Chalmers Machine Learning Summer School Approximate message passing and biomedicine

Part 1: Expectation Propagation

Tom Heskes

Machine Learning Group, Institute for Computing and Information Sciences Radboud University Nijmegen, The Netherlands

April 15, 2015

Bayesian Machine Learning

Probabilistic modeling Approximate inference

Expectation Propagation

Bit of history Factor graphs Iterative procedure

EP for Gaussian process classification Locality property Step by step

Bayesian Machine Learning Probabilistic modeling Approximate inference

Expectation Propagation

Bit of history Factor graphs Iterative procedure

EP for Gaussian process classification Locality property Step by step

Bayesian Machine Learning

- Enumerate all 'reasonable' models θ and assign a prior belief $p(\theta)$.
- ► Upon observing the data D, compute the likelihood p(D|θ).
- Compute the posterior probability over models using Bayes' rule:

 $p(\boldsymbol{ heta} | \mathcal{D}) \propto p(\mathcal{D} | \boldsymbol{ heta}) p(\boldsymbol{ heta})$.

Problem: the posterior distribution is often intractable.

Approximate Inference

Stochastic sampling methods

- Markov Chain Monte Carlo sampling
- Gibbs sampling
- Particle filtering
- Deterministic methods
 - Variational ('mean-field') approaches
 - Loopy belief propagation
 - Expectation propagation

Bayesian Machine Learning Probabilistic modeling Approximate inference

Expectation Propagation Bit of history

Factor graphs Iterative procedure

EP for Gaussian process classification Locality property Step by step

Expectation Propagation

- Message passing algorithm, invented by Thomas Minka (PhD thesis, 2001).
- Its generalization, power EP, contains a large class of deterministic algorithms for approximate inference.
- Arguably the best approximate inference results, if it converges...
- Implemented in Microsoft's infer.net.

Factors

 Many probabilistic models factorize, i.e., can be written in the form

$$p(\mathcal{D}, \boldsymbol{\theta}) = \prod_i f_i(\boldsymbol{\theta}) .$$

- For example, with independently, identically distributed data, there is one factor f_n(θ) = p(x_n|θ) for each data point x_n along with a factor f₀(θ) = p(θ) for the prior.
- This also applies to Gaussian process regression and classification: θ is drawn from a Gaussian process prior and each of the factors further simplifies into f_n(θ) = p(x_n|θ_n).

Factor graph

Gaussian processes

Approximation

 Approximate the posterior by an exponential distribution:

$$p(\mathcal{D}, \boldsymbol{ heta}) = \prod_i f_i(\boldsymbol{ heta}) pprox rac{1}{\widetilde{Z}} \prod_i \widetilde{f}_i(\boldsymbol{ heta}) = \widetilde{p}(\boldsymbol{ heta}).$$

► I.e., approximate each term f_i(θ) by an "exponential" term approximation f̃_i(θ).

 Terms in exponential form, often the prior, do not have to be approximated.

Exponential form:

$$ilde{f}(oldsymbol{ heta}) = h(oldsymbol{ heta}) g(oldsymbol{\eta}) \exp\left[oldsymbol{\eta}^{ op} {f u}(oldsymbol{ heta})
ight] \,,$$

natural parameters η and sufficient statistics $\mathbf{u}(\theta)$.

Iterative Updating

▶ Take out term approximation *i*:

$$ilde{p}_{ackslash i}(oldsymbol{ heta}) \propto \prod_{j
eq i} ilde{f}_j(oldsymbol{ heta}) \ .$$

Put back in term i:

$$ilde{
ho}^{(i)}(oldsymbol{ heta}) \propto f_i(oldsymbol{ heta}) \prod_{j
eq i} ilde{f}_j(oldsymbol{ heta}) \,.$$

Match moments, i.e., find the approximate distribution of exponential form such that

$$\int d heta \, {f u}(heta) ilde{p}^{
m new}(heta) = \int d heta \, {f u}(heta) ilde{p}^{(i)}(heta) \, .$$

Bookkeeping: set the new term approximation such that

$$ilde{p}^{ ext{new}}(oldsymbol{ heta}) \propto ilde{f}^{ ext{new}}_i(oldsymbol{ heta}) \prod_{j
eq i} ilde{f}_j(oldsymbol{ heta}) \,.$$

Going Back and Forth

Project: minimize the KL-divergence

$$\mathrm{KL}(\tilde{p}^{(i)},\tilde{p}) = \int d\theta \; \tilde{p}^{(i)}(\theta) \log\left[\frac{\tilde{p}^{(i)}(\theta)}{\tilde{p}(\theta)}\right]$$

.

• Equivalent to moment matching when \tilde{p} is in the exponential family.

Bayesian Machine Learning Probabilistic modeling Approximate inference

Expectation Propagation

Bit of history Factor graphs Iterative procedure

EP for Gaussian process classification Locality property Step by step

Gaussian Processes for Classification

- *f*₀(θ) is a Gaussian prior. No need to approximate.
- *f_i(θ) = f_i(θ_i)*, some nonlinear sigmoidal function of *θ_i*.
- Each term approximation is a one-dimensional Gaussian form,

$$ilde{f}_i(heta_i) = \exp\left[h_i heta_i - rac{1}{2}K_i heta_i^2
ight]\,,$$

not necessarily normalizable: K_i may be negative.

$$f_i(\theta_i) = \sigma(y_i\theta_i)$$

Locality Property (1)

Consider updating the term approximation *f̃_i(θ_i)*. After replacing the old term approximation by the term we have

$$ilde{p}^{(i)}(oldsymbol{ heta}) \propto ilde{p}_{\setminus i}(oldsymbol{ heta}) f_i(oldsymbol{ heta}_i) \propto ilde{p}_{\setminus i}(oldsymbol{ heta}_i) oldsymbol{ heta}_{\setminus i}(oldsymbol{ heta}_i) f_i(oldsymbol{ heta}_i) \ .$$

We have to find the new approximation p̃^{new}(θ) closest in KL-divergence to p̃⁽ⁱ⁾(θ):

$$\begin{split} \mathrm{KL}(\tilde{p}^{(i)}, \tilde{p}^{\mathrm{new}}) &= \int d\theta \; \tilde{p}^{(i)}(\theta) \log \left[\frac{\tilde{p}^{(i)}(\theta)}{\tilde{p}^{\mathrm{new}}(\theta)} \right] \\ &= \int d\theta_i \tilde{p}^{(i)}(\theta_i) \log \left[\frac{\tilde{p}^{(i)}(\theta_i)}{\tilde{p}^{\mathrm{new}}(\theta_i)} \right] \\ &+ \int d\theta_i \tilde{p}^{(i)}(\theta_i) \int d\theta_{\setminus i} \; \tilde{p}^{(i)}(\theta_{\setminus i} | \theta_i) \log \left[\frac{\tilde{p}^{(i)}(\theta_{\setminus i} | \theta_i)}{\tilde{p}^{\mathrm{new}}(\theta_{\setminus i} | \theta_i)} \right] \end{split}$$

Locality Property (2)

From previous slide:

$$egin{aligned} &\mathrm{KL}(ilde{p}^{(i)}, ilde{p}^{\mathrm{new}}) = \int d heta_i ilde{p}^{(i)}(heta_i) \log\left[rac{ ilde{p}^{(i)}(heta_i)}{ ilde{p}^{\mathrm{new}}(heta_i)}
ight] \ &+ \int d heta_i ilde{p}^{(i)}(heta_i) \int d heta_{ackslash i} \, ilde{p}^{(i)}(heta_{ackslash i}) \log\left[rac{ ilde{p}^{(i)}(heta_{ackslash i}| heta_i)}{ ilde{p}^{\mathrm{new}}(heta_{ackslash i}| heta_i)}
ight] \end{aligned}$$

Consequences:

- 1. At the optimum $\tilde{p}^{\text{new}}(\theta_{\setminus i}|\theta_i) = \tilde{p}^{(i)}(\theta_{\setminus i}|\theta_i)$, which means that only \tilde{K}_{ii} and \tilde{h}_i can change.
- 2. We only need to match moments for the marginal $\tilde{p}(\theta_i)$.

Take Out

Easy in terms of canonical parameters,

$$\mathbf{K}_{\setminus i} = \mathbf{K} - \tilde{K}_i \mathbf{1}_i \mathbf{1}_i^T$$
 and $\mathbf{h}_{\setminus i} = \mathbf{h} - \tilde{h}_i \mathbf{1}_i$,

with $\mathbf{1}_i$ a vector with a 1 at element *i* and the rest 0.

- We need the corresponding moment form with (only) $C_{ii}^{\setminus i}$ and $m_i^{\setminus i}$.
- Efficiently with Sherman-Morrison formula (see next slide):

$$C_{ii}^{\setminus i} = C_{ii} + rac{C_{ii}C_{ii} ilde{K}_i}{1-C_{ii} ilde{K}_i} \left[1/C_{ii} - ilde{K}_i
ight]^{-1}$$

The new mean follows from

$$m_i^{\setminus i} = m_i + C_{ii}^{\setminus i} \left[-\tilde{h}_i + \tilde{K}_{ii}m_i \right] \,.$$

 Computational complexity is order 1 per term, i.e., order N in total per iteration of EP.

Sherman-Morrison Formula

Efficient way to recompute the inverse after adding a lower-dimensional part:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{T})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{T}\mathbf{A}^{-1}}{1 + \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}} \,,$$

- ► The result on the previous slide follows by setting u = -K̃_i1_i and v = 1_i.
- Woodbury formula: generalization to matrices in terms of vectors.
- Matrix determinant lemma does something similar for (log) determinants.

See the Matrix Cookbook (or Wikipedia...).

Match Moments

We have to compute

$$\int d\theta_i \, \mathcal{N}(\theta_i; m_i^{\setminus i}, C_{ii}^{\setminus i}) f_i(\theta_i) \{1, \theta_i, \theta_i^2\} \, .$$

 One-dimensional integrals that (sometimes) can be computed analytically, and otherwise approximated with Gauss-Hermite quadrature, i.e., from

$$\sum_{k} w_k f_i(m_i^{\setminus i} + \sqrt{C_{ii}^{\setminus i}} x_k) \{1, x_k, x_k^2\}.$$

- This then yields the new m_i^{new} and C_{ii}^{new} .
- Computational complexity is order W, the number of quadrature points per term, i.e., order NW per EP iteration.

Bookkeeping

- Now that we have the new moments, we have to find new term approximations that give exactly those same moments.
- It can be shown that the updates are simply as if we are in a one-dimensional situation:

$$\tilde{K}_{ii}^{\rm new} = \tilde{K}_{ii} + \left[1/C_{ii}^{\rm new} - 1/C_{ii}\right] \,,$$

and similarly

$$ilde{h}_i^{\mathrm{new}} = ilde{h}_i + \left[m_i^{\mathrm{new}} / C_{ii}^{\mathrm{new}} - m_i / C_{ii}
ight] \; .$$

- Keep track of C and m using Sherman-Morrison, but now applied to the whole matrix.
- Computational complexity is order N² per term, i.e., N³ per EP iteration.

Sequential vs. parallel

- Initial formulation of expectation propagation: sequentially update terms and keep track of approximated posterior.
- Viewed as a mapping from old to new term approximations, we may as well do this in parallel.
- Advantages: much, much faster for sparse precision matrices; numerically more stable.
- Disadvantage: convergence might be a bit slower.

Bayesian Machine Learning Probabilistic modeling Approximate inference

Expectation Propagation

Bit of history Factor graphs Iterative procedure

EP for Gaussian process classification Locality property Step by step

Other Issues

- By keeping track of normalizations, we can also approximate the model evidence and use that for optimizing hyperparameters.
- Power EP: take out the term proxy/put back the term to power α. Standard EP/loopy belief propagation: α = 1.
 Variational message passing: α = 0. α just below 1 happens to be more stable than α = 1.
- Convergence is a (big) issue: in particular there is no guarantee on normalizability.
- Many, many more applications: mixture models, nonlinear Kalman filters, Dirichlet models, Plackett-Luce, ...
- Consistently more accurate than Laplace approximations; ongoing efforts to speed it up.