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Bayesian Machine Learning

I Enumerate all ‘reasonable’ models θ and
assign a prior belief p(θ).

I Upon observing the data D, compute the
likelihood p(D|θ).

I Compute the posterior probability over
models using Bayes’ rule:

p(θ|D) ∝ p(D|θ)p(θ) .

Problem: the posterior distribution is often
intractable.



Approximate Inference

I Stochastic sampling methods
I Markov Chain Monte Carlo sampling
I Gibbs sampling
I Particle filtering

I Deterministic methods
I Variational (‘mean-field’) approaches
I Loopy belief propagation
I Expectation propagation
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Expectation Propagation

I Message passing algorithm, invented
by Thomas Minka (PhD thesis, 2001).

I Its generalization, power EP, contains
a large class of deterministic
algorithms for approximate inference.

I Arguably the best approximate
inference results, if it converges. . .

I Implemented in Microsoft’s infer.net.



Factors

I Many probabilistic models factorize,
i.e., can be written in the form

p(D,θ) =
∏
i

fi (θ) .

I For example, with independently,
identically distributed data, there is
one factor fn(θ) = p(xn|θ) for each
data point xn along with a factor
f0(θ) = p(θ) for the prior.

I This also applies to Gaussian process
regression and classification: θ is
drawn from a Gaussian process prior
and each of the factors further
simplifies into fn(θ) = p(xn|θn).

Factor graph

f0 f1 · · · fn

θ

General case

f0 f1 f2 · · · fn

θ1 θ2 · · · θn

Gaussian processes



Approximation

I Approximate the posterior by an
exponential distribution:

p(D,θ) =
∏
i

fi (θ) ≈ 1

Z̃

∏
i

f̃i (θ) = p̃(θ) .

I I.e., approximate each term fi (θ) by an
“exponential” term approximation f̃i (θ).

I Terms in exponential form, often the
prior, do not have to be approximated.

f̃0 f̃1
· · · f̃n

θ

Exponential form:

f̃ (θ) = h(θ)g(η) exp
[
ηTu(θ)

]
,

natural parameters η and sufficient statistics u(θ).



Iterative Updating

I Take out term approximation i :

p̃\i (θ) ∝
∏
j 6=i

f̃j(θ) .

I Put back in term i :

p̃(i)(θ) ∝ fi (θ)
∏
j 6=i

f̃j(θ) .

I Match moments, i.e., find the approximate distribution of
exponential form such that∫

dθ u(θ)p̃new(θ) =

∫
dθ u(θ)p̃(i)(θ) .

I Bookkeeping: set the new term approximation such that

p̃new(θ) ∝ f̃ new
i (θ)

∏
j 6=i

f̃j(θ) .



Going Back and Forth

f̃0 f̃1
· · · f̃i

· · · f̃n

θ

substitute
=⇒

⇐=

project

f̃0 f̃1
· · · fi

· · · f̃n

θ

I Project: minimize the KL-divergence

KL(p̃(i), p̃) =

∫
dθ p̃(i)(θ) log

[
p̃(i)(θ)

p̃(θ)

]
.

I Equivalent to moment matching when p̃ is in the exponential
family.
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Gaussian Processes for Classification

I f0(θ) is a Gaussian prior. No
need to approximate.

I fi (θ) = fi (θi ), some nonlinear
sigmoidal function of θi .

I Each term approximation is a
one-dimensional Gaussian form,

f̃i (θi ) = exp

[
hiθi −

1

2
Kiθ

2
i

]
,

not necessarily normalizable: Ki

may be negative.

−5 0 5
0

0.5

1

fi (θi ) = σ(yiθi )



Locality Property (1)

I Consider updating the term approximation f̃i (θi ). After
replacing the old term approximation by the term we have

p̃(i)(θ) ∝ p̃\i (θ)fi (θi ) ∝ p̃\i (θ\i |θi )p̃\i (θi )fi (θi ) .

I We have to find the new approximation p̃new(θ) closest in
KL-divergence to p̃(i)(θ):

KL(p̃(i), p̃new) =

∫
dθ p̃(i)(θ) log

[
p̃(i)(θ)

p̃new(θ)

]

=

∫
dθi p̃

(i)(θi ) log

[
p̃(i)(θi )

p̃new(θi )

]

+

∫
dθi p̃

(i)(θi )

∫
dθ\i p̃(i)(θ\i |θi ) log

[
p̃(i)(θ\i |θi )
p̃new(θ\i |θi )

]
.



Locality Property (2)

From previous slide:

KL(p̃(i), p̃new) =

∫
dθi p̃

(i)(θi ) log

[
p̃(i)(θi )

p̃new(θi )

]

+

∫
dθi p̃

(i)(θi )

∫
dθ\i p̃(i)(θ\i |θi ) log

[
p̃(i)(θ\i |θi )
p̃new(θ\i |θi )

]
.

Consequences:

1. At the optimum p̃new(θ\i |θi ) = p̃(i)(θ\i |θi ), which means that

only K̃ii and h̃i can change.

2. We only need to match moments for the marginal p̃(θi ).



Take Out

I Easy in terms of canonical parameters,

K\i = K− K̃i1i1
T
i and h\i = h− h̃i1i ,

with 1i a vector with a 1 at element i and the rest 0.

I We need the corresponding moment form with (only) C
\i
ii and

m
\i
i .

I Efficiently with Sherman-Morrison formula (see next slide):

C
\i
ii = Cii +

CiiCii K̃i

1− Cii K̃i

[
1/Cii − K̃i

]−1
.

I The new mean follows from

m
\i
i = mi + C

\i
ii

[
−h̃i + K̃iimi

]
.

I Computational complexity is order 1 per term, i.e., order N in
total per iteration of EP.



Sherman-Morrison Formula

I Efficient way to recompute the inverse after adding a
lower-dimensional part:

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

I The result on the previous slide follows by setting u = −K̃i1i

and v = 1i .

I Woodbury formula: generalization to matrices in terms of
vectors.

I Matrix determinant lemma does something similar for (log)
determinants.

See the Matrix Cookbook (or Wikipedia. . . ).



Match Moments

I We have to compute∫
dθi N (θi ; m

\i
i ,C

\i
ii )fi (θi ){1, θi , θ2

i } .

I One-dimensional integrals that (sometimes) can be computed
analytically, and otherwise approximated with Gauss-Hermite
quadrature, i.e., from∑

k

wk fi (m
\i
i +

√
C
\i
ii xk){1, xk , x

2
k} .

I This then yields the new mnew
i and Cnew

ii .

I Computational complexity is order W , the number of
quadrature points per term, i.e., order NW per EP iteration.



Bookkeeping

I Now that we have the new moments, we have to find new
term approximations that give exactly those same moments.

I It can be shown that the updates are simply as if we are in a
one-dimensional situation:

K̃new
ii = K̃ii + [1/Cnew

ii − 1/Cii ] ,

and similarly

h̃new
i = h̃i + [mnew

i /Cnew
ii −mi/Cii ] .

I Keep track of C and m using Sherman-Morrison, but now
applied to the whole matrix.

I Computational complexity is order N2 per term, i.e., N3 per
EP iteration.



Sequential vs. parallel

I Initial formulation of
expectation propagation:
sequentially update terms and
keep track of approximated
posterior.

I Viewed as a mapping from old
to new term approximations, we
may as well do this in parallel.

I Advantages: much, much faster
for sparse precision matrices;
numerically more stable.

I Disadvantage: convergence
might be a bit slower.

f1 f2 · · · fN

z1 z2 · · · zN

g1 g2 · · · gN

θ1 θ2 · · · · · · θp

h1 h2 · · · · · · hp

u1 v1 u2 v2 · · · · · · up vp

i1 i2
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Other Issues

I By keeping track of normalizations, we can also approximate
the model evidence and use that for optimizing
hyperparameters.

I Power EP: take out the term proxy/put back the term to
power α. Standard EP/loopy belief propagation: α = 1.
Variational message passing: α = 0. α just below 1 happens
to be more stable than α = 1.

I Convergence is a (big) issue: in particular there is no
guarantee on normalizability.

I Many, many more applications: mixture models, nonlinear
Kalman filters, Dirichlet models, Plackett-Luce, . . .

I Consistently more accurate than Laplace approximations;
ongoing efforts to speed it up.
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