Definition 3 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \succeq^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (1.1)

The expected utility of a distribution P on R is:

$$\mathbb{E}_{P}(U) = \sum_{r \in R} U(r)P(r)$$

(1.3)

Definition 3 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \succeq^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (1.1)

The expected utility of a distribution P on R is:

$$\mathbb{E}_{P}(U) = \sum_{r \in R} U(r)P(r)$$

$$= \int_{R} U(r) dP(r)$$
(1.2)
(1.3)

Definition 3 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

F

$$a \succeq^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (1.1)

The expected utility of a distribution P on R is:

$$P_{P}(U) = \sum_{r \in R} U(r)P(r)$$

$$= \int_{R} U(r) dP(r)$$
(1.2)
(1.3)

Assumption 1 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P. Consequently,

$$P \succeq^* Q \quad iff \quad \mathbb{E}_P(U) \ge \mathbb{E}_Q(U).$$
 (1.4)

i.e. we prefer P to Q iff the expected utility under P is higher than under Q

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

(日) (同) (三) (三) (三) (○) (○)

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

How much are you willing to pay, to play this game once?

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

• The probability to stop at round *n* is 2^{-n} .

Christos Dimitrakakis (Chalmers)

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

- The probability to stop at round *n* is 2^{-n} .
- Thus, the expected monetary gain of the game is

$$\sum_{n=1}^{\infty} 2^n 2^{-n} = \infty.$$

Christos Dimitrakakis (Chalmers)

April 16, 2015 10 / 60

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

- The probability to stop at round *n* is 2^{-n} .
- Thus, the expected monetary gain of the game is

$$\sum_{n=1}^{\infty} 2^n 2^{-n} = \infty.$$

- ▶ If your utility function were linear (U(r) = r) you'd be willing to pay any amount to play.
- You might not internalise the setup of the game (is the coin really fair?)

Christos Dimitrakakis (Chalmers)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Summary

- We can subjectively indicate which events we think are more likely.
- We can define a subjective probability *P* for all events.
- Similarly, we can subjectively indicate preferences for rewards.
- We can determine a utility function for all rewards.
- ▶ Hypothesis: we prefer the probability distribution with the highest expected utility.
- This allows us to create algorithms for decision making.

(日) (同) (三) (三) (三) (○) (○)

Experimental design and Markov decision processes

The following problems

- Shortest path problems.
- Optimal stopping problems.
- Reinforcement learning problems.
- Experiment design (clinical trial) problems
- Advertising.

can be all formalised as Markov decision processes.

(日) (同) (三) (三) (三) (○) (○)

Subjective probability and utility

Subjective probability Rewards and preferences

Bandit problems

Bernoulli bandits

Markov decision processes and reinforcement learning

Markov processes Value functions Examples

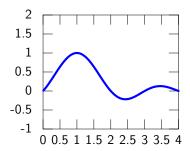
Bayesian reinforcement learning

Reinforcement learning Bounds on the utility Planning: Heuristics and exact solutions Belief-augmented MDPs The expected MDP heuristic The maximum MDP heuristic Inference: Approximate Bayesian computatio Properties of ABC

Bandit problems

Applications

Efficient optimisation.



Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

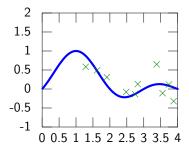
April 16, 2015 14 / 60

三日 のへの

・ロン ・四 と ・ ヨン ・ ヨン

Applications

Efficient optimisation.



Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

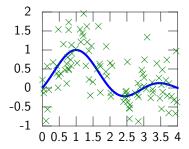
April 16, 2015 14 / 60

三日 のへの

・ロン ・四 と ・ ヨン ・ ヨン

Applications

Efficient optimisation.



三日 のへの

・ロン ・四 と ・ ヨン ・ ヨン

Bandit problems

Applications

- Efficient optimisation.
- Online advertising.

Google

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 14 / 60

EL OQO

イロン イヨン イヨン イヨン

Applications

- Efficient optimisation.
- Online advertising.
- Clinical trials.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 14 / 60

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Applications

- Efficient optimisation.
- Online advertising.
- Clinical trials.
- ► ROBOT SCIENTIST.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 14 / 60

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

The stochastic *n*-armed bandit problem

Actions and rewards

- A set of actions $\mathcal{A} = \{1, \ldots, n\}$.
- ► Each action gives you a random reward with distribution $\mathbb{P}(r_t \mid a_t = i)$.
- The expected reward of the *i*-th arm is $\omega_i \triangleq \mathbb{E}(r_t \mid a_t = i)$.

Utility

The utility is the sum of the individual rewards $r = r_1, \ldots, r_T$

$$U(r) \triangleq \sum_{t=1}^{T} r_t.$$

Definition 4 (Policies)

A policy π is an algorithm for taking actions given the observed history.

$$\mathbb{P}^{\pi}(a_{t+1} \mid a_1, r_1, \ldots, a_t, r_t)$$

is the probability of the next action a_{t+1} .

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

Bernoulli bandits

Example 5 (Bernoulli bandits)

Consider *n* Bernoulli distributions with parameters ω_i (i = 1, ..., n) such that $r_t \mid a_t = i \sim Bern(\omega_i)$. Then,

$$\mathbb{P}(r_t = 1 \mid a_t = i) = \omega_i \qquad \qquad \mathbb{P}(r_t = 0 \mid a_t = i) = 1 - \omega_i \qquad (2.1)$$

Then the expected reward for the *i*-th bandit is $\mathbb{E}(r_t \mid a_t = i) = \omega_i$.

Christos Dimitrakakis (Chalmers)

Bernoulli bandits

Example 5 (Bernoulli bandits)

Consider *n* Bernoulli distributions with parameters ω_i (i = 1, ..., n) such that $r_t \mid a_t = i \sim Bern(\omega_i)$. Then,

$$\mathbb{P}(r_t = 1 \mid a_t = i) = \omega_i \qquad \qquad \mathbb{P}(r_t = 0 \mid a_t = i) = 1 - \omega_i \qquad (2.1)$$

Then the expected reward for the *i*-th bandit is $\mathbb{E}(r_t \mid a_t = i) = \omega_i$.

Exercise 1 (The optimal policy)

- If we know ω_i for all *i*, what is the best policy?
- ▶ What if we don't?

Christos Dimitrakakis (Chalmers)

April 16, 2015 16 / 60

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < つへ ○

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

$$\hat{\omega}_{t,i} = R_{t,i}/n_{t,i}$$

- *n*_{t,i} the number of times you played arm i
- ▶ $R_{t,i}$ the total reward received from *i*.

Whenever you play $a_t = i$:

$$R_{t+1,i} = R_{t,i} + r_t, \qquad n_{t+1,i} = n_{t,i} + 1.$$

Greedy policy:

$$\mathbf{a}_t = \arg\max_i \hat{\omega}_{t,i}.$$

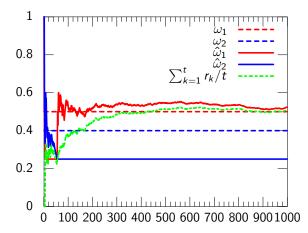
What should the initial values $n_{0,i}$, $R_{0,i}$ be?

Christos Dimitrakakis (Chalmers)

April 16, 2015 17 / 60

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

The greedy policy for $n_{0,i} = R_{0,i} = 1$



Christos Dimitrakakis (Chalmers)

April 16, 2015 18 / 60

-

イロト イポト イヨト イヨ

Subjective probability and utility

Subjective probability Rewards and preferences

Bandit problems

Bernoulli bandits

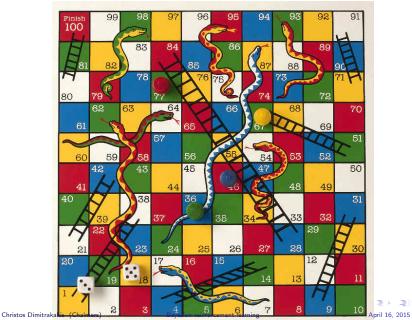
Markov decision processes and reinforcement learning

Markov processes Value functions Examples

Bayesian reinforcement learning

Reinforcement learning Bounds on the utility Planning: Heuristics and exact solutions Belief-augmented MDPs The expected MDP heuristic The maximum MDP heuristic Inference: Approximate Bayesian computatio Properties of ABC

A Markov process



 ▶
 =
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓</

Markov process

Definition 6 (Markov Process - or Markov Chain)

The sequence $\{s_t \mid t = 1, ...\}$ of random variables $s_t : \Omega \to S$ is a Markov process if

$$\mathbb{P}(s_{t+1} \mid s_t, \dots, s_1) = \mathbb{P}(s_{t+1} \mid s_t).$$
(3.1)

- s_t is state of the Markov process at time t.
- $\mathbb{P}(s_{t+1} \mid s_t)$ is the transition kernel of the process.

The state of an algorithm

Observe that the R, n vectors of our greedy bandit algorithm form a Markov process. They also summarise our belief about which arm is the best.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 21 / 60

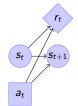
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Markov decision processes

Markov decision processes (MDP).

At each time step t:

- We observe state $s_t \in S$.
- We take action $a_t \in \mathcal{A}$.
- We receive a reward $r_t \in \mathbb{R}$.



Markov property of the reward and state distribution

$$\mathbb{P}_{\mu}(s_{t+1} \mid s_t, a_t) \ \mathbb{P}_{\mu}(r_t \mid s_t, a_t)$$

(Transition distribution) (Reward distribution)

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 22 / 60

The agent

The agent's policy $\boldsymbol{\pi}$

$$\mathbb{P}^{\pi}(a_t \mid r_t, s_t, a_t, \dots, r_1, s_1, a_1)$$
 (history-dependent policy)
$$\mathbb{P}^{\pi}(a_t \mid s_t)$$
 (Markov policy)

Definition 7 (Utility)

Given a horizon $T \ge 0$, and discount factor $\gamma \in (0, 1]$ the utility can be defined as

$$U_t \triangleq \sum_{k=0}^{T-t} \gamma^k r_{t+k} \tag{3.2}$$

The agent wants to to find π maximising the expected total future reward

$$\mathbb{E}^{\pi}_{\mu} U_{t} = \mathbb{E}^{\pi}_{\mu} \sum_{k=0}^{T-t} \gamma^{k} r_{t+k}.$$
 (expected utility)

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 23 / 60

State value function

$$V_{\mu,t}^{\pi}(s) \triangleq \mathbb{E}_{\mu}^{\pi}(U_t \mid s_t = s)$$
(3.3)

The optimal policy π^*

$$\pi^{*}(\mu): V_{t,\mu}^{\pi^{*}(\mu)}(s) \geq V_{t,\mu}^{\pi}(s) \quad \forall \pi, t, s$$
(3.4)

dominates all other policies π everywhere in S. The optimal value function V^*

$$V_{t,\mu}^{*}(s) \triangleq V_{t,\mu}^{\pi^{*}(\mu)}(s),$$
 (3.5)

is the value function of the optimal policy π^* .

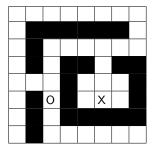
Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 24 / 60

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

Stochastic shortest path problem with a pit



Properties

- $T \to \infty$.
- ▶ $r_t = -1$, but $r_t = 0$ at X and -100 at O and the problem ends.
- $\mathbb{P}_{\mu}(s_{t+1} = X | s_t = X) = 1.$
- $\blacktriangleright \mathcal{A} = \{ North, South, East, West \}$
- Moves to a random direction with probability ω. Walls block.

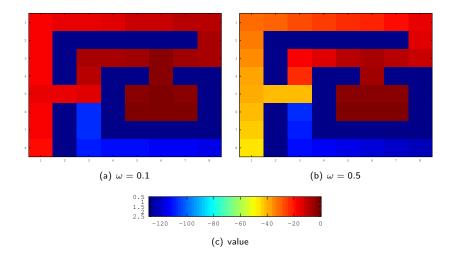


Figure: Pit maze solutions for two values of ω .

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

< □ ▶ < □ ▶ < 글 ▶ < 글 ▶ < 글 ▶ ∃|=
 April 16, 2015

Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: $\gamma = 1$)

$$V^{\pi}_{\mu,t}(s) \triangleq \mathbb{E}^{\pi}_{\mu}(U_t \mid s_t = s)$$
 (3.6)

(3.7)

This derivation directly gives a number of policy evaluation algorithms.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 27 / 60

$$V_{\mu,t}^{\pi}(s) \triangleq \mathbb{E}_{\mu}^{\pi}(U_t \mid s_t = s)$$
(3.6)

$$=\sum_{k=0}^{T-t} \mathbb{E}_{\mu}^{\pi}(r_{t+k} \mid s_t = s)$$
(3.7)

(3.8)

This derivation directly gives a number of policy evaluation algorithms.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 27 / 60

$$V_{\mu,t}^{\pi}(s) \triangleq \mathbb{E}_{\mu}^{\pi}(U_t \mid s_t = s)$$
(3.6)

$$=\sum_{k=0}^{T-t} \mathbb{E}^{\pi}_{\mu}(r_{t+k} \mid s_t = s)$$
(3.7)

$$= \mathbb{E}_{\mu}^{\pi}(r_t \mid s_t = s) + \mathbb{E}_{\mu}^{\pi}(U_{t+1} \mid s_t = s)$$
(3.8)

(3.9)

This derivation directly gives a number of policy evaluation algorithms.

T

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 27 / 60

$$V_{\mu,t}^{\pi}(s) \triangleq \mathbb{E}_{\mu}^{\pi}(U_t \mid s_t = s)$$
(3.6)

$$=\sum_{k=0}^{T-t} \mathbb{E}_{\mu}^{\pi}(r_{t+k} \mid s_t = s)$$
(3.7)

$$= \mathbb{E}_{\mu}^{\pi}(r_{t} \mid s_{t} = s) + \mathbb{E}_{\mu}^{\pi}(U_{t+1} \mid s_{t} = s)$$
(3.8)

$$= \mathbb{E}_{\mu}^{\pi}(r_t \mid s_t = s) + \sum_{i \in S} V_{\mu,t+1}^{\pi}(i) \mathbb{P}_{\mu}^{\pi}(s_{t+1} = i \mid s_t = s).$$
(3.9)

This derivation directly gives a number of policy evaluation algorithms.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 27 / 60

$$V_{\mu,t}^{\pi}(s) \triangleq \mathbb{E}_{\mu}^{\pi}(U_t \mid s_t = s)$$
(3.6)

$$=\sum_{k=0}^{T-t} \mathbb{E}^{\pi}_{\mu}(r_{t+k} \mid s_t = s)$$
(3.7)

$$= \mathbb{E}_{\mu}^{\pi}(r_{t} \mid s_{t} = s) + \mathbb{E}_{\mu}^{\pi}(U_{t+1} \mid s_{t} = s)$$
(3.8)

$$= \mathbb{E}_{\mu}^{\pi}(\mathbf{r}_{t} \mid \mathbf{s}_{t} = \mathbf{s}) + \sum_{i \in S} V_{\mu,t+1}^{\pi}(i) \mathbb{P}_{\mu}^{\pi}(\mathbf{s}_{t+1} = i \mid \mathbf{s}_{t} = \mathbf{s}).$$
(3.9)

This derivation directly gives a number of policy evaluation algorithms.

$$\max_{\pi} V_{\mu,t}^{\pi}(s) = \max_{a} \mathbb{E}_{\mu}(r_t \mid s_t = s, a) + \max_{\pi'} \sum_{i \in S} V_{\mu,t+1}^{\pi'}(i) \mathbb{P}_{\mu}^{\pi'}(s_{t+1} = i | s_t = s).$$

gives us the optimal policy value.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 27 / 60

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Backward induction for discounted infinite horizon problems

- ▶ We can also apply backwards induction to the infinite case.
- The resulting policy is stationary.
- So memory does not grow with T.

Value iteration

for n = 1, 2, ... and $s \in S$ do $v_n(s) = \max_a r(s, a) + \gamma \sum_{s' \in S} P_\mu(s' \mid s, a) v_{n-1}(s')$ end for

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Summary

- Markov decision processes model controllable dynamical systems.
- Optimal policies maximise expected utility can be found with:
 - Backwards induction / value iteration.
 - Policy iteration.
- The MDP state can be seen as
 - The state of a dynamic controllable process.
 - The internal state of an agent.

Subjective probability and utility

Subjective probability Rewards and preferences

Bandit problems

Bernoulli bandits

Markov decision processes and reinforcement learning

Markov processes Value functions Examples

Bayesian reinforcement learning

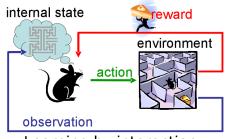
Reinforcement learning Bounds on the utility Planning: Heuristics and exact solutions Belief-augmented MDPs The expected MDP heuristic The maximum MDP heuristic Inference: Approximate Bayesian computatio Properties of ABC

Learning to act in an unknown world, by interaction and reinforcement.

Learning to act in an unknown world, by interaction and reinforcement.

World μ ; Policy π ; at time t

- μ generates observation $x_t \in \mathcal{X}$.
- We take action $a_t \in \mathcal{A}$ using π .
- μ gives us reward $r_t \in \mathbb{R}$.



Learning by interaction

Christos Dimitrakakis (Chalmers)

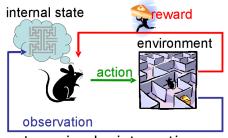
Bayesian reinforcement learning

April 16, 2015 31 / 60

Learning to act in an unknown world, by interaction and reinforcement.

World μ ; Policy π ; at time t

- μ generates observation $x_t \in \mathcal{X}$.
- We take action $a_t \in \mathcal{A}$ using π .
- μ gives us reward $r_t \in \mathbb{R}$.



Learning by interaction

Definition 8 (Utility)

$$U_t = \sum_{k=t}^T r_k$$

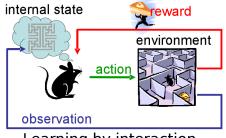
Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

Learning to act in an unknown world, by interaction and reinforcement.

World μ ; Policy π ; at time t

- μ generates observation $x_t \in \mathcal{X}$.
- We take action $a_t \in \mathcal{A}$ using π .
- μ gives us reward $r_t \in \mathbb{R}$.



Learning by interaction

Definition 8 (Expected utility)

$$\mathbb{E}^{\pi}_{\mu} U_t = \mathbb{E}^{\pi}_{\mu} \sum_{k=t}^{T} r_k$$

When μ is known, calculate max_{π} \mathbb{E}^{π}_{μ} *U*.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

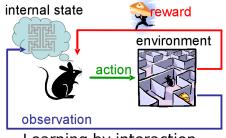
April 16, 2015 31 / 60

(日) (同) (三) (三) (三) (○) (○)

Learning to act in an unknown world, by interaction and reinforcement.

World μ ; Policy π ; at time t

- μ generates observation $x_t \in \mathcal{X}$.
- We take action $a_t \in \mathcal{A}$ using π .
- μ gives us reward $r_t \in \mathbb{R}$.



Learning by interaction

Definition 8 (Expected utility)

$$\mathbb{E}^{\pi}_{\mu} U_t = \mathbb{E}^{\pi}_{\mu} \sum_{k=t}^{T} r_k$$

Knowing μ is contrary to the problem definition

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 31 / 60

(日) (同) (三) (三) (三) (○) (○)

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

• Initial belief $\xi(\mu)$.

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

- Initial belief $\xi(\mu)$.
- The probability of observing history h is $\mathbb{P}^{\pi}_{\mu}(h)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

- Initial belief $\xi(\mu)$.
- The probability of observing history h is $\mathbb{P}^{\pi}_{\mu}(h)$.
- We can use this to adjust our belief via Bayes' theorem:

 $\xi(\mu \mid h, \pi) \propto \mathbb{P}^{\pi}_{\mu}(h)\xi(\mu)$

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

- Initial belief $\xi(\mu)$.
- The probability of observing history h is $\mathbb{P}^{\pi}_{\mu}(h)$.
- ▶ We can use this to adjust our belief via Bayes' theorem:

 $\xi(\mu \mid h, \pi) \propto \mathbb{P}^{\pi}_{\mu}(h)\xi(\mu)$

 \blacktriangleright We can thus conclude which μ is more likely.

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

- Initial belief $\xi(\mu)$.
- The probability of observing history h is $\mathbb{P}^{\pi}_{\mu}(h)$.
- We can use this to adjust our belief via Bayes' theorem:

 $\xi(\mu \mid h, \pi) \propto \mathbb{P}^{\pi}_{\mu}(h)\xi(\mu)$

• We can thus conclude which μ is more likely.

The subjective expected utility

$$\mathbb{E}^{\pi}_{\xi} U = \sum_{\mu} \left(\mathbb{E}^{\pi}_{\mu} U \right) \xi(\mu).$$

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 32 / 60

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

Bayesian idea: use a subjective belief $\xi(\mu)$ on \mathcal{M}

- Initial belief $\xi(\mu)$.
- The probability of observing history h is $\mathbb{P}^{\pi}_{\mu}(h)$.
- We can use this to adjust our belief via Bayes' theorem:

 $\xi(\mu \mid h, \pi) \propto \mathbb{P}^{\pi}_{\mu}(h)\xi(\mu)$

• We can thus conclude which μ is more likely.

The subjective expected utility

$$U^*_{\xi} \triangleq \max_{\pi} \mathbb{E}^{\pi}_{\xi} U = \max_{\pi} \sum_{\mu} \left(\mathbb{E}^{\pi}_{\mu} U \right) \xi(\mu).$$

Integrates planning and learning, and the exploration-exploitation trade-off

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 32 / 60

Bayesian reinforcement learning B

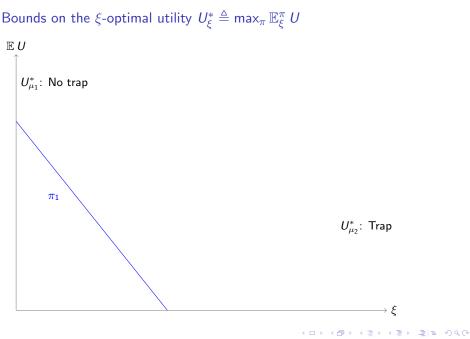
Bounds on the utility

```
Bounds on the \xi-optimal utility U_{\xi}^* \triangleq \max_{\pi} \mathbb{E}_{\xi}^{\pi} U
```

 $\mathbb{E} U$ $U_{\mu_1}^*$: No trap

Bayesian reinforcement learning E

Bounds on the utility



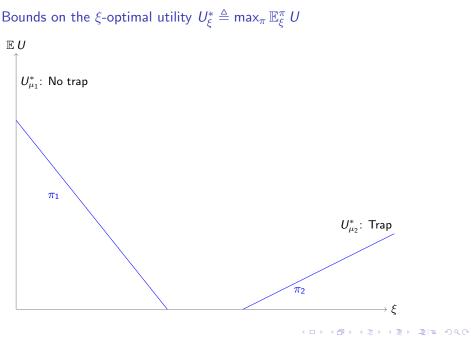
Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 33 / 60

Bayesian reinforcement learning E

Bounds on the utility

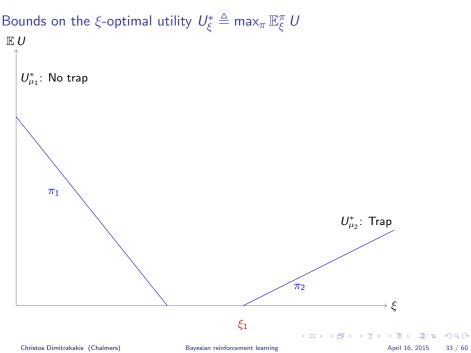


Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

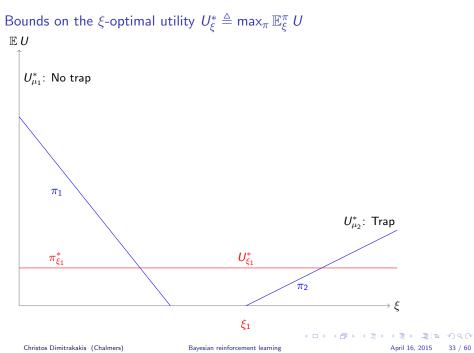
April 16, 2015 33 / 60

Bayesian reinforcement learning B

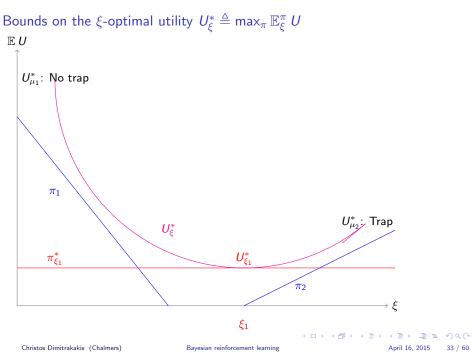


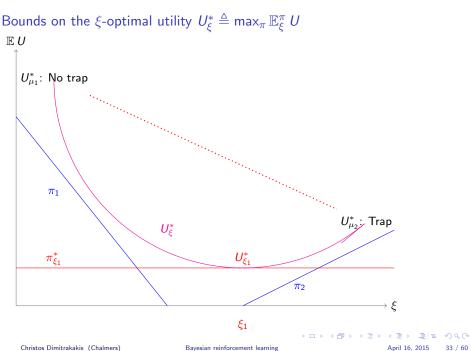
Bayesian reinforcement learning B

Bounds on the utility



Bayesian reinforcement learning E





Bernoulli bandits

Decision-theoretic approach

- Assume $r_t \mid a_t = i \sim P_{\omega_i}$, with $\omega_i \in \Omega$.
- Define prior belief ξ_1 on Ω .
- For each step t, select action a_t to maximise

$$\mathbb{E}_{\xi_t}(U_t \mid a_t) = \mathbb{E}_{\xi_t}\left(\sum_{k=1}^{\tau-t} \gamma^k r_{t+k} \mid a_t\right)$$

- ▶ Obtain reward *r*_t.
- Calculate the next belief

$$\xi_{t+1} = \xi_t(\cdot \mid a_t, r_t)$$

How can we implement this?

Christos Dimitrakakis (Chalmers)

April 16, 2015 34 / 60

Bayesian inference on Bernoulli bandits

- Likelihood: $\mathbb{P}_{\omega}(r_t = 1) = \omega$.
- Prior: $\xi(\omega) \propto \omega^{\alpha-1} (1-\omega)^{\beta-1}$ (i.e. $Beta(\alpha,\beta)$).

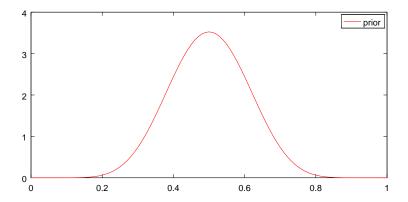


Figure: Prior belief ξ about the mean reward ω .

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 35 / 60

Bayesian inference on Bernoulli bandits

For a sequence
$$r = r_1, \ldots, r_n$$
, $\Rightarrow P_{\omega}(r) \propto \omega_i^{\#1(r)} (1 - \omega_i)^{\#0(r)}$

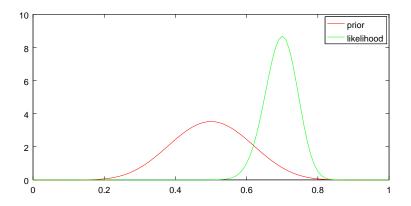


Figure: Prior belief ξ about ω and likelihood of ω for 100 plays with 70 1s.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 35 / 60

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bayesian inference on Bernoulli bandits

Posterior: $Beta(\alpha + \#1(\mathbf{r}), \beta + \#0(\mathbf{r}))$.

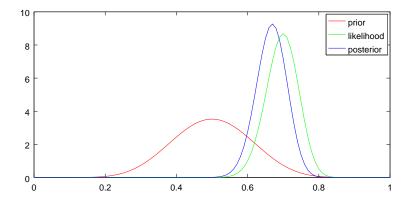


Figure: Prior belief $\xi(\omega)$ about ω , likelihood of ω for the data r, and posterior belief $\xi(\omega \mid r)$

Bernoulli example.

Consider *n* Bernoulli distributions with unknown parameters ω_i $(i = 1, \ldots, n)$ such that

$$r_t \mid a_t = i \sim Bern(\omega_i), \qquad \mathbb{E}(r_t \mid a_t = i) = \omega_i.$$
 (4.1)

Our belief for each parameter ω_i is $Beta(\alpha_i, \beta_i)$, with density $f(\omega \mid \alpha_i, \beta_i)$ so that

$$\xi(\omega_1,\ldots,\omega_n) = \prod_{i=1}^n f(\omega_i \mid \alpha_i,\beta_i).$$
 (a priori independent)

$$N_{t,i} \triangleq \sum_{k=1}^{t} \mathbb{I}\left\{a_k = i\right\}, \qquad \hat{r}_{t,i} \triangleq \frac{1}{N_{t,i}} \sum_{k=1}^{t} r_t \mathbb{I}\left\{a_k = i\right\}$$

Then, the posterior distribution for the parameter of arm i is

$$\xi_t = \operatorname{Beta}(\alpha_i + N_{t,i}\hat{r}_{t,i} , \beta_i + N_{t,i}(1 - \hat{r}_{t,i})).$$

Since $r_t \in \{0,1\}$ there are $O((2n)^T)$ possible belief states for a *T*-step bandit problem.

Christos Dimitrakakis (Chalmers)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Belief states

- > The state of the decision-theoretic bandit problem is the state of our belief.
- A sufficient statistic is the number of plays and total rewards.
- Our belief state ξ_t is described by the priors α, β and the vectors

$$N_t = (N_{t,1}, \ldots, N_{t,i}) \tag{4.2}$$

$$\hat{r}_t = (\hat{r}_{t,1}, \dots, \hat{r}_{t,i}).$$
 (4.3)

The next-state probabilities are defined as:

$$\mathbb{P}(\mathbf{r}_t = 1 \mid \mathbf{a}_t = i, \xi_t) = \frac{\alpha_i + N_{t,i}\hat{\mathbf{r}}_{t,i}}{\alpha_i + \beta_i + N_{t,i}}$$

as ξ_{t+1} is a deterministic function of ξ_t , r_t and a_t

So the bandit problem can be formalised as a Markov decision process.

Christos Dimitrakakis (Chalmers)

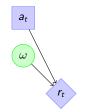


Figure: The basic bandit MDP. The decision maker selects a_t , while the parameter ω of the process is hidden. It then obtains reward r_t . The process repeats for t = 1, ..., T.

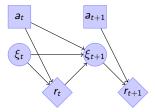


Figure: The decision-theoretic bandit MDP. While ω is not known, at each time step t we maintain a belief ξ_t on Ω . The reward distribution is then defined through our belief.

Backwards induction (Dynamic programming)

for $n = 1, 2, \ldots$ and $s \in \mathcal{S}$ do

$$\mathbb{E}(U_t \mid \xi_t) = \max_{a_t \in \mathcal{A}} \mathbb{E}(r_t \mid \xi_t, a_t) + \gamma \sum_{\xi_{t+1}} \mathbb{P}(\xi_{t+1} \mid \xi_t, a_t) \mathbb{E}(U_{t+1} \mid \xi_{t+1})$$

end for

Backwards induction (Dynamic programming)

for $n = 1, 2, \ldots$ and $s \in \mathcal{S}$ do

$$\mathbb{E}(U_t \mid \xi_t) = \max_{a_t \in \mathcal{A}} \mathbb{E}(r_t \mid \xi_t, a_t) + \gamma \sum_{\xi_{t+1}} \mathbb{P}(\xi_{t+1} \mid \xi_t, a_t) \mathbb{E}(U_{t+1} \mid \xi_{t+1})$$

end for

Exact solution methods: exponential in the horizon

- Dynamic programming (backwards induction etc)
- Policy search.

Approximations

- (Stochastic) branch and bound.
- Upper confidence trees.
- Approximate dynamic programming.
- Local policy search (e.g. gradient based)

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

Bayesian RL for unknown MDPs

We are in some environment μ , where at each time, we: step *t*:

- Observe state $s_t \in S$.
- Take action $a_t \in \mathcal{A}$.
- Receive reward $r_t \in \mathbb{R}$.

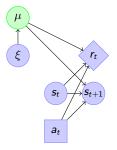


Figure: The unknown Markov decision process

How can we find the Bayes optimal policy for unknown MDPs?

Some heuristics

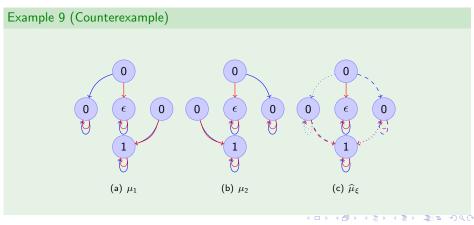
- 1. Only change policy at the start of epochs t_i .
- 2. Calculate the belief ξ_{t_i} .
- 3. Find a "good" policy π_i for the current belief.
- 4. Execute it until the next epoch i + 1.

One simple heuristic is to simply calculate the expected MDP for a given belief ξ :

$$\widehat{\mu}_{\xi} \triangleq \mathbb{E}_{\xi} \mu.$$

Then, we simply calculate the optimal policy for $\widehat{\mu}_{\xi}$:

$$\pi^*(\widehat{\mu}_{\xi}) \in \operatorname*{arg\,max}_{\pi \in \Pi_1} V^{\pi}_{\widehat{\mu}_{\xi}},$$



Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

Another heuristic is to get the most probable MDP for a belief ξ :

$$\widehat{\mu}_{\xi}^{*} \triangleq rg\max_{\mu} \xi(\mu)$$

Then, we simply calculate the optimal policy for $\widehat{\mu}_{\xi}^*$:

$$\pi^*(\widehat{\mu}_{\xi}) \in \operatorname*{arg\,max}_{\pi \in \Pi_1} V^{\pi}_{\widehat{\mu}_{\xi}},$$

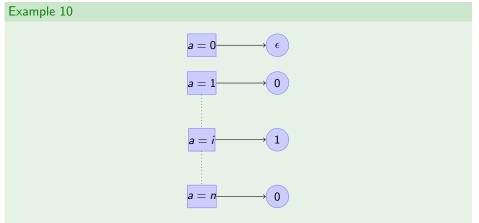


Figure: The MDP μ_i from $|\mathcal{A}| + 1$ MDPs.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

Posterior (Thompson) sampling

Another heuristic is to simply sample an MDP from the belief ξ :

 $\mu^{(k)} \sim \xi(\mu)$

Then, we simply calculate the optimal policy for $\mu^{(k)}$:

$$\pi^*(\widehat{\mu}_{\xi}) \in rgmax_{\pi \in \Pi_1} V^{\pi}_{\mu^{(k)}},$$

Properties

- ▶ \sqrt{T} regret. (Direct proof: hard [1]. Easy proof: convert to confidence bound [11])
- Generally applicable for many beliefs.
- Connections to differential privacy [9].
- Generalises to stochastic value function bounds [8].

Christos Dimitrakakis (Chalmers)

Belief-Augmented MDPs

- Unknown bandit problems can be converted into MDPs through the belief state.
- ▶ We can do the same for MDPs. We just create a hyperstate, composed of the current belief and the current belief state.

Bayesian reinforcement learning Planning: Heuristics and exact solutions

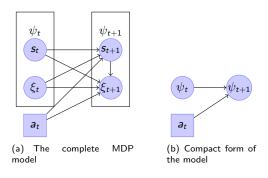


Figure: Belief-augmented MDP

The augmented MDP

$$P(s_{t+1} \in S \mid \xi_t, s_t, a_t) \triangleq \int_S P_{\mu}(s_{t+1} \in S \mid s_t, a_t) \,\mathrm{d}\xi_t(\mu) \tag{4.4}$$

$$\xi_{t+1}(\cdot) = \xi_t(\cdot \mid s_{t+1}, s_t, a_t)$$
(4.5)

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

▶ So now we have converted the unknown MDP problem into an MDP.

- ▶ So now we have converted the unknown MDP problem into an MDP.
- > That means we can use dynamic programming to solve it.

<□> <同> <同> <目> <目> <同> <日> <同> <日> <日> <同> <日> <日 < ○<

- ▶ So now we have converted the unknown MDP problem into an MDP.
- That means we can use dynamic programming to solve it.
- So... are we done?

- ▶ So now we have converted the unknown MDP problem into an MDP.
- That means we can use dynamic programming to solve it.
- So... are we done?
- Unfortunately the exact solution is again exponential in the horizon.

How to deal with an arbitrary model space $\ensuremath{\mathcal{M}}$

- The models $\mu \in \mathcal{M}$ may be non-probabilistic simulators.
- ▶ We may not know how to choose the simulator parameters.

How to deal with an arbitrary model space $\ensuremath{\mathcal{M}}$

- The models $\mu \in \mathcal{M}$ may be non-probabilistic simulators.
- We may not know how to choose the simulator parameters.

Overview of the approach

- ► Place a prior on the simulator parameters.
- Observe some data *h* on the real system.
- Approximate the posterior by statistics on simulated data.
- Calculate a near-optimal policy for the posterior.

How to deal with an arbitrary model space $\ensuremath{\mathcal{M}}$

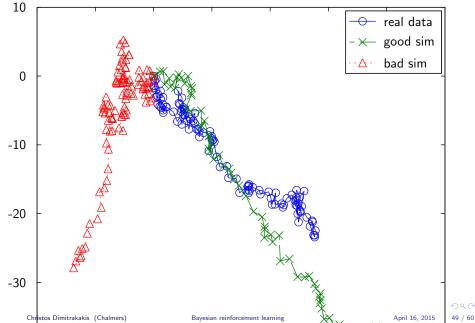
- The models $\mu \in \mathcal{M}$ may be non-probabilistic simulators.
- We may not know how to choose the simulator parameters.

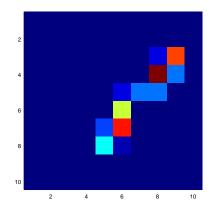
Overview of the approach

- ► Place a prior on the simulator parameters.
- Observe some data *h* on the real system.
- Approximate the posterior by statistics on simulated data.
- Calculate a near-optimal policy for the posterior.

Results

- Soundness depends on properties of the statistics.
- ▶ In practice, can require much less data than a general model.





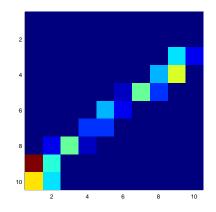
Cumulative features of real data

Trajectories are easy to generate.

イロン イヨン イヨン イヨン

- How to compare?
- Use a statistic.

三日 のへの



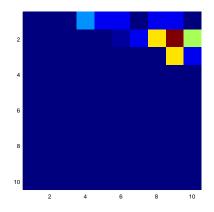
Cumulative features of good sim

Trajectories are easy to generate.

イロン イヨン イヨン イヨン

- How to compare?
- Use a statistic.

三日 のへの



Cumulative features of bad sim

Trajectories are easy to generate.

イロン イヨン イヨン イヨン

- How to compare?
- Use a statistic.

三日 のへの

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- \blacktriangleright A prior ξ on a class of simulators ${\cal M}$
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- ► Threshold ε > 0.

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- ► Threshold ε > 0.

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

Example 11 (Cumulative features)

Feature function $\phi : \mathcal{X} \to \mathbb{R}^k$.

$$f(h) \triangleq \sum_t \phi(x_t)$$

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 50 / 60

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

Example 11 (Utility)

$$f(h) \triangleq \sum_t r_t$$

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 50 / 60

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

ABC-RL using Thompson sampling

- ► do $\hat{\mu} \sim \xi$, $h' \sim \mathbb{P}_{\hat{\mu}}^{\pi}$
- until $\|f(h') f(h)\| \leq \epsilon$
- $\blacktriangleright \ \mu^{(k)} = \hat{\mu}$
- $\pi^{(k)} \approx \arg \max \mathbb{E}^{\pi}_{\mu^{(k)}} U_t$

// sample a model and history // until the statistics are close // approximate posterior sample $\mu^{(k)} \sim \xi_{\epsilon}(\cdot \mid h_t)$ // approximate optimal policy for sample

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

ABC-RL using Thompson sampling

- do $\hat{\mu} \sim \xi$, $h' \sim \mathbb{P}^{\pi}_{\hat{\mu}}$
- until $\|f(h') f(h)\| \le \epsilon$
- $\blacktriangleright \ \mu^{(k)} = \hat{\mu}$
- $\pi^{(k)} \approx \arg \max \mathbb{E}_{\mu^{(k)}}^{\pi} U_t$

// sample a model and history // until the statistics are close // approximate posterior sample $\mu^{(k)} \sim \xi_{\epsilon}(\cdot \mid h_t)$ // approximate optimal policy for sample

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

ABC-RL using Thompson sampling

- $\blacktriangleright \ \mathbf{do} \ \hat{\mu} \sim \xi, \ h' \sim \mathbb{P}^{\pi}_{\hat{\mu}}$
- until $\|f(h') f(h)\| \leq \epsilon$
- $\blacktriangleright \ \mu^{(k)} = \hat{\mu}$
- $\pi^{(k)} \approx \arg \max \mathbb{E}^{\pi}_{\mu^{(k)}} U_t$

 $\label{eq:linear} \begin{array}{l} // \text{ sample a model and history} \\ // \text{ until the statistics are close} \\ // \text{ approximate posterior sample } \mu^{(k)} \sim \xi_\epsilon(\cdot \mid h_t) \\ \\ // \text{ approximate optimal policy for sample} \end{array}$

When there is no probabilistic model (\mathbb{P}_{μ} is not available): ABC!

- A prior ξ on a class of simulators \mathcal{M}
- History $h \in \mathcal{H}$ from policy π .
- Statistic $f : \mathcal{H} \to (\mathcal{W}, \| \cdot \|)$
- Threshold $\epsilon > 0$.

ABC-RL using Thompson sampling

- $\blacktriangleright \ \mathbf{do} \ \hat{\mu} \sim \xi, \ h' \sim \mathbb{P}_{\hat{\mu}}^{\pi}$
- until $\|f(h') f(h)\| \leq \epsilon$
- $\blacktriangleright \ \mu^{(k)} = \hat{\mu}$
- $\pi^{(k)} \approx \arg \max \mathbb{E}^{\pi}_{\mu^{(k)}} U_t$

 $\label{eq:linear} \begin{array}{l} // \text{ sample a model and history} \\ // \text{ until the statistics are close} \\ // \text{ approximate posterior sample } \mu^{(k)} \sim \xi_\epsilon(\cdot \mid h_t) \\ \\ // \text{ approximate optimal policy for sample} \end{array}$

The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$

Corollary 11

If f is a sufficient statistic and $\epsilon = 0$, then $\xi(\cdot \mid h) = \xi_{\epsilon}(\cdot \mid h)$.

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 51 / 60

The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$

Corollary 11

If f is a sufficient statistic and $\epsilon = 0$, then $\xi(\cdot \mid h) = \xi_{\epsilon}(\cdot \mid h)$.

Assumption 2 (A1. Lipschitz log-probabilities)

For the policy π , $\exists L > 0$ s.t. $\forall h, h' \in \mathcal{H}$ and $\forall \mu \in \mathcal{M}$

 $\left|\ln\left[\mathbb{P}_{\mu}^{\pi}(h)/\mathbb{P}_{\mu}^{\pi}(h')
ight]
ight|\leq L\|f(h)-f(h')\|$

The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$

Corollary 11

If f is a sufficient statistic and $\epsilon = 0$, then $\xi(\cdot \mid h) = \xi_{\epsilon}(\cdot \mid h)$.

Assumption 2 (A1. Lipschitz log-probabilities)

For the policy π , $\exists L > 0$ s.t. $\forall h, h' \in \mathcal{H}$ and $\forall \mu \in \mathcal{M}$

 $\left|\ln\left[\mathbb{P}_{\mu}^{\pi}(h)/\mathbb{P}_{\mu}^{\pi}(h')
ight]
ight|\leq {\color{black}L}\|f(h)-f(h')\|$

Theorem 12 (The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$ is close to $\xi(\cdot \mid h)$)

If A1 holds then $\forall \epsilon > 0$:

$$D\left(\xi(\cdot \mid h) \parallel \xi_{\epsilon}(\cdot \mid h)\right) \le 2\mathbf{L}\epsilon + \ln |A_{\epsilon}^{h}|, \tag{4.6}$$

where $A_{\epsilon}^{h} \triangleq \{z \in \mathcal{H} \mid ||f(z) - f(h)|| \leq \epsilon\}.$

Christos Dimitrakakis (Chalmers)

The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$

Corollary 11

If f is a sufficient statistic and $\epsilon = 0$, then $\xi(\cdot \mid h) = \xi_{\epsilon}(\cdot \mid h)$.

Assumption 2 (A1. Lipschitz log-probabilities)

For the policy π , $\exists L > 0$ s.t. $\forall h, h' \in \mathcal{H}$ and $\forall \mu \in \mathcal{M}$

 $\left|\ln\left[\mathbb{P}_{\mu}^{\pi}(h)/\mathbb{P}_{\mu}^{\pi}(h')
ight]
ight|\leq L\|f(h)-f(h')\|$

Theorem 12 (The approximate posterior $\xi_{\epsilon}(\cdot \mid h)$ is close to $\xi(\cdot \mid h)$)

If A1 holds then $\forall \epsilon > 0$:

$$D\left(\xi(\cdot \mid h) \parallel \xi_{\epsilon}(\cdot \mid h)\right) \le 2L\epsilon + \ln |A_{\epsilon}^{h}|, \tag{4.6}$$

where $A_{\epsilon}^{h} \triangleq \{z \in \mathcal{H} \mid ||f(z) - f(h)|| \leq \epsilon\}.$

Christos Dimitrakakis (Chalmers)

- Unknown MDPs can be handled in a Bayesian framework.
- This defines a belief-augmented MDP with
 - A state for the MDP.
 - A state for the agent's belief.
- ► The Bayes-optimal utility is convex, enabling approximations.
- A big problem in specifying the "right" prior.

Questions?

Belief updates

Discounted reward MDPs Backwards induction

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 53 / 60

Updating the belief in discrete MDPs

Let $D_t = \left\langle s^t, a^{t-1}, r^{t-1} \right
angle$ be the observed data to time t. Then

$$\xi(B \mid D_t, \pi) = \frac{\int_B \mathbb{P}^{\pi}_{\mu}(D_t) \,\mathrm{d}\xi(\mu)}{\int_{\mathcal{M}} \mathbb{P}^{\pi}_{\mu}(D_t) \,\mathrm{d}\xi(\mu)}.$$
(5.1)

$$\xi_{t+1}(B) \triangleq \xi(B \mid D_{t+1}) = \frac{\int_{B} \mathbb{P}^{\mu}_{\mu}(D_{t}) \,\mathrm{d}\xi(\mu)}{\int_{\mathcal{M}} \mathbb{P}^{\pi}_{\mu}(D_{t}) \,\mathrm{d}\xi(\mu)}$$
(5.2)
$$= \frac{\int_{B} \mathbb{P}_{\mu}(s_{t+1}, r_{t} \mid s_{t}, a_{t}) \pi(a_{t} \mid s^{t}, a^{t-1}, r^{t-1}) \,\mathrm{d}\xi(\mu \mid D_{t})}{\int_{\mathcal{M}} \mathbb{P}_{\mu}(s_{t+1}, r_{t} \mid s_{t}, a_{t}) \,\mathrm{d}(a_{t} \mid s^{t}, a^{t-1}, r^{t-1}) \,\mathrm{d}\xi(\mu \mid D_{t})}$$
(5.3)
$$= \frac{\int_{B} \mathbb{P}_{\mu}(s_{t+1}, r_{t} \mid s_{t}, a_{t}) \,\mathrm{d}\xi_{t}(\mu)}{\int_{\mathcal{M}} \mathbb{P}_{\mu}(s_{t+1}, r_{t} \mid s_{t}, a_{t}) \,\mathrm{d}\xi_{t}(\mu)}$$
(5.4)

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

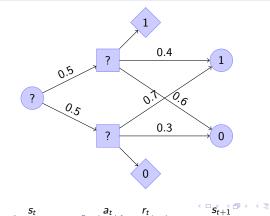
April 16, 2015 54 / 60

Backwards induction policy evaluation

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \mathbb{E}^{\pi}_{\mu}(r_t \mid s_t = s) + \sum_{j \in S} \mathbb{P}^{\pi}_{\mu}(s_{t+1} = j \mid s_t = s)v_{t+1}(j),$$
(5.5)

end for



Christos Dimitrakakis (Chalmers)

a_t **r**_t Bayesian reinforcement learning

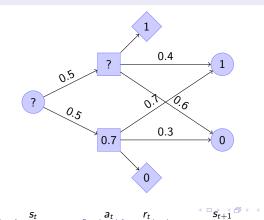
三日 うくの < ≣ > . April 16, 2015 55 / 60

Backwards induction policy evaluation

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \mathbb{E}^{\pi}_{\mu}(r_t \mid s_t = s) + \sum_{j \in S} \mathbb{P}^{\pi}_{\mu}(s_{t+1} = j \mid s_t = s)v_{t+1}(j),$$
(5.5)

end for



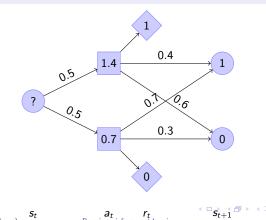
画言 めへの April 16, 2015 55 / 60

Backwards induction policy evaluation

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \mathbb{E}^{\pi}_{\mu}(r_t \mid s_t = s) + \sum_{j \in S} \mathbb{P}^{\pi}_{\mu}(s_{t+1} = j \mid s_t = s)v_{t+1}(j),$$
(5.5)

end for



Christos Dimitrakakis (Chalmers)

a_t **r**_t Bayesian reinforcement learning

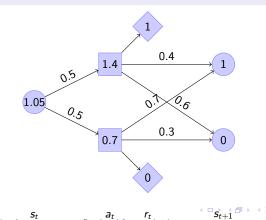
画言 めへの April 16, 2015 55 / 60

Backwards induction policy evaluation

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \mathbb{E}^{\pi}_{\mu}(r_t \mid s_t = s) + \sum_{j \in S} \mathbb{P}^{\pi}_{\mu}(s_{t+1} = j \mid s_t = s)v_{t+1}(j),$$
(5.5)

end for



Christos Dimitrakakis (Chalmers)

a_t **r**_t Bayesian reinforcement learning

三日 うくの April 16, 2015 55 / 60

Discounted reward MDPs

Belief updates

Discounted reward MDPs

Backwards induction

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 56 / 60

Discounted total reward.

$$U_t = \lim_{T \to \infty} \sum_{k=t}^T \gamma^k r_k, \qquad \gamma \in (0, 1)$$

Definition 13

A policy π is stationary if $\pi(a_t \mid s_t)$ does not depend on t.

Remark 1

We can use the Markov chain kernel $P_{\mu,\pi}$ to write the expected utility vector as

$$\boldsymbol{v}^{\pi} = \sum_{t=0}^{\infty} \gamma^{t} \boldsymbol{P}_{\mu,\pi}^{t} \boldsymbol{r}$$
(6.1)

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 57 / 60

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 14

For any stationary policy π , v^{π} is the unique solution of

$$\boldsymbol{v} = \boldsymbol{r} + \gamma \boldsymbol{P}_{\mu,\pi} \boldsymbol{v}. \quad \leftarrow \text{fixed point}$$
 (6.2)

In addition, the solution is:

$$\boldsymbol{v}^{\pi} = (\boldsymbol{I} - \gamma \boldsymbol{P}_{\mu,\pi})^{-1} \boldsymbol{r}. \tag{6.3}$$

Example 15

Similar to the geometric series:

$$\sum_{t=0}^{\infty} \alpha^t = \frac{1}{1-\alpha}$$

 \sim

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 58 / 60

Policy iteration

Algorithm 1 Policy iteration

Input μ , S. Initialise v_0 . for n = 1, 2, ... do $\pi_{n+1} = \arg \max_{\pi} \{r + \gamma P_{\pi} v_n\}$ // policy improvement $v_{n+1} = (I - \gamma P_{\mu,\pi_{n+1}})^{-1}r$ // policy evaluation break if $\pi_{n+1} = \pi_n$. end for Return π_n, v_n .

Christos Dimitrakakis (Chalmers)

Bayesian reinforcement learning

April 16, 2015 59 / 60

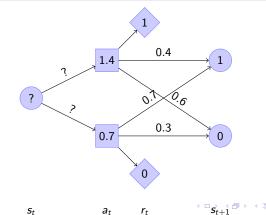
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Backwards induction policy optimization

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \max_a \mathbb{E}_{\mu}(r_t \mid s_t = s, a_t = a) + \sum_{j \in S} \mathbb{P}_{\mu}(s_{t+1} = j \mid s_t = s, a_t = a)v_{t+1}(j),$$
 (6.4)

end for



Christos Dimitrakakis (Chalmers)

a_t **r**_t Bayesian reinforcement learning

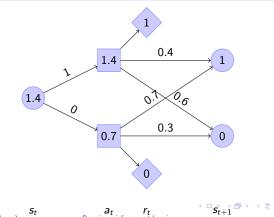
三日 うくの 문에 비문어. April 16, 2015 60 / 60

Backwards induction policy optimization

for State $s \in S$, $t = T, \ldots, 1$ do Update values

$$v_t(s) = \max_a \mathbb{E}_{\mu}(r_t \mid s_t = s, a_t = a) + \sum_{j \in S} \mathbb{P}_{\mu}(s_{t+1} = j \mid s_t = s, a_t = a)v_{t+1}(j),$$
 (6.4)

end for



Christos Dimitrakakis (Chalmers)

a_t **r**_t Bayesian reinforcement learning

画言 めえの 문에 세종에 April 16, 2015 60 / 60

References

- [1] Shipra Agrawal and Navi Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In *COLT 2012*, 2012.
- [2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite time analysis of the multiarmed bandit problem. *Machine Learning*, 47(2/3):235–256, 2002.
- [3] Dimitri P. Bertsekas. *Dynamic Programming and Optimal Control*. Athena Scientific, 2001.
- [4] Dimitri P. Bertsekas and John N. Tsitsiklis. *Neuro-Dynamic Programming*. Athena Scientific, 1996.
- [5] Herman Chernoff. Sequential design of experiments. Annals of Mathematical Statistics, 30(3):755–770, 1959.
- [6] Herman Chernoff. Sequential Models for Clinical Trials. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol.4, pages 805–812. Univ. of Calif Press, 1966.
- [7] Morris H. DeGroot. *Optimal Statistical Decisions*. John Wiley & Sons, 1970.
- [8] Christos Dimitrakakis. Monte-carlo utility estimates for bayesian reinforcement learning. In *IEEE 52nd Annual Conference on Decision and Control (CDC 2013)*, 2013. arXiv:1303.2506.
- [9] Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin Rubinstein. Robust and private Bayesian inference. In *Algorithmic Learning Theory*, 2014.
- [10] Milton Friedman and Leonard J. Savage. The expected-utility hypothesis and the measurability of utility. The Journal of Political Economy, 60(6):463, 1952. Bayesian reinforcement learning Christos Dimitrakakis (Chalmers)

- [11] Emilie Kaufmanna, Nathaniel Korda, and Rémi Munos. Thompson sampling: An optimal finite time analysis. In ALT-2012, 2012.
- [12] Marting L. Puterman. Markov Decision Processes : Discrete Stochastic Dynamic Programming. John Wiley & Sons, New Jersey, US, 1994.
- [13] Leonard J. Savage. The Foundations of Statistics. Dover Publications, 1972.
- [14] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In *ICML 2010*, 2010.
- [15] Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press, 1998.