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Subjective probability and utility Subjective probability

What about everyday life?
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Subjective probability and utility Subjective probability

Subjective probability

▶ Making decisions requires making predictions.

▶ Outcomes of decisions are uncertain.

▶ How can we represent this uncertainty?

Subjective probability

▶ Describe which events we think are more likely.

▶ We quantify this with probability.

Why probability?

▶ Quantifies uncertainty in a “natural” way.

▶ A framework for drawing conclusions from data.

▶ Computationally convenient for decision making.
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Subjective probability and utility Rewards and preferences

Rewards

▶ We are going to receive a reward r from a set R of possible rewards.

▶ We prefer some rewards to others.

Example 1 (Possible sets of rewards R)

▶ R is a set of tickets to different musical events.

▶ R is a set of financial commodities.
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Subjective probability and utility Rewards and preferences

When we cannot select rewards directly

▶ In most problems, we cannot just choose which reward to receive.

▶ We can only specify a distribution on rewards.

Example 2 (Route selection)

▶ Each reward r ∈ R is the time it takes to travel from A to B.

▶ Route P1 is faster than P2 in heavy traffic and vice-versa.

▶ Which route should be preferred, given a certain probability for heavy traffic?

In order to choose between random rewards, we use the concept of utility.
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Subjective probability and utility Rewards and preferences

Definition 3 (Utility)

The utility is a function U : R → R, such that for all a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (1.1)

The expected utility of a distribution P on R is:

EP(U) =
∑
r∈R

U(r)P(r)

(1.2)

=

∫
R

U(r) dP(r)

(1.3)

Assumption 1 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P. Consequently,

P ≿∗ Q iff EP(U) ≥ EQ(U). (1.4)

i.e. we prefer P to Q iff the expected utility under P is higher than under Q
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Subjective probability and utility Rewards and preferences

The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

▶ A fair coin is tossed until a head is obtained.

▶ If the first head is obtained on the n-th toss, our reward will be 2n currency units.

How much are you willing to pay, to play this game once?

▶ The probability to stop at round n is 2−n.

▶ Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n =∞.

▶ If your utility function were linear (U(r) = r) you’d be willing to pay any amount to
play.

▶ You might not internalise the setup of the game (is the coin really fair?)
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Subjective probability and utility Rewards and preferences

Summary

▶ We can subjectively indicate which events we think are more likely.

▶ We can define a subjective probability P for all events.

▶ Similarly, we can subjectively indicate preferences for rewards.

▶ We can determine a utility function for all rewards.

▶ Hypothesis: we prefer the probability distribution with the highest expected utility.

▶ This allows us to create algorithms for decision making.
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Subjective probability and utility Rewards and preferences

Experimental design and Markov decision processes

The following problems

▶ Shortest path problems.

▶ Optimal stopping problems.

▶ Reinforcement learning problems.

▶ Experiment design (clinical trial) problems

▶ Advertising.

can be all formalised as Markov decision processes.
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Bandit problems

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.
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Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

Ultrasound
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Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.
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Bandit problems

The stochastic n-armed bandit problem

Actions and rewards

▶ A set of actions A = {1, . . . , n}.
▶ Each action gives you a random reward with distribution P(rt | at = i).

▶ The expected reward of the i-th arm is ωi ≜ E(rt | at = i).

Utility

The utility is the sum of the individual rewards r = r1, . . . , rT

U(r) ≜
T∑
t=1

rt .

Definition 4 (Policies)

A policy π is an algorithm for taking actions given the observed history.

Pπ(at+1 | a1, r1, . . . , at , rt)

is the probability of the next action at+1.
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Bandit problems Bernoulli bandits

Bernoulli bandits

Example 5 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi ). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is E(rt | at = i) = ωi .

Exercise 1 (The optimal policy)

▶ If we know ωi for all i , what is the best policy?

▶ What if we don’t?
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Bandit problems Bernoulli bandits

Bernoulli bandits

Example 5 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters ωi (i = 1, . . . , n) such that
rt | at = i ∼ Bern(ωi ). Then,

P(rt = 1 | at = i) = ωi P(rt = 0 | at = i) = 1− ωi (2.1)

Then the expected reward for the i-th bandit is E(rt | at = i) = ωi .

Exercise 1 (The optimal policy)

▶ If we know ωi for all i , what is the best policy?

▶ What if we don’t?
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Bandit problems Bernoulli bandits

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

ω̂t,i = Rt,i/nt,i

▶ nt,i the number of times you played arm i

▶ Rt,i the total reward received from i .

Whenever you play at = i :

Rt+1,i = Rt,i + rt , nt+1,i = nt,i + 1.

Greedy policy:
at = argmax

i
ω̂t,i .

What should the initial values n0,i ,R0,i be?
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Bandit problems Bernoulli bandits

The greedy policy for n0,i = R0,i = 1

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 9001000

ω1
ω2
ω̂1
ω̂2∑t

k=1 rk/t

Christos Dimitrakakis (Chalmers) Bayesian reinforcement learning April 16, 2015 18 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Markov decision processes and reinforcement learning

Subjective probability and utility
Subjective probability
Rewards and preferences

Bandit problems
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Value functions
Examples

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Planning: Heuristics and exact solutions
Belief-augmented MDPs
The expected MDP heuristic
The maximum MDP heuristic
Inference: Approximate Bayesian computation
Properties of ABC
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Markov decision processes and reinforcement learning Markov processes

A Markov process
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Markov decision processes and reinforcement learning Markov processes

Markov process

st−1 st st+1

Definition 6 (Markov Process – or Markov Chain)

The sequence {st | t = 1, . . .} of random variables st : Ω → S is a Markov process if

P(st+1 | st , . . . , s1) = P(st+1 | st). (3.1)

▶ st is state of the Markov process at time t.

▶ P(st+1 | st) is the transition kernel of the process.

The state of an algorithm

Observe that the R, n vectors of our greedy bandit algorithm form a Markov process.
They also summarise our belief about which arm is the best.
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Markov decision processes and reinforcement learning Markov processes

Markov decision processes

Markov decision processes (MDP).

At each time step t:

▶ We observe state st ∈ S.
▶ We take action at ∈ A.
▶ We receive a reward rt ∈ R. at

st st+1

rt

Markov property of the reward and state distribution

Pµ(st+1 | st , at) (Transition distribution)

Pµ(rt | st , at) (Reward distribution)
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Markov decision processes and reinforcement learning Markov processes

The agent

The agent’s policy π

Pπ(at | rt , st , at , . . . , r1, s1, a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

Definition 7 (Utility)

Given a horizon T ≥ 0, and discount factor γ ∈ (0, 1] the utility can be defined as

Ut ≜
T−t∑
k=0

γk rt+k (3.2)

The agent wants to to find π maximising the expected total future reward

Eπ
µ Ut = Eπ

µ

T−t∑
k=0

γk rt+k . (expected utility)
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Markov decision processes and reinforcement learning Value functions

State value function

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.3)

The optimal policy π∗

π∗(µ) : V
π∗(µ)
t,µ (s) ≥ V π

t,µ(s) ∀π, t, s (3.4)

dominates all other policies π everywhere in S.
The optimal value function V ∗

V ∗
t,µ(s) ≜ V

π∗(µ)
t,µ (s), (3.5)

is the value function of the optimal policy π∗.
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Markov decision processes and reinforcement learning Examples

Stochastic shortest path problem with a pit

O X

Properties

▶ T →∞.

▶ rt = −1, but rt = 0 at X and −100 at O and
the problem ends.

▶ Pµ(st+1 = X |st = X ) = 1.

▶ A = {North,South,East,West}
▶ Moves to a random direction with probability
ω. Walls block.
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Markov decision processes and reinforcement learning Examples

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(a) ω = 0.1

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(b) ω = 0.5

0.5
1

1.5
2

2.5

-120 -100 -80 -60 -40 -20 0

(c) value

Figure: Pit maze solutions for two values of ω.
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Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: γ = 1)

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.6)

(3.7)

This derivation directly gives a number of policy evaluation algorithms.
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Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: γ = 1)

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.6)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (3.7)

(3.8)

This derivation directly gives a number of policy evaluation algorithms.
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Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: γ = 1)

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.6)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (3.7)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (3.8)

(3.9)

This derivation directly gives a number of policy evaluation algorithms.
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Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: γ = 1)

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.6)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (3.7)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (3.8)

= Eπ
µ(rt | st = s) +

∑
i∈S

V π
µ,t+1(i)Pπ

µ(st+1 = i |st = s). (3.9)

This derivation directly gives a number of policy evaluation algorithms.
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Markov decision processes and reinforcement learning Examples

How to evaluate a policy (Case: γ = 1)

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (3.6)

=
T−t∑
k=0

Eπ
µ(rt+k | st = s) (3.7)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (3.8)

= Eπ
µ(rt | st = s) +

∑
i∈S

V π
µ,t+1(i)Pπ

µ(st+1 = i |st = s). (3.9)

This derivation directly gives a number of policy evaluation algorithms.

max
π

V π
µ,t(s) = max

a
Eµ(rt | st = s, a) + max

π′

∑
i∈S

V π′
µ,t+1(i)Pπ′

µ (st+1 = i |st = s).

gives us the optimal policy value.
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Markov decision processes and reinforcement learning Examples

Backward induction for discounted infinite horizon problems

▶ We can also apply backwards induction to the infinite case.

▶ The resulting policy is stationary.

▶ So memory does not grow with T .

Value iteration

for n = 1, 2, . . . and s ∈ S do
vn(s) = maxa r(s, a) + γ

∑
s′∈S Pµ(s

′ | s, a)vn−1(s
′)

end for
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Markov decision processes and reinforcement learning Examples

Summary

▶ Markov decision processes model controllable dynamical systems.
▶ Optimal policies maximise expected utility can be found with:

▶ Backwards induction / value iteration.
▶ Policy iteration.

▶ The MDP state can be seen as
▶ The state of a dynamic controllable process.
▶ The internal state of an agent.
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Bayesian reinforcement learning

Subjective probability and utility
Subjective probability
Rewards and preferences

Bandit problems
Bernoulli bandits

Markov decision processes and reinforcement learning
Markov processes
Value functions
Examples

Bayesian reinforcement learning
Reinforcement learning
Bounds on the utility
Planning: Heuristics and exact solutions
Belief-augmented MDPs
The expected MDP heuristic
The maximum MDP heuristic
Inference: Approximate Bayesian computation
Properties of ABC
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Bayesian reinforcement learning Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 8 ()

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk
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Bayesian reinforcement learning Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 8 ()

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk
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Bayesian reinforcement learning Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 8 (Utility)

Eπ
µ

Ut =

Eπ
µ

T∑
k=t

rk
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Bayesian reinforcement learning Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 8 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

When µ is known, calculate maxπ Eπ
µ U.
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Bayesian reinforcement learning Reinforcement learning

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

World µ; Policy π; at time t

▶ µ generates observation xt ∈ X .
▶ We take action at ∈ A using π.

▶ µ gives us reward rt ∈ R.

Definition 8 (Expected utility)

Eπ
µ Ut = Eπ

µ

T∑
k=t

rk

Knowing µ is contrary to the problem definition
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Bayesian reinforcement learning Reinforcement learning

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:

ξ(µ | h, π) ∝ Pπ
µ(h)ξ(µ)

▶ We can thus conclude which µ is more likely.

The subjective expected utility

U∗
ξ ≜ max

π

Eπ
ξ U

=

max
π

∑
µ

(
Eπ

µ U
)
ξ(µ).

Integrates planning and learning, and the exploration-exploitation trade-off
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Bayesian reinforcement learning Reinforcement learning

When µ is not known

Bayesian idea: use a subjective belief ξ(µ) on M

▶ Initial belief ξ(µ).

▶ The probability of observing history h is Pπ
µ(h).

▶ We can use this to adjust our belief via Bayes’ theorem:
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Bayesian reinforcement learning Bounds on the utility

Bounds on the ξ-optimal utility U∗
ξ ≜ maxπ Eπ

ξ U

EU

ξ

U∗
µ1
: No trap

U∗
µ2
: Trap

Christos Dimitrakakis (Chalmers) Bayesian reinforcement learning April 16, 2015 33 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian reinforcement learning Bounds on the utility
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bernoulli bandits

Decision-theoretic approach

▶ Assume rt | at = i ∼ Pωi , with ωi ∈ Ω.

▶ Define prior belief ξ1 on Ω.

▶ For each step t, select action at to maximise

Eξt (Ut | at) = Eξt

(
T−t∑
k=1

γk rt+k

∣∣∣∣∣ at
)

▶ Obtain reward rt .

▶ Calculate the next belief
ξt+1 = ξt(· | at , rt)

How can we implement this?
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bayesian inference on Bernoulli bandits

▶ Likelihood: Pω(rt = 1) = ω.

▶ Prior: ξ(ω) ∝ ωα−1(1− ω)β−1 (i.e. Beta(α, β)).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the mean reward ω.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bayesian inference on Bernoulli bandits

For a sequence r = r1, . . . , rn, ⇒ Pω(r) ∝ ω#1(r)
i (1− ωi )

#0(r)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

Figure: Prior belief ξ about ω and likelihood of ω for 100 plays with 70 1s.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bayesian inference on Bernoulli bandits

Posterior: Beta(α+#1(r), β +#0(r)).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

posterior

Figure: Prior belief ξ(ω) about ω, likelihood of ω for the data r , and posterior belief ξ(ω | r)
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bernoulli example.

Consider n Bernoulli distributions with unknown parameters ωi (i = 1, . . . , n) such that

rt | at = i ∼ Bern(ωi ), E(rt | at = i) = ωi . (4.1)

Our belief for each parameter ωi is Beta(αi , βi ), with density f (ω | αi , βi ) so that

ξ(ω1, . . . , ωn) =
n∏

i=1

f (ωi | αi , βi ). (a priori independent)

Nt,i ≜
t∑

k=1

I {ak = i} , r̂t,i ≜
1

Nt,i

t∑
k=1

rt I {ak = i}

Then, the posterior distribution for the parameter of arm i is

ξt = Beta(αi + Nt,i r̂t,i , βi + Nt,i (1− r̂t,i )).

Since rt ∈ {0, 1} there are O((2n)T ) possible belief states for a T -step bandit problem.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Belief states

▶ The state of the decision-theoretic bandit problem is the state of our belief.

▶ A sufficient statistic is the number of plays and total rewards.

▶ Our belief state ξt is described by the priors α, β and the vectors

Nt = (Nt,1, . . . ,Nt,i ) (4.2)

r̂t = (r̂t,1, . . . , r̂t,i ). (4.3)

▶ The next-state probabilities are defined as:

P(rt = 1 | at = i , ξt) =
αi + Nt,i r̂t,i
αi + βi + Nt,i

as ξt+1 is a deterministic function of ξt , rt and at

▶ So the bandit problem can be formalised as a Markov decision process.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

at

ω

rt

Figure: The basic bandit MDP. The decision maker selects at , while the parameter ω of the
process is hidden. It then obtains reward rt . The process repeats for t = 1, . . . ,T .

ξt

at

rt

ξt+1

at+1

rt+1

Figure: The decision-theoretic bandit MDP. While ω is not known, at each time step t we
maintain a belief ξt on Ω. The reward distribution is then defined through our belief.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Backwards induction (Dynamic programming)

for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt , at) + γ
∑
ξt+1

P(ξt+1 | ξt , at)E(Ut+1 | ξt+1)

end for

Exact solution methods: exponential in the horizon

▶ Dynamic programming (backwards induction etc)

▶ Policy search.

Approximations

▶ (Stochastic) branch and bound.

▶ Upper confidence trees.

▶ Approximate dynamic programming.

▶ Local policy search (e.g. gradient based)
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Backwards induction (Dynamic programming)

for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt , at) + γ
∑
ξt+1

P(ξt+1 | ξt , at)E(Ut+1 | ξt+1)

end for

Exact solution methods: exponential in the horizon

▶ Dynamic programming (backwards induction etc)

▶ Policy search.

Approximations

▶ (Stochastic) branch and bound.

▶ Upper confidence trees.

▶ Approximate dynamic programming.

▶ Local policy search (e.g. gradient based)
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Bayesian RL for unknown MDPs

The MDP as an environment.

We are in some environment µ, where at
each time, we: step t:

▶ Observe state st ∈ S.
▶ Take action at ∈ A.
▶ Receive reward rt ∈ R.

µ

ξ

at

st st+1

rt

Figure: The unknown Markov decision process

How can we find the Bayes optimal policy for unknown MDPs?
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Some heuristics

1. Only change policy at the start of epochs ti .

2. Calculate the belief ξti .

3. Find a “good” policy πi for the current belief.

4. Execute it until the next epoch i + 1.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

One simple heuristic is to simply calculate the expected MDP for a given belief ξ:

µ̂ξ ≜ Eξ µ.

Then, we simply calculate the optimal policy for µ̂ξ:

π∗(µ̂ξ) ∈ argmax
π∈Π1

V π
µ̂ξ
,

Example 9 (Counterexample)

0

ϵ0 0

1

(a) µ1

0

ϵ0 0

1

(b) µ2

0

ϵ0 0

1

(c) µ̂ξ
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Another heuristic is to get the most probable MDP for a belief ξ:

µ̂∗
ξ ≜ argmax

µ
ξ(µ)

Then, we simply calculate the optimal policy for µ̂∗
ξ :

π∗(µ̂ξ) ∈ argmax
π∈Π1

V π
µ̂ξ
,

Example 10

a = 0

a = 1

a = i

a = n

ϵ

0

1

0

Figure: The MDP µi from |A|+ 1 MDPs.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Posterior (Thompson) sampling

Another heuristic is to simply sample an MDP from the belief ξ:

µ(k) ∼ ξ(µ)

Then, we simply calculate the optimal policy for µ(k):

π∗(µ̂ξ) ∈ argmax
π∈Π1

V π
µ(k) ,

Properties

▶
√
T regret. (Direct proof: hard [1]. Easy proof: convert to confidence bound [11])

▶ Generally applicable for many beliefs.

▶ Connections to differential privacy [9].

▶ Generalises to stochastic value function bounds [8].
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

Belief-Augmented MDPs

▶ Unknown bandit problems can be converted into MDPs through the belief state.

▶ We can do the same for MDPs. We just create a hyperstate, composed of the
current belief and the current belief state.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

st

ξt

at

st+1

ξt+1

ψt ψt+1

(a) The complete MDP
model

ψt

at

ψt+1

(b) Compact form of
the model

Figure: Belief-augmented MDP

The augmented MDP

P(st+1 ∈ S | ξt , st , at) ≜
∫
S

Pµ(st+1 ∈ S | st , at) dξt(µ) (4.4)

ξt+1(·) = ξt(· | st+1, st , at) (4.5)
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

▶ So now we have converted the unknown MDP problem into an MDP.

▶ That means we can use dynamic programming to solve it.

▶ So... are we done?

▶ Unfortunately the exact solution is again exponential in the horizon.
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▶ So now we have converted the unknown MDP problem into an MDP.

▶ That means we can use dynamic programming to solve it.
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▶ Unfortunately the exact solution is again exponential in the horizon.
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Bayesian reinforcement learning Planning: Heuristics and exact solutions

▶ So now we have converted the unknown MDP problem into an MDP.

▶ That means we can use dynamic programming to solve it.

▶ So... are we done?

▶ Unfortunately the exact solution is again exponential in the horizon.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ Soundness depends on properties of the statistics.

▶ In practice, can require much less data than a general model.

1Dimitrakakis, Tziortiotis. ABC Reinforcement Learning: ICML 2013
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation) RL1
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Overview of the approach

▶ Place a prior on the simulator parameters.
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▶ Calculate a near-optimal policy for the posterior.

Results

▶ Soundness depends on properties of the statistics.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation) RL1

How to deal with an arbitrary model space M

▶ The models µ ∈M may be non-probabilistic simulators.

▶ We may not know how to choose the simulator parameters.

Overview of the approach

▶ Place a prior on the simulator parameters.

▶ Observe some data h on the real system.

▶ Approximate the posterior by statistics on simulated data.

▶ Calculate a near-optimal policy for the posterior.

Results

▶ Soundness depends on properties of the statistics.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

A set of trajectories

-40 -20 0 20 40 60 80 100
-50

-40

-30

-20

-10

0

10
real data

good sim

bad sim
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

A set of trajectories

2 4 6 8 10

2

4

6

8

10

Cumulative features of real data

▶ Trajectories are easy to generate.

▶ How to compare?

▶ Use a statistic.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

A set of trajectories
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Cumulative features of good sim
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▶ How to compare?

▶ Use a statistic.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

A set of trajectories

2 4 6 8 10
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Cumulative features of bad sim

▶ Trajectories are easy to generate.

▶ How to compare?

▶ Use a statistic.
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

Example 11 (Cumulative features)

Feature function ϕ : X → Rk .

f (h) ≜
∑
t

ϕ(xt)

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

Example 11 (Utility)

f (h) ≜
∑
t

rt

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Inference: Approximate Bayesian computation

ABC (Approximate Bayesian Computation)

When there is no probabilistic model (Pµ is not available): ABC!

▶ A prior ξ on a class of simulatorsM
▶ History h ∈ H from policy π.

▶ Statistic f : H → (W, ∥ · ∥)
▶ Threshold ϵ > 0.

ABC-RL using Thompson sampling

▶ do µ̂ ∼ ξ, h′ ∼ Pπ
µ̂ // sample a model and history

▶ until ∥f (h′)− f (h)∥ ≤ ϵ // until the statistics are close

▶ µ(k) = µ̂ // approximate posterior sample µ(k) ∼ ξϵ(· | ht)
▶ π(k) ≈ argmaxEπ

µ(k) Ut // approximate optimal policy for sample
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Bayesian reinforcement learning Properties of ABC

The approximate posterior ξϵ(· | h)

Corollary 11

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 2 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 12 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (4.6)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.

Christos Dimitrakakis (Chalmers) Bayesian reinforcement learning April 16, 2015 51 / 60



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian reinforcement learning Properties of ABC

The approximate posterior ξϵ(· | h)

Corollary 11

If f is a sufficient statistic and ϵ = 0, then ξ(· | h) = ξϵ(· | h).

Assumption 2 (A1. Lipschitz log-probabilities)

For the policy π, ∃L > 0 s.t. ∀h, h′ ∈ H and ∀µ ∈M∣∣ln [Pπ
µ(h)/Pπ

µ(h
′)
]∣∣ ≤ L∥f (h)− f (h′)∥

Theorem 12 (The approximate posterior ξϵ(· | h) is close to ξ(· | h))
If A1 holds then ∀ϵ > 0:

D (ξ(· | h) ∥ ξϵ(· | h)) ≤ 2Lϵ+ ln |Ah
ϵ|, (4.6)

where Ah
ϵ ≜ {z ∈ H | ∥f (z)− f (h)∥ ≤ ϵ}.
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Bayesian reinforcement learning Properties of ABC
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Bayesian reinforcement learning Properties of ABC

Summary

▶ Unknown MDPs can be handled in a Bayesian framework.
▶ This defines a belief-augmented MDP with

▶ A state for the MDP.
▶ A state for the agent’s belief.

▶ The Bayes-optimal utility is convex, enabling approximations.

▶ A big problem in specifying the “right” prior.

Questions?
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Belief updates

Belief updates

Discounted reward MDPs
Backwards induction
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Belief updates

Updating the belief in discrete MDPs

Let Dt =
⟨
s t , at−1, r t−1

⟩
be the observed data to time t. Then

ξ(B | Dt , π) =

∫
B
Pπ
µ(Dt) dξ(µ)∫

M Pπ
µ(Dt) dξ(µ)

. (5.1)

ξt+1(B) ≜ ξ(B | Dt+1) =

∫
B
Pπ
µ(Dt) dξ(µ)∫

M Pπ
µ(Dt) dξ(µ)

(5.2)

=

∫
B
Pµ(st+1, rt | st , at)π(at | s t , at−1, r t−1) dξ(µ | Dt)∫

M Pµ(st+1, rt | st , at)π(at | st , at−1, r t−1) dξ(µ | Dt)
(5.3)

=

∫
B
Pµ(st+1, rt | st , at)dξt(µ)∫

M Pµ(st+1, rt | st , at) dξt(µ)
(5.4)
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Belief updates

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (5.5)

end for

st at rt st+1

?

?

?
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Backwards induction policy evaluation
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Belief updates

Backwards induction policy evaluation

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = Eπ
µ(rt | st = s) +

∑
j∈S

Pπ
µ(st+1 = j | st = s)vt+1(j), (5.5)

end for

st at rt st+1
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Discounted reward MDPs

Belief updates

Discounted reward MDPs
Backwards induction
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Discounted reward MDPs

Discounted total reward.

Ut = lim
T→∞

T∑
k=t

γk rk , γ ∈ (0, 1)

Definition 13

A policy π is stationary if π(at | st) does not depend on t.

Remark 1

We can use the Markov chain kernel Pµ,π to write the expected utility vector as

vπ =
∞∑
t=0

γtP t
µ,πr (6.1)
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Discounted reward MDPs

Theorem 14

For any stationary policy π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (6.2)

In addition, the solution is:
vπ = (I − γPµ,π)

−1r. (6.3)

Example 15

Similar to the geometric series:
∞∑
t=0

αt =
1

1− α
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Discounted reward MDPs

Policy iteration

Algorithm 1 Policy iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do
πn+1 = argmaxπ {r + γPπvn} // policy improvement

vn+1 = (I − γPµ,πn+1)
−1r // policy evaluation

break if πn+1 = πn.
end for
Return πn,vn.
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Discounted reward MDPs Backwards induction

Backwards induction policy optimization

for State s ∈ S , t = T , . . . , 1 do
Update values

vt(s) = max
a

Eµ(rt | st = s, at = a) +
∑
j∈S

Pµ(st+1 = j | st = s, at = a)vt+1(j), (6.4)

end for

st at rt st+1
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