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Extended Abstract in English

Nikolaos V. Tziortziotis.
PhD, Computer Science & Engineering Department, University of Ioannina, Greece.
March, 2015.
Thesis Title: Machine Learning for Intelligent Agents.
Thesis Supervisor: Konstantinos Blekas.

This dissertation studies the problem of developing intelligent agents, which are able to
acquire skills in an autonomous way, simulating human behaviour. An autonomous
intelligent agent acts e�ectively in an unknown environment, directing its activity to-
wards achieving a specific goal based on some performance measure. Through this
interaction, a rich amount of information is received, which allows the agent to per-
ceive the consequences of its actions, identify important behavioural components, and
adapt its behaviour through learning. In this direction, the present dissertation con-
cerns the development, implementation and evaluation of machine learning techniques
for building intelligent agents. Three important and very challenging tasks are consid-
ered: i) approximate reinforcement learning, where the agent’s policy is evaluated and
improved through the approximation of the value function, ii) Bayesian reinforcement
learning, where the reinforcement learning problem is modeled as a decision-theoretic
problem, by placing a prior distribution over Markov Decision Processes (MDPs) that
encodes the agent’s belief about the true environment, and iii) Development of intel-
ligent agents on games, which constitute a really challenging platform for developing
machine learning methodologies, involving a number of issues that should be resolved,
such as the appropriate choice of state representation, continuous action spaces, etc..

In the first part, we focus on the problem of value function approximation suggesting
two di�erent methodologies. Firstly, we propose the Relevance Vector Machine Tempo-
ral Di�erence (RVMTD) algorithm, which constitutes an advanced kernelized Bayesian
methodology for model-free value function approximation, employing the RVM regres-
sion framework as a generative model. The key aspect of RVMTD is the restructure of
the policy evaluation problem as a linear regression problem. An online kernel sparsi-
fication technique is adopted, rendering the RVMTD practical in large scale domains.
Based on this scheme, we derive recursive low-complexity formulas for the online up-
date of the model observations. For the estimation of the unknown model coe�cients a
sparse Bayesian methodology is adopted that enhances model capabilities. Secondly,

ix



a model-based reinforcement learning algorithm is proposed, which is based on the
online partitioning of the input space into clusters. As the data arrive sequentially to
the learner, an online extension of the vanilla EM algorithm is used for clustering. In
this way, a number of basis functions are created and updated automatically. Also,
statistics are kept about the dynamics of the environment that are subsequently used
for policy evaluation. Finally, the least-squares solution is used for the estimation of
the unknown coe�cients of the value function model.

In the second part, we address the Bayesian reinforcement learning problem propos-
ing two advanced Bayesian algorithms. Firstly, we present the Linear Bayesian Rein-
forcement Learning (LBRL) algorithm showing that the system dynamics can be es-
timated accurately by a Bayesian linear Gaussian model, which takes into account
correlations in the state features. Policies are estimated by applying approximate dy-
namic programming on a transition model that is sampled from the current posterior.
This form of approximate Thompson sampling results in a good exploration in unknown
MDPs. Secondly, the Cover Tree Bayesian Reinforcement Learning (CTBRL) algorithm is
proposed which constitutes an online tree-based Bayesian approach for reinforcement
learning. The main idea of CTBRL is the construction of a cover tree from the obser-
vations, which remains e�cient in high dimensional spaces. In this way, we create a
set of partitions of the state space. An e�cient non-parametric Bayesian conditional
density estimator is also introduced on the cover tree structure. This is a generalized
context tree, endowed with a multivariate linear Bayesian model at each node and is
used for the estimation of the dynamics of the underlying environment. Thus, taking
a sample for the posterior, we obtain a piecewise linear Gaussian model of the dynam-
ics. The main advantages of this approach are its flexibility and e�ciency, rendering it
suitable for reinforcement learning problems in continuous state spaces.

In the third part of this thesis, we consider the problem of developing intelligent
agents in two challenging games, the Ms. PacMan and the AngryBirds. Firstly, we pro-
pose the RL-PacMan agent, which is based on an abstract but informative state space
representation. The adopted representation is able to encode a game scene, giving the
opportunity to our agent to distinguish di�erent situations. For discovering a good or
even optimal policy, we use the model-free SARSA(�) reinforcement learning algorithm.
In our study, we demonstrate that an e�cient state representation is of central inter-
est for the design of an intelligent agent. Finally, we propose the AngryBER agent,
which is based on an e�cient tree structure for representing each game screenshot.
This representation has the advantage of establishing an informative feature space and
modifying the task of game playing to a regression problem. A Bayesian ensemble re-
gression framework is used for the estimation of the return of each action, where each
pair of ‘object material’ and ‘bird type’ has its own regression model. After each shot,
the regression model is incrementally updated, in a fully closed form. The AngryBER
agent participated in the international AIBIRDS 2014 competition winning the 2

nd price
among 12 participants.
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������µ��� �������� ��� ��������

�������� ������������ ��� ��������� ��� ��� ����������.
PhD, �µ�µ� ��������� �/� & ������������, ���������µ�� ���������. �������, 2014.
������ ��������� : �������� ��������� ������� ��� ��� �������� ������ ���������.
��������� : ������������ �������.

� ������� �������� ����µ�������� �� ������µ� ��� ��������� ������ ���������, ��
������ ����� ��� ��������� �� �������� ���������� ������µ�. ����� ������ ���������
��� �� ��� ������� ����������, ���������µ���� ���� ��� �������� ���� ��������µ����
������. ���� ��� �������������� ��� µ� �� ����������, � ��������� ��µ����� ���
�������� ���� �����������, ��� ��� ����� �� ���������� �� ������µ������� ��� ���������
��� ��������� ���, ������µ������� ������� �� ��µ�������� ���. ��� ������� ����, � ��-
������ �������������� ���� ���������� µ������ ��������� ������� ��� ��� ��������
������ ���������, ����������� �� ����� �������� ��µ������� ������ : �) �������������
���������� µ�����, ���� � �������� ��� �������� ����µ���� ��� ����������� µ��� ���
����������� ��� ���������� ����� (Value Function), �) ��������� ���������� µ�����,
���� �� ������µ� ��� ����������� µ������ µ�������������� �� ��� ��������� ������µ�
��������, ������������ µ�� �� ��� �������� ������µ� ��� ������ ��� ������� �����-
������ ����������� �������� (���), ��� �) ������� ���µ����� �� �������, �� �����
��������� ���������� ������µ��� ��� ��� �������� ��� µ����� µ����������� µ��������
µ������.

�� ����� µ���� ��� ��������� �������� ��� ������µ� ��� ����������� ��� ����������
�����, �������������� ��� ������������ µ�����������. ������, ���������µ� �� µ�����
Relevance Vector Machine Temporal Di�erence (RVMTD), � ����� �������� µ�� ���-
��µ��� ��������� µ���������� ������� ��� ��� ���������� ��� ���������� �����,
����µ������� �� µ������ ��������µ���� RVM. � ������ ���� ��� ��������µ���� µ������
����� � µ������µ����µ�� ��� ������µ���� ��� ����µ���� µ��� ��������� �� ��� ������µ�
��������µ����. ������µ���� � �������µ�� RVMTD �� �������� ����µ���µ�� �� ������-
µ��� µ������ ���µ����, ���������µ� µ�� ������� ������ ������� ����µ������ ������.
������µ���� ��� ��������µ��� �������, ������µ� ������µ����� ������� ���µ������,
��µ���� ��������������, ��� ���������� ��� �������� ��� ������������ ��� µ�������
µ�� �� ����µ����� �����. ��� ��� ����µ��� ��� �������� ����������� ��� µ�������, ���-
������µ� µ�� ����� ��������� µ���������� � ����� ��������� ��� ����������� ���������
��� µ�������. ��� ��������, ���������µ� ���� �������µ� ����������� µ������, � ������
��������� ��� µ������ ��� �������������, ������������� �� ����µ����� ����� ��� ����
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������� �� �µ���� (clusters). ����� ��� ������µ� ��� ����������� µ������ �� ��-
��µ��� ����������� µ� �������� �����, ��� �� ������µ� ��� �µ���������� �����-
µ�������µ� µ�� ������ ����µ������ ������ ��� ������� �������µ�� EM. �� ����� ���
�����, �����������µ� �� ����µ��� ��µ������� ��� ���µ����� ���� ������� �����������
�����, ��� �����µ��������� ��� ������µ� ��� ����������� ��� ���������� �����. �����,
��� ��� ����µ��� ��� �������� ����µ����� ��� µ������� ��� ���������� ����� �����-
µ�������µ� �� µ����� ��� ��������� ���������� (least-squares solution).

�� ������� µ���� ��� ��������� ����µ�������� �� ������µ� ��� ���������� �����������
µ������, ���� ������������ ��� �������µ�� µ�����������. �����, ������������� �
�������µ�� Linear Bayesian Reinforcement Learning (LBRL), � ������ ��µ������� ���
���������� ��� ��� ��������� ���µµ��� (����������) µ������ ����� �� ���� �� ����-
������� µ� µ����� �������� ��� ����µ��� ��� µ������� ��� �������������. �� ����-
����� ����µ����� ����µ������� ������������� ����µ��� ������µµ����µ� (approximate
dynamic programming) ��� µ������ µ�������� �� ����� ���� ������� ��� ��� �� ���
������� ������µ�. � ��������µ��� ������������� ������� ����� ������ �� ����µ�-
������� Thompson ��� ������� ��� ���������� �������� �������������. ��� ��������,
����������� � �������µ�� Cover Tree Bayesian Reinforcement Learning (CTBRL), � ������
�������� µ�� ����µ������ ������ ��������� ���������� ����������� µ������ ������-
µ��� �� µ�� �������� ��µ�. � ������ ���� ��� �������µ�� CTBRL ����� � ���������
������� ������� (cover trees) µ� ���� ��� ������������ ��� �������������, �� �����
����µ����� ��������� �� ������ ������ ��������� ��� �����µ���������� ��� ��� ����-
µ��� ��� ����µ���� ��� ���� ������� �������������. ���������� ��� ����µ� ��� ��� ��
��� ������� ������µ�, ��µ�����µ� ��� �µ�µ�����, ���µµ��� (piecewise linear) �����-
����� µ������ ��� ����µ���� ��� �������������. ����� ��� ���� ��������� ��� ��-
�����µ�� LBRL, ���������µ� �� ����µ�������� (Thompson) µ� ��� ������������� ����-
µ��� ������µµ����µ�, ��µ�������� ���������� ��������� �� ������� ������������. ��
����� ���������µ��� ��� ��������µ���� µ������ ����� � ������������� ��� ����� ������
��� � �������� ���, ����������� ��� ��������� ��� ������µ��� ����������� µ������ µ�
�������� ������ �����������.

�� ����� ��� ��������� µ���� ��� �������� ���������, �������������� ��� ������µ�
��� ��������� ������ ��������� ��� ��� ���������� ��� ����µ� ������ ����������
�������, �� Ms. PacMan ��� AngryBirds. ������, ���������µ� ��� �������� RL-PacMan,
� ������ ��������� �� µ�� ����������� ��� ���������� ���������� ������������ ���
����� �����������. � ��������µ��� ������������ ����������� ��� ����� ��� ������-
���� µ� ������ ����� ���� ���� �� ������� � ���������� ��� �������� �� ��������� ��� ��
����µ�������� ������������ �����������. ��� ��� �������� µ��� ����� ���������, �����-
µ�������µ� ��� �������µ� ����������� µ������ SARSA(�). � ��������µ��� µ�����,
����������� ��� � �������� µ��� ���������� ������������� ����� ��µ������ ��� ���
�������� ���� ���������� ��������. �����, ���������µ� ��� �������µ� AngryBER �
������ ��������� �� µ�� ��������� �������� ��µ� ��� ��� ������������ ��� ������
��� ����������. � ��������µ��� ��µ� ���� �� ���������µ� ��� �������� �������-
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������ ��������������� ��� µ��������� �� ������µ� ��� �������� ��� ���������� ��
��� ������µ� ��������µ����. ��� ��������µ���, �����µ������µ� ��� ������ ���
����������� ��������µ���� ��� ��� �������� ��� ����µ����� µ��� ���������, ���� ����
������ ‘����� ���������� �������µ����’ ��� ‘����� �������’ ����� �� ���� ���� µ������
��������µ����. ���� �� ����� ���� �����, �� ���������� µ������ ��������µ���� ���µ�-
������� ����������, �� ������� µ����. � ��������� AngryBER ����� µ���� ����
������µ�� ��������µ� AIBIRDS 2014, ���µ��������� ��� 2

� ���� µ����� ��� 12 ��µ-
µ���������.
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Chapter 1

Introduction

1.1 Machine Learning on Intelligent Agents

1.2 Reinforcement Learning

1.3 Policy Evaluation Problem

1.4 Control Problem

1.5 Thesis Contribution

1.6 Thesis Layout

A mong the major scientific challenges in our era is that of decoding human
intelligence and developing artificial systems, able to mimic this intelligence.
One of the most impressive aspects of human intelligence is its ability to

acquire skills, without the need of an explicit teacher. The idea of learning through
interaction with the environment is probably the one comes to mind first when thinking
about the nature of learning. Upon interacting with the environment a plethora of
useful information can be produced through trial and error. The processing of this
information give us the opportunity to perceive the consequences of our actions, identify
important behavioural components and modify our behaviour.

Nowadays, an enormous research e�ort has been observed in the direction of build-
ing intelligent agents that are able to acquire skills in an autonomous way, simulating
human behaviour. In Artificial Intelligence (AI) [109], an intelligent agent is typically an
autonomous entity, which observes and acts upon a typically unknown environment,
directing its activity towards achieving specific goals. The majority of the presented
artificial intelligence agents are designed based on the same concept. They accept
stimulus from the environment and generate actions according to the history of stimuli
they have received. Their di�erence originates from the fact that a number of di�erent
internal structures are used for the processing of the newly arrived information that are
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generated from the interaction with the environment. Numerous intelligent agents have
been proposed so far in a wide range of fields such as: robotics, gaming, navigation,
etc. (see Fig. 1.1 for some indicative examples).

Figure 1.1: Intelligent Agents

1.1 Machine Learning on Intelligent Agents

Machine learning plays a crucial role in the area of artificial intelligence, as the learn-
ing capability constitutes an integral part of an intelligent system. During the last
decades, a variety of machine learning techniques have been used extensively for the
development of advanced decision making mechanisms, which can be considered as
the agent’s core. Based on these mechanisms, an agent is able to process as well as to
analyse the information that is received through its interaction with the environment.
In this way, the agent acquires knowledge by modifying its prior behaviour according
to the received feedback in order to achieve a specific goal.

Machine learning can be divided into three main subfields according to the problem
under consideration: i) supervised learning, ii) unsupervised learning, iii) reinforcement
learning. Supervised learning refers to the problems where the desired outputs cor-
responding to some input data are known in advance. Roughly speaking, it can be
seen as an explicit teacher is available. In the case where the desired output consists
of discrete values, the problem is known as classification. The objective in classifica-
tion problems is to assign an instance to one of a finite set of discrete class labels.
On the other hand, if the desired output consists of continuous values, the task is
called regression. In regression, the goal is the prediction of the output value of an
unknown input instance. In contrast to supervised learning, in unsupervised learning
no knowledge about the target values is supplied. The goal in this case is the discovery

2



of similar groups within the data, called as clustering, or the determination of the data
distribution within the input space, known as density estimation.

Reinforcement learning has been demonstrated that constitutes a suitable platform
for the development of intelligent agents. In RL, in which this thesis focuses on, an
agent interacts with an initially unknown environment and modifies its behaviour (pol-
icy) so as to maximize its cumulative payo�s. In this way, reinforcement learning
provides a general framework for solving complex and uncertain sequential decision
problems, encountered in many real-world applications (e.g Robotics). The environ-
ment is typically modeled as a Markov Decision Process or Markov Decision Problem
[102], which has been studied extensively in operations research. In order to discover
a good or even optimal policy, many RL algorithms are based on the estimation of a
value function (functions of states or state-action pairs), by observing data generated
through the interaction of the agent with the environment. In other words, the value
function indicates how good is for the agent either to be in a given state or to perform a
given action in a given state. In the last years, many RL algorithms [121] have been pro-
posed, suggesting a variety of value-function estimation techniques. Since no explicit
teacher signal can be obtained in RL, the estimation of value functions di�ers from the
regression problems encountered in supervised learning. The majority of reinforcement
learning algorithms concentrate on two distinct problems: i) policy evaluation and ii)
control problem. The first problem refers to the evaluation of the consequences of follow-
ing a fixed policy. In contrast, the latter deals with the discovery of an optimal (or near
optimal) policy that maximizes the expected future reward. Moreover, reinforcement
learning algorithms can be distinguished to model-based (indirect) and model-free (di-
rect) algorithms. The first category utilizes the knowledge of the environment dynamics
so as to evaluate the value function of a fixed policy or to discover an optimal policy.
In this case, the agent uses its experience in order to construct a representation of the
control dynamics of its environment. In the latter case, a model-free algorithm does
not need any knowledge of the environment dynamics.

This thesis concerns the development, implementation and evaluation of machine
learning (reinforcement learning) methodologies for intelligent agents, focusing on three
important and very challenging problems, namely approximate reinforcement learning
[134, 135, 136], Bayesian reinforcement learning [137, 138], and AI in games [141,
139]. In the following, we meticulously describe the reinforcement problem, along with
a review of the related work. Afterwards, we present the main contributions and the
layout of the thesis.

1.2 Reinforcement Learning

In Reinforcement Learning (RL) [118] an agent performs a specific task by interacting
with an unknown environment. At each time step, the agent observes the environment
state and decides about the action to take in that state. According to the selected
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action and the dynamics of the model of the environment, a transition to a new state
is performed. At the same time, a numerical reward signal is also returned by the
environment, which expresses the goal of the task, reinforcing good decision making
and penalizing bad decision making. A typical setting of the interaction between the
agent and the environment is shown in Figure 1.2. The notion of RL is focused on
gradually improving the agent’s behaviour through trial and error, by maximizing the
long term expected return.

Agent Environment

RewardState

Action

Figure 1.2: The basic reinforcement learning scenario.

In reinforcement learning, the agent’s environment is modeled as a Markov Decision
Process (MDP) which is typically denoted as a tuple M = {S,A, P, R, �}, where:

• S is the state space that the agent acts in, which can be discrete or continuous.

• A is a non-empty set of actions, which can be discrete or continuous. In this
thesis, we consider the case where a finite set of actions is available.

• P (s0|s, a)! [0, 1], is the transition probability kernel, which determines the prob-
ability of reaching state s0 2 S from state s 2 S, by executing action a.

• R : S ⇥ A ! R, is the immediate reward function, which gives the expected
reward received when action a 2 A is selected at state s 2 S.

• � 2 (0, 1), is a discount factor such that rewards further into the future are less
important than immediate rewards.

At each time step, the agent selects its actions according to a stationary policy
⇡ 2 ⇧, which defines a conditional distribution over the actions, P⇡

(a 2 A|s). Roughly
speaking, a stationary deterministic policy is a mapping ⇡ : S ! A from states to
actions, where ⇡(s) denotes the action taken in state s by the agent. A stationary
stochastic policy can be supposed as a mapping ⇡ : S ! P (A) from states to action
selection probabilities. The agent’s utility is the discounted return, which is defined as
the discounted sum of future rewards incurred by starting from a state s and following
a policy ⇡:

D⇡
(s) =

1
X

t=0

�trt, (1.2.1)
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where rt 2 R is the immediate reward received following ⇡ at step t. The objective
of an RL agent is to discover a good or even optimal policy that achieves to maximize
its expected utility over all states. In the following, the notion of value function is
introduced.

1.2.1 Value Functions

The notion of value function is of central interest in RL tasks, as the majority of rein-
forcement learning schemes are based on estimating value functions. Value functions
can be supposed as a measure of worth of a given policy ⇡, which can be used for
discovering good policies. Value functions are divided into two types: the state-value
functions and the action-value functions. Given a policy ⇡, the state-value function
V ⇡

: S ! R of a state s is defined as the expected return, obtained by starting from
state s and following ⇡. Thereafter:

V ⇡
(s) = E⇡

( 1
X

t=0

�trt|s0 = s

)

. (1.2.2)

In the case where the reward function and the transition distribution are known, the
Eq. 1.2.2 can be written in the following form:

V ⇡
(s) = R(s, ⇡(s)) + �

X

s02S
P (s0|s, ⇡(s))V ⇡

(s0
), (1.2.3)

which is known as the Bellman equation [13]. Thus, Eq. 1.2.3 expresses the relationship
between the value of a state and the values of its successor states. Similar to the state-
value function V ⇡, the action-value function Q⇡

: S ⇥ A ! R expresses the expected
return as received by taking action a in state s, and following policy ⇡ thereafter.
Consequently:

Q⇡
(s, a) = E⇡

( 1
X

t=0

�trt|s0 = s, a0 = a

)

,

= R(s, a) + �
X

s02S
P (s0|s, a)V ⇡

(s0
). (1.2.4)

Given the state-value function V ⇡ of a policy ⇡, a greedy policy ⇡0 over ⇡ can be
obtained as:

⇡0
(s) = argmax

a2A

(

R(s, ⇡(s)) + �
X

s02S
P (s0|s, ⇡(s))V ⇡

(s0
)

)

.

Similarly, if the action-value function Q⇡ of a policy ⇡ is known, the greedy policy is
defined as:

⇡0
(s) = argmax

a2A
Q⇡

(s, a).
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A policy ⇡0 is supposed to be better than or equal to policy ⇡, if its expected return is at
least as much as that of ⇡ over all states. This can be summarized as:

V ⇡0
(s) � V ⇡

(s) and Q⇡0
(s, ⇡0

(s)) � Q⇡
(s, ⇡(s)), 8s 2 S. (1.2.5)

At every MDP µ, there exists at least one policy, which is better than or equal to all
other possible policies. These policies are called optimal and are denoted by ⇡⇤. The
optimal policies share the same state-value function and action-value function, which
are referred to as optimal state-value function, V ⇤, and optimal action-value function,
Q⇤, respectively.

1.2.2 Value Function Approximation

The majority of reinforcement learning algorithms rely on the estimation of a value
function, which is a real-valued function over the state or the state-action space. In
finite state spaces, value functions can be represented exactly using a tabular form
that directly stores in memory a separate value for each individual state. Nevertheless,
in the case where the state space is large or infinite (commonly encountered in the real
world) an exact value representation becomes prohibitive. This problem not only stems
from memory constraints, but also from the time as well as the samples needed for
accurately learning all table entries. Therefore, an approximation architecture for the
representation of the value function is commonly adopted, which must facilitate gener-
alization. The most typical approximation scheme is the linear function approximation,
where the value function is represented as the weighted combination of a set of basis
functions:

V (s) = ���(s)>w =

k
X

i=1

�i(s)wi, (1.2.6)

where w 2 Rk is a vector of coe�cients and ��� : S ! Rk is a mapping from states
to a k-dimensional vector, called basis function. Usually, basis functions are fixed
and nonlinear functions of s. In this way, the value function V (s), is allowed to be
nonlinear function of the state space. Functions of the form of (1.2.6) are called linear
models, as they are linear in the parameters w. Nevertheless, poor design choices
can result in estimates that diverge from the optimal value function and agents that
perform poorly. In practice, achieving high performance requires finding an appropriate
representation for the value function approximator. Next, we consider a number of
approaches suitable for state space representation, which have been used extensively
in the area of reinforcement learning.

State Aggregation

State aggregation is the simplest method for defining features for a linear function
approximator. This approach discretizes the continuous state space into disjoint seg-
ments, whose union covers the state space S. In this way, a binary feature is attached
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to each region, which can be seen as its indicator. A feature is active (i.e. equal to 1)
if the considered state falls into the corresponding region. Otherwise, the feature is 0

and is supposed as inactive.

Tile Coding (CMAC)

The idea behind tile coding [3] is the use of multiple non-overlapping partitions of the
state space, known as tilings. Each element of a tiling, called as tile, is a binary feature
activated if and only if the relevant state falls inside the region delineated by that tile.
Typically, all the tilings are partitioned in the same way but with a slight o�set from
each other. Nevertheless, as suggested in [121], choosing di�erent o�sets of the tilings
that corresponds to di�erent dimensions, renders the tile coding an e�ective function
approximation method. Moreover, an adaptive tile coding scheme is presented in [151],
which begins with a simple representation with few tiles and refines it during learning
by splitting existing tiles into smaller ones. Figure 1.3 illustrates a tile-coding paradigm
with two tilings.

Figure 1.3: An example of tile coding with two tilings.

Radial Basis Functions

Radial Basis Functions (RBFs) are the most common basis schemes for function ap-
proximation. Unlike the other two schemes, RBFs are continuous-valued, so the feature
values range in the interval [0, 1]. In this way, it reflects the various degrees to which
the feature is present in each state. RBFs are typically localized Gaussian functions
computed by:

�i(s) = exp

⇢

�(s� ci)2

2�2
i

�

, (1.2.7)

where ci is the center of the RBF, and �2
i is the variance that determines its width.

Thus, it becomes apparent that the feature value depends on the distance of the state
s from the center, and the width of the RBF. Figure 1.4 shows an example with three
RBFs with di�erent centers and same width over a 1-dimensional state space.
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Figure 1.4: Radial basis functions in one dimension.

Usually, the centers of the RBFs are typically distributed evenly (n) along each di-
mension (d), producing nd basis functions. Moreover, the width can vary, specifying the
degree of function smoothness. The main advantage of RBFs over the binary features
presented earlier in this section, is their ability to produce smooth and di�erentiable
functions. On the contrary, their main drawback is the need for tuning in order for the
learning to be robust and e�cient.

1.3 Policy Evaluation Problem

In this section, we consider the problem of estimating the value function V ⇡, underlying
a policy ⇡. Policy evaluation constitutes an integral part of several control algorithms,
e.g. policy iteration [102], where its target is to discover an optimal policy. In the fol-
lowing, we briefly review two well-known categories of algorithms for the value function
estimation problem: the temporal di�erence learning and the least-squares temporal
di�erence.

1.3.1 Temporal Di�erence Learning

The Temporal Di�erence (TD) family of algorithms [119] provides an elegant framework
for solving prediction problems. The main advantage of this class of algorithms is its
ability to learn directly from raw experience, without any further information, such as
the model of the environment (model free). The temporal di�erence is a bootstrapping
technique, where its estimates are updated online based in part on the previously
learned value function estimations. More specifically, at each time t, where the agent
executes the action at at state st, the predicted state-value of the newly visited state st+1

along with the immediate received reward are used, in order to estimate the prediction
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error, known as the temporal di�erence error:

�t = rt + �V ⇡
t (st+1)� V ⇡

t (st)

= rt + ����(st+1)
>wt � ���(st)

>wt, (1.3.1)

assuming a linear approximation architecture. The temporal di�erence error is then
used for adjusting the weights wt of the policy ⇡, by using a stochastic gradient descent
scheme:

wt+1 = wt + ⌘t�trwtV
⇡
t (st)

= wt + ⌘t�t���(st), (1.3.2)

where the parameter ⌘t > 0 is called the learning rate and controls the update rule.
The above procedure is performed online, after the execution of an action by the agent.
Initially, the unknown model parameters (w0) are set to arbitrary values, while the
learning rate is set to a large value ⌘0  1. In fact, gradient descent methods assume
that the learning rate parameter decreases over time. It is guaranteed that the temporal
di�erence converges to the true value function of policy ⇡, in the case where the learning
rate sequence satisfies the Robbins-Monro conditions:

1
X

t=0

⌘t =1 and
1
X

t=0

⌘2t <1. (1.3.3)

An extension of the classical temporal di�erence algorithm is the TD(�) family of
algorithms [150], where the eligibility traces notion is adopted. In this case, a vector of
eligibility traces, ✏✏✏t, is maintained that indicates the extend that TD error propagates
backward over the visited trajectory of states. The eligibility traces are updated at each
step t, according to the next update rule:

✏✏✏t+1 = ��✏✏✏t + ���(st), (1.3.4)

where the parameter � 2 [0, 1] is known as trace-decay parameter. Initially, we set ✏✏✏0
equal to 0. In this way, the update rule for the model coe�cients (Eq. 1.3.2) becomes:

wt+1 = wt + ⌘�t✏✏✏t. (1.3.5)

In the case where � = 1, the TD(1) algorithm becomes equivalent to the Monte-Carlo
method [118]. On the other hand, if � = 0, we get TD(0) that is the standard temporal
di�erence algorithm. Therefore, it becomes apparent that the trace-decay parameter
controls the interpolation between the Monte-Carlo and the one-step TD algorithms.
Finally, in the case where � > 0, the TD(�) can be supposed as a multi-step method
that accelerates the learning process.
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1.3.2 Least Squares Temporal Di�erence Learning

A related class of methods is that of Least Squares Temporal Di�erence (LSTD) [21],
which provides an appropriate way for approximating the state-value function of a fixed
policy. Instead of performing gradient descent such in case of TD algorithm, the LSTD
approximates the state-value function, finding the fixed-point solution in the projection
space for the state-value function V :

w = argmin

u2Rk

1

2

k�>u� (R + �P ⇡�>u)k22. (1.3.6)

Since the transition matrix P ⇡ as well as the reward function R are usually unknown,
Eq.1.3.6 cannot be resolved straightforwardly. Instead, a batch of transition samples
{(si, ai, ri, s0

i)}ni=1, is assumed, generated from the MDP of interest. Defining the sample
matrices as follows:

˜�>
=

0

B

@

���(s1)
>

...
���(sn)

>

1

C

A

, ˜�0>
=

0

B

@

���(s0
1)

>
...

���(s0
n)

>

1

C

A

, ˜R =

0

B

@

R(s1, a1)
...

R(sn, an)

1

C

A

,

the approximated version of Eq. 1.3.6 is given by:

w = argmin

u2Rk

1

2

k ˜�>u� (

˜R + � ˜�0>u)k22

= argmin

u2Rk

1

2

n
X

i=1

{���(si)
>u� (R(si, ai) + ����(s0

i)
>u)}2. (1.3.7)

As it is presented in [20], the fixed-point solution of Eq. 1.3.7 is given by:

w = A�1b, (1.3.8)

where
A�1

=

˜�( ˜�� � ˜�0
)

>,

and
b =

˜� ˜R. (1.3.9)

Thus, A is a k ⇥ k matrix and b is a vector of size k ⇥ 1. It has been shown that LSTD
achieves to make more e�cient use of data as opposed to the vanilla TD algorithm
[119]. At the same time, it does not require manual tuning of the learning rate. At
this point, it should be mentioned that there exists a trade-o� between the number
of basis functions and the number of samples, as a large number of basis function in
combination with a small number of collected samples unavoidably leads to overfitting.
Furthermore, in the case where the number of basis function is extremely large, the
computational demands as well as the memory requirements become una�ordable,
since the storage and the inversion of matrix A is required. To overcome the specific
handicaps, various regularization schemes have been proposed [72, 59] until now,
trying to find an appropriate number of features, by adopting techniques from the
supervised learning literature.
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1.4 Control Problem

In this section, we focus our analysis on the control problem that can be considered as
the complete reinforcement learning problem. In the specific problem, the objective is
the discovery of optimal (or near-optimal) policies, which give the agent the opportunity
to move safely inside the world, achieving its target. In the following, we present four
di�erent learning schemes that are able to tackle the control learning problem: dy-
namic programming, Q-learning, least-squares policy iteration, and Gaussian process
reinforcement learning.

1.4.1 Dynamic Programming

Dynamic Programming (DP) refers to a class of algorithms that can be used for solving
control problems. They are based on the assumption that a complete model of the
environment is known in advance, for the purpose of computing optimal policies. The
particular assumption as well as their computational expense (curse of dimensionality),
render them impractical or of limited applicability. Despite these shortcomings, DP
algorithms have inspired the development of more advanced reinforcement learning
schemes, such as LSPI [75]. In the following of this section, we assume that the
environment is a finite MDP (i.e. finite state and action spaces).

Value Iteration

Value iteration is an iterative procedure which discovers an optimal policy ⇡⇤ by finding
the optimal value function. Firstly, it computes the optimal value function V ⇤, by
iteratively applying the non-linear Bellman equation:

V ⇡
(s) = max

a2A

(

R(s, a) + �
X

s02S
P (s0|s, a)V ⇡

(s0
)

)

, 8s 2 S,

and then, after convergence, it retrieves a policy greedily, based on the output value
function V ⇤:

⇡⇤
(s) = argmax

a2A

(

R(s, a) + �
X

s02S
P (s0|s, a)V ⇤

(s0
)

)

, 8s 2 S.

Nevertheless, a stopping criterion is required, in order to determine when the value
iteration algorithm must be terminated. An interesting remark [102] is that when the
maximum di�erence between two successive value functions is less than a positive
value ✏, the loss between the value of the greedy policy and that of an optimal policy
can be bounded as:

kV � V ⇤k < 2✏
�

1� � .

It is also worth mentioning that the computational cost for each iteration of the value
iteration is O(|S|2|A|). However, the number of required iterations may grow exponen-
tially with the discount factor �.
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Policy Iteration

Policy iteration is a dynamic programming algorithm, which starts with an arbitrary
policy and steadily improves it. It discovers the optimal policy by generating a sequence
of monotonically improving policies. The policy iteration algorithm manipulates the
policy directly instead of finding it via the value function, as happens in the case of
value iteration. Policy iteration consists of two successive, interactive phases:

• Policy evaluation. In this phase, the value function of policy ⇡ is computed by
solving the following set of linear Bellman equations:

V ⇡
(s) = R(s, ⇡(s)) + �

X

s02S
P (s0|s, ⇡(s))V ⇡

(s0
), 8s 2 S. (1.4.1)

• Policy improvement. Having computed the value function of policy ⇡, we get a
greedily improved policy:

⇡(s) = argmax

a2A

(

R(s, a) + �
X

s02S
P (s0|s, a)V ⇡

(s0
)

)

, 8s 2 S.

The above two phases are executed iteratively until policy ⇡ remains unchanged.
In this case, the policy iteration algorithm converges to an optimal policy ⇡⇤ (for more
details, see Chapter 6 of [102]). Last but not least, it is worth noting that the number of
iterations is upper bounded by |A||S|, which is equal to the number of distinct policies.
However, the computational cost per iteration is O(|S|2|A| + |S|3), which becomes
prohibitive in large MDPs.

1.4.2 Q-Learning

Q-learning [149] is one of the most popular reinforcement learning algorithms used for
tackling the control problem. It is an o�-policy algorithm that belongs to the family of
temporal di�erence algorithms. As a model-free algorithm, the action-value function
is approximated instead of the state-value function, in order to discover an optimal
policy. It starts with an arbitrary guess for the action-value function. Then, the learning
procedure takes place in an online mode. At each time step t, the agent observes the
state st and takes the action at according to a followed policy. As a consequence of its
action, it transits into a new state st+1, receiving an immediate reward rt. After each
transition, the action-value function is updated according to the rule:

Q⇡
(st, at) = Q⇡

(st, at) + ⌘(rt + �max

a2A
Q⇡

(st+1, a)�Q⇡
(st, at)), (1.4.2)

where ⌘ 2 (0, 1] is the learning rate parameter. In this way, the Q-learning algo-
rithm approximates the optimal value function Q⇤ irrespectively of the followed policy.
Once the optimal action-value function Q⇤ is su�ciently approximated, an optimal or
near-optimal policy can be retrieved as the greedy policy learned over the action-value
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function. Under the assumptions that all state-action pairs are visited and updated
continuously and the learning rate decreases su�ciently over time, Q-learning has
been shown to converge with probability 1 to the optimal action-value function Q⇤.
Nevertheless, this is far from true in the case where the action-value function is ap-
proximated using a linear approximation architecture. This is common in the case
of large problems where the value function cannot be represented explicitly using a
tabular form with one entry for each state-action pair. In these cases, the action-value
function is represented with the functional form of a linear model as:

Q⇡
(s, a) =

k
X

i=1

�i(s, a)wi = ���(s, a)>w, (1.4.3)

where ���(s, a) = [�1(s, a), . . . ,�k(s, a)]> is the vector of basis functions for the state-
action pair (s, a), and w is the unknown model parameters. Thus, the gradient-descent
Q-learning rule used for updating model parameters is performed at each time step t,
and is given by:

wt+1 = wt + ⌘(rt + �max

a2A
���(st+1, a)

>wt � ���(st, a)
>wt)���(st, a). (1.4.4)

Last but not least, it is worth noting that two di�erent methods have also been presented
in the literature that combine eligibility traces and Q-learning. They are the Watkin’s
Q(�) [150] and the Peng’s Q(�) [96] (for a brief description, see [118]).

1.4.3 Least Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) [75] is a batch approximate policy iteration al-
gorithm, which is known for its excellent performance in data e�ciency. It adopts
the approximate policy-iteration framework and uses a model-free version of LSTD,
called LSTD-Q. Thus, the action-value function Q, is approximated instead of the state-
value function, while action selection and policy improvement are permitted without
the need of any prior knowledge of the environment dynamics. As in the case of state-
value function (Eq. 1.2.6), in LSTD-Q, the action-value function is approximated using
a linear architecture (Eq. 1.4.3). Due to its nature, a batch of transition samples
D = {si, ai, ri, s0

i|i = 1, . . . , n}, are initially collected and used at each iteration in order
to evaluate the derived policies. During the policy evaluation step, the matrix A and
vector b, are learned following the previously learned policy ⇡, respectively, as follows:

A =

n
X

i=1

���(si, ai)(���(si, ai)� ����(s0
i, ⇡(s

0
i)))

>, and (1.4.5)

b =
n
X

i=1

���(si, ai)ri. (1.4.6)

At the policy improvement step, A and b are used in order to yield a better policy. In this
way, the fixed-point solution in the projection space for the approximate action-value
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function Q is obtained by:
w = A�1b. (1.4.7)

The whole procedure is implemented iteratively, until a convergence criterion over the
parameters w is satisfied. The model parameters are initialized arbitrarily or are set to
0.

The standard LSPI algorithm presented above, is an o�ine algorithm, since a fixed
set of training samples are required in order to discover an near-optimal policy. Nev-
ertheless, a number of approaches have been proposed for this purpose, rendering the
LSPI applicable in an online mode. Recently, an online variant of the LSPI has been
presented in [27], where the ✏-greedy exploration scheme is adopted. This approach
is based on an online scheme, where at each time step t an action is selected greed-
ily, based on the estimated action-value function with probability 1 � ✏t (✏t 2 [0, 1]),
while a uniform random exploratory action is applied with probability ✏t. Initially, the
parameter ✏0 is set to a large value (e.g., ✏0 = 1), while it decays exponentially over
time with a decay rate ✏d 2 (0, 1). In the particular scheme, policy improvement can
be implemented after a number of consecutive transitions. Another interesting online
approach is the one presented in [78]. In that work, the R-max exploration scheme [22]
is integrated in the LSPI learning algorithm.

1.4.4 Gaussian Process Reinforcement Learning

Gaussian Processes (GPs) [104] have been extensively used in a variety of supervised
learning problems, such as classification or regression. Gaussian process methodolo-
gies are based on a probabilistic generative model, allowing a Bayesian treatment of
these problems. Therefore, full posterior distributions can be derived that are based on
both our prior beliefs and observed data. The central idea of a Gaussian process model
is the definition of a prior Gaussian distribution over functions. In this way, the infer-
ence takes place directly on the function space. This fact makes GPs less restrictive as
compared to the parametric models, in terms of the hypothesis space where the learn-
ing process takes place. Finally, employing the Bayes’ rule, closed-form expressions for
the posterior moments can also be derived. Therefore, the di�culties associated with
the iterative optimization schemes and their convergence, can be overcome.

Recently, a number of Gaussian process based schemes have been proposed in the
literature [103, 46, 35] that are associated with the reinforcement learning problem.
The first attempt of employing GPs in reinforcement learning is that of [103], called
as Gaussian Process Reinforcement Learning (GPRL). GPRL is a model-based scheme,
where two GPs are employed in order to model the dynamics of the system (dynamic
GP) and represent the value function (value GP). Moreover, the kernels used in the
GPRL are defined as the sum of a Gaussian kernel and a weighted delta function,
Kv = K + �2�. Furthermore, the received rewards are assumed to be noiseless.
Nevertheless, the assumption that the transition model and the value function are both
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Gaussians, makes the calculation of the value function in a closed form intractable:

V ⇡
(si) = R(si, ⇡(si)) + �

Z

S
P (s0|si, ⇡(si))V

⇡
(s0

)ds0. (1.4.8)

However, this handicap can be tackled by using the solution presented in [57]. More
specifically, the integral

R

S P (s0|si, ⇡(si))V ⇡
(s0

)ds0 can be approximated by using WiK�1
v V ,

where Wi is the expected next kernel values given state si. Therefore, a Gaussian dis-
tribution for the value function of all sampled points is derived, with its mean given
by:

V =

�

I � �WK�1
v

��1
R, (1.4.9)

where W is the matrix of the expected next kernel values, with Wij = E[k(si, sj)].
Another two related schemes are those presented in [35, 34], which also focus on a
model-based predictive approach. An alternative Gaussian process based approach
is that of Gaussian Process Temporal Di�erence (GPTD), where GPs are employed for
expected utility estimation (for a detailed description, see Section 2.1).

A problem with the Gaussian process reinforcement learning approaches is that
they employ the marginal distribution in the dynamic programming step, ignoring the
uncertainty of the model. Moreover, the output dimensions are treated independently,
posing the risk of not making good use of the data. Last but not least, GPs are compu-
tationally demanding as the computational cost grows with the number of considered
samples.

1.5 Thesis Contribution

In this dissertation, we study the problem of developing machine learning algorithms for
intelligent agents, focusing mainly on three di�erent axes: i) approximate reinforcement
learning, ii) Bayesian reinforcement learning, iii) AI in games. The first two parts are
correlated and deal with the development of e�cient reinforcement learning techniques.
In the third part, we mainly focus on the development of intelligent agents for two
famous games, the Ms. PacMan and the Angry Birds, which constitute challenging
domains. Next, we outline the main contributions of this thesis.

In Chapter 2, we suggest a practical and e�cient online Bayesian kernelized rein-
forcement learning scheme for the policy evaluation problem, called as RVMTD. The
proposed algorithmic scheme is based on temporal di�erence learning for the adapta-
tion of the value function after each time step. The main concept of our approach is the
restructure of the policy evaluation problem as a linear regression problem. Neverthe-
less, storing information for the entire history of training instances is computationally
expensive. These computational requirements become prohibitive in the case where
an online computation of the value estimates is required, as it usually happens with
RL algorithms. To overcome this handicap, an online kernel sparsification technique
[45] (i.e., approximate linear dependence) has been employed, rendering the proposed
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scheme applicable in large and infinite state spaces. This technique is based on the
incremental construction of a dictionary that maintains the most representative states.
In this way, we are able to approximate su�ciently the images of all observed states, by
combining the images of the dictionary states. Moreover, this allows us to derive recur-
sive formulas for updating the observations of our model after each transition. Having
updated the observations of our model, a sparse Bayesian regression methodology is
used for the estimation of the unknown model parameters. This fact enforces sparsity
leading to more general inference solutions. Last but not least, we propose an extension
of the RVMTD algorithm for dealing with the control problem that allows the selection
of actions and the gradual improvement of policies, without requiring knowledge of the
model of the environment.

In a nutshell, we make the following contributions:

• we convert policy evaluation into a linear regression problem,

• we employ an online kernel sparsification methodology, rendering our approach
practical in continuous state spaces,

• we derive recursive formulas, able to update the model at each transition with
low computational cost,

• we improve the generalization capabilities of our scheme, by adopting a sparse
Bayesian regression methodology,

• we present an extension of the RVMTD algorithm for learning over state-action
value functions, allowing us to perform model-free policy improvement,

• we experimentally evaluate the e�ectiveness of our approaches on two continuous
domains, namely Mountain Car and Pendulum.

In Chapter 3, we develop a model-based reinforcement learning algorithm for value
function approximation in unknown environments. The presented scheme is based on
the partitioning of the state space to clusters that encompass similar states. For this
purpose, we adopt an appropriate mixture model, which is updated incrementally by
employing an online version of the standard EM-algorithm [36]. Thus, a number of
clusters are automatically constructed and updated through the interaction with the
environment. In this way, a number of basis functions are also constructed based on
the created clusters, and are used for the approximation of the value function, where
the value function is formulated as a linear model. A number of statistics are also kept
about the dynamics of the environment and are used to the policy evaluation problem.
The least-squares solution is used for the estimation of the unknown coe�cients of the
value function model. In this way, the proposed scheme is able to estimate and update
the policy followed by the agent at each time step.

In a nutshell, we make the following contributions:
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• we adopt an online version of the standard EM-algorithm for online clustering,

• we extract the basis functions based on the created clusters,

• we learn the approximate dynamics of the environment by keeping statistics (i.e.,
transition probabilities, expected return) for each cluster,

• we approximate the value function by using the least-squares solution,

• we experimentally evaluate the performance of our approach on both simulated
and real-world environments.

In Chapter 4, we propose a simple linear Bayesian approach, called as LBRL, to
reinforcement learning for arbitrary state spaces. Firstly, we demonstrate that using a
Bayesian linear Gaussian model is adequate for estimating the system dynamics with
high accuracy. Unlike Gaussian process models, this model easily takes into account
correlations in the state features, further reducing sample complexity. Another char-
acteristic of this model is that Bayesian inference can be derived in a fully closed form.
In this way, given a set of example trajectories, it is easy to sample a model from the
posterior distribution. Policies are estimated by first sampling a transition model from
the current posterior, and then performing Approximate Dynamic Programming (ADP)
on the sampled MDP. This form of Thompson sampling is known to be a very e�cient
exploration method in bandit and discrete problems. In this work, we also demon-
strate its e�ectiveness for continuous domains. We experiment with two di�erent ADP
approaches for finding a policy, which are Approximate Policy Iteration (API) schemes.
More specifically, at the policy evaluation step, we experiment with the Fitted Value
Iteration (FVI) and the Least-squares Temporal Di�erence (LSTD) algorithms for finding
policies.

In a nutshell, we make the following contributions:

• we investigate the use of Bayesian inference under the assumption that the dy-
namics are linear,

• we demonstrate that a Bayesian linear Gaussian model is su�cient for accurately
estimating the system dynamics,

• we show that Bayesian inference in our model is of fully closed form,

• we perform Thompson sampling that allows us to perform e�cient exploration,

• we adopt the ADP scheme for the calculation of the optimal policy, by using
trajectories drawn from the sampled model,

• we experimentally evaluate the e�ectiveness of LBRL algorithm in both o�ine and
online modes.
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In Chapter 5, we propose an online tree-based Bayesian approach for reinforcement
learning, called as CTBRL. Our approach is based upon three main ideas. The first
idea is to employ a cover tree [16] to create a set of partitions of the state space. This
avoids having to prespecify a structure for the tree. The second technical novelty is
the introduction of an e�cient non-parametric Bayesian conditional density estimator
on the cover tree structure. This is a generalized context tree, endowed with a multi-
variate linear Bayesian model at each node. This is used for estimating the dynamics
of the underlying environment. The multivariate models allow for a sample-e�cient
estimation, by capturing dependencies. Finally, we take a sample from the posterior
to obtain a piecewise linear Gaussian model of the dynamics, which can be used to
generate policies. In particular, from this sample model, we obtain trajectories of simu-
lated experience for performing ADP in order to select a policy. Although other methods
could also be used to calculate optimal actions, we leave this issue for future study.
The main advantages of our approach are its generality and e�ciency. The posterior
calculation and prediction is fully conjugate and can be performed online. At the t-th
time step, inference takes O(ln t) time. Sampling from the tree, which needs only to
be done infrequently, is O(t). These properties are in contrast to other non-parametric
approaches for reinforcement learning, such as GPs. The most computationally heavy
step of our algorithm is ADP. However, once a policy is calculated, the actions to be
taken can be calculated in logarithmic time at each step. The specific ADP algorithm
used is not integral to our approach, and for some problems it might be more e�cient
to use an online algorithm.

In a nutshell, we make the following contributions:

• we employ a cover tree to create a set of partitions of the state space,

• we introduce an e�cient nonparametric Bayesian conditional density estimator
on the cover tree structure,

• we use a multivariate linear Bayesian model at each tree node, confirming that
multivariate models are e�cient for sample estimation by capturing dependen-
cies,

• we obtain a piecewise linear Gaussian model over the system dynamics by taking
a sample from the posterior,

• we perform ADP in order to obtain e�ective exploration policies in unknown envi-
ronments, by using a number of trajectories of the sampled MDP,

• we experimentally show that cover trees are more e�cient in terms of both com-
putational cost and reward, in relation with GP models.

In Chapter 6, we deal with the problem of developing an intelligent agent, which
is applied to the classical Ms. PacMan game. Reinforcement learning algorithms con-
stitute promising methods for designing intelligent agents in games. Although their
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capability of learning in real time has been already proved, the high dimensionality
of state spaces in most game domains can be seen as a significant barrier. In this
direction, we focus on designing of an appropriate state space representation, which
constitutes the basis for the development of our agent. More specifically, we propose
an abstract and at the same time informative representation of the game’s state space,
which incorporates all necessary information of a game snapshot. The specific repre-
sentation allows our agent to distinguish di�erent game situations, while at the same
time it reduces the computational complexity, accelerates the learning procedure and
enhances the generalization capability of our agent. Moreover, the on-policy reinforce-
ment learning algorithm SARSA(�) [108], has been used for learning a good policy. Due
to the fact that the proposed state space representation is finite, the value function can
be explicitly represented.

In a nutshell, we make the following contributions:

• we design an e�cient state space representation,

• we use the online SARSA(�) reinforcement learning algorithm for discovering poli-
cies,

• we demonstrate that an informative state space description plays a key role in the
design of e�cient RL agents,

• we perform experiments in Ms. Pac-Man domain in order to evaluate the ability
of our agent to reach optimal policies.

Finally, in Chapter 7, we focus on the development of a low-complexity intelligent
agent for the Angry Birds game, called as AngryBER agent. The main novelty of the
proposed agent is its ability to encode the game scenes in an e�cient way, by using
an informative tree structure. This approach constitutes the fundamental component
of the AngryBER, as it allows for the construction of an e�cient and simultaneously
powerful feature space that can be used during the prediction process. Moreover, based
on the tree structure, we can examine if an object of the scene is directly reachable or
not. In this way, we end up with a reduced set of reachable tree nodes, which are
considered as possible targets. The second contribution of the proposed framework
is the integration of a Bayesian ensemble regression model, where every possible pair
of ‘object material’ - ‘bird type’ has its own Bayesian linear regression model. In this
way, we are able to distinguish possible associations between di�erent types of birds
and object materials, improving the prediction accuracy of our scheme. Moreover, we
translate the selection mechanism into a multi-armed bandit problem, where each arm
corresponds to a specific regressor. The Upper Confidence Bound (UCB) algorithm [7]
is adopted in this case, o�ering a balance between exploration and exploitation during
the learning process. Finally, at the end of each shot, an online learning procedure is
executed in order to adjust the model parameters of the selected regressor.

In a nutshell, we make the following contributions:
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• we introduce a novel tree-like structure for encoding game scenes,

• we derive a number of features based on the tree structure,

• we propose a Bayesian ensemble regression framework for the estimation of the
expected return of each taken action,

• we use an online learning scheme for updating the regression model parameters,

• we apply the UCB algorithm as a decision making mechanism, enhancing the
exploration capabilities of our scheme,

• we execute experiments on several challenging game levels.

It is worth noting that the AngryBER agent participated on the 2014 AIBIRDS competi-
tion managing to win the second (2nd) place among 12 participants.

1.6 Thesis Layout

The rest of this thesis is organised as follows. In Chapter 2, we propose an online
Bayesian kernelized reinforcement learning scheme for the policy evaluation problem.
A model-based value function approximation is presented in Chapter 3, which is based
on an online clustering scheme. In Chapters 4 and 5, the Bayesian reinforcement
learning problem is considered, where we propose a simple linear scheme and an online
tree-based Bayesian approach for reinforcement learning, respectively. In Chapter 6,
we introduce a reinforcement learning agent for the arcade Ms. Pac-Man game. Chap-
ter 7 presents an advanced intelligent agent for playing the Angry Birds game, based
on an ensemble of Bayesian regression models. Finally, Chapter 8 summarizes this
dissertation and overviews directions for future work.
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Chapter 2

Value Function Approximation through

Sparse Bayesian Modeling

2.1 Gaussian Process Temporal Di�erence

2.2 Relevance Vector Machine Temporal Di�erence

2.3 Empirical Evaluation

2.4 Summary

E nvironments with large state spaces that are encountered in real world con-
stitute an attractive challenge for reinforcement learning. During the last
years an enormous research e�ort has been pointed out in that direction,

where the main objective is the construction of e�cient approximate representations
for the agent’s utility function. Roughly speaking, the development of an approximate
representation has been considered as the only possible method, able to cope with the
curse of dimensionality. Nevertheless, there are two important preconditions that have
to be taken into account in order to develop an e�ective approximation scheme [15].
First of all, the approximation architecture must be quite rich in order to e�ciently
approximate the function of interest. The second prerequisite is the existence of an
e�cient algorithm for tuning model parameters.

A plethora of methods have been proposed in the last decades that use a variety of
value-function estimation techniques [66] and employ di�erent approximation archi-
tectures (e.g. Radial Basis Functions (RBFs), CMACs [118], Fourier series [73], etc.).
Algorithms such as the Q-learning [149] and Sarsa [108, 114] try to estimate the long-
term expected value of each possible action, given a particular state. Least Squares
Temporal Di�erence (LSTD) learning [21] is a widely used algorithm for the policy eval-
uation problem. Also, Least Squares Policy Iteration (LSPI)[75] is an o�ine method,
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which extends the LSTD, by using it in the evaluation step of the approximate policy
iteration algorithm.

Recently, kernelized reinforcement learning methods have gain a lot of attention by
employing all the benefits of kernel techniques [124]. One of the earliest works in that
direction is the well-known Kernel-Based Reinforcement Learning (KBRL) algorithm
[90], where the value function is approximated o�ine by using a kernel-based locally
weighted averaging. In [63] the authors proposed a combination of Prioritized Sweep-
ing, which employs model-based exploration, with kernel based function approxima-
tion. Furthermore, standard RL methods (e.g., LSTD, LSPI, etc.) have been extended to
kernel spaces [156, 155]. Gaussian Processes (GPs) also have been recently used in re-
inforcement learning o�ering an elegant Bayesian RL formulation. Gaussian Processes
in Reinforcement Learning (GPRL) [103] is a model-based RL algorithm, where two dif-
ferent Gaussian Processes are used sequentially. The first one is used to learn the
transition model of the environment, while the second one is used to approximate the
value function. Gaussian Process Temporal Di�erence (GPTD) [46] constitutes an al-
ternative adaptation of the Gaussian processes to the problem of online value-function
estimation. GPTD employs a probabilistic generative model over the state value func-
tion, while the solution to the inference problem is given by the posterior distribution,
conditioned on the observed sequence of received rewards. It incrementally constructs
an appropriate dictionary of representative states. In [107], a classifier-based policy
search technique has been proposed, where each action is viewed as a distinct class
and the states are the instances to be classified. The Relevance Vector Machine (RVM)
has been employed so as to identify the critical parts of the state space. Finally, the
Kalman Temporal Di�erence (KTD) framework has been introduced in [55], where the
value function approximation is formulated as a filtering problem and non-stationary
systems are allowed.

In this chapter, the Relevance Vector Machine Temporal Di�erence (RVMTD) al-
gorithm is presented, which constitutes an online Bayesian kernelized reinforcement
learning scheme for the policy evaluation problem. The key aspect of RVMTD is the
restructure of the policy evaluation problem as a linear regression problem. In order
to render the RVMTD algorithm practical in large scale domains, an online sparsifi-
cation kernel technique has been adopted [45]. The specific technique is based on
an incremental construction of a dictionary that holds the most representative states.
Therefore, the feature images of all observed states can be su�ciently approximated,
by combining the images of the dictionary states. The advantages of this approach are
summarized as follows. Firstly, we achieve a reduced computational complexity, since
our analysis deals only with a small fraction of the encountered states. Secondly, the
automatic feature space selection holds only most significant states. Thirdly, spar-
sity is encouraged, which improves the generalization ability of our solutions. Finally,
we derive recursive formulas, able to update our model (e.g. model observations) at
each transition. The learning of the regression model parameters is performed through
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a sparse Bayesian methodology [129, 112] that o�ers many advantages in regression
problem. Enforcing sparsity is a fundamental machine learning regularization princi-
ple that leads to more flexible inference solutions. In sparse Bayesian regression, we
employ models that initially have many degrees of freedom, and a heavy tail prior is
applied over the coe�cients. At the end of the learning process, only few of the them
are automatically maintained, as most significant. This approach is equivalent to re-
taining only a part of the dictionary states, which are responsible for approximating
the value function and designing the optimum policy. Furthermore, an incremental
computationally-e�cient optimization strategy has also been adopted [130], in order to
accelerate the learning procedure of the model parameters. Finally, we have presented
an extension of the RVMTD algorithm, where the action-value function is learned in-
stead of state-value function. This fact allows the proposed scheme to tackle the com-
plete reinforcement learning problem, by applying model-free policy improvement so
as to discover optimal or near-optimal policies. Comparisons with the GPTD algorithm
have been conducted in two well-known benchmark problems, showing that RVMTD
significantly outperforms the other approach.

The rest of this chapter is organized as follows. In Section 2.1, we briefly describe
the GPTD methodology as a Bayesian framework for value function approximation.
The proposed sparse regression model is presented in Section 2.2, along with an in-
cremental learning optimization scheme used for value function estimation. Numerical
experiments are presented in Section 2.3 in order to assess the performance of our
methodology. Finally, Section 2.4 concludes this chapter.

2.1 Gaussian Process Temporal Di�erence

Gaussian Process Temporal Di�erence (GPTD) learning algorithm o�ers a Bayesian so-
lution to the policy evaluation problem. A probabilistic generative model is used for the
value function, by imposing a Gaussian prior over value functions and assuming Gaus-
sian noise. Thus, Bayesian reasoning can be applied to the value estimation problem,
of a policy ⇡, when the MDP µ is unknown. In this way, the solution to the inference
problem is given by the posterior distribution of the value function, conditioned on the
observed sequence of rewards, received after following policy ⇡, which is also Gaussian
and is described by its mean and covariance. In the following, we concisely present the
basic GPTD model (see [46] for a more detailed overview).

The basis of the GPTD statistical generative model is the decomposition of the agent’s
utility (i.e., discounted return) into its mean value and a random zero mean residual
�V :

D⇡
(s) = V ⇡

(s) + (D⇡
(s)� V ⇡

(s)) = V ⇡
(s) +�V ⇡

(s). (2.1.1)

Moreover, using the stationarity of the MDP, the discounted return (Eq. 1.2.1) may be
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written as:
D⇡

(s) = R⇡
(s) + �D⇡

(s0
), with s0 ⇠ P (·|s, ⇡(s)). (2.1.2)

Substituting Eq. 2.1.1 into 2.1.2, the following rule is obtained:

R⇡
(s) = V ⇡

(s)� �V ⇡
(s0

) +N⇡
(s, s0

) , (2.1.3)

where N⇡
(s, s0

) , �V ⇡
(s) � ��V ⇡

(s0
) is the di�erence between residuals. Given a

sample trajectory of states {s1, . . . , st}, we get a system of t linear equations that may
be comprehensively expressed in a matrix form as:

Rt�1 = HtVt +Nt, (2.1.4)

where

Rt = (R⇡
(s1), . . . , R

⇡
(st))

>,

Vt = (V ⇡
(s1), . . . , V

⇡
(st))

>,

Nt = (N(s1, s1), . . . , N(st�1, st))>,

are vectors of rewards, value functions, and residuals, respectively. Also, Ht is a
(t� 1)⇥ t rectangular matrix of the form:

Ht =

2

6

6

6

4

1 �� 0 · · · 0

0 1 �� · · · 0

...
...

...
0 0 · · · 1 ��

3

7

7

7

5

. (2.1.5)

The above equation can be described as a Gaussian Process, assuming a zero-mean
Gaussian distribution over the value functions, i.e., Vt ⇠ N

(0, Kt), where Kt is a kernel
covariance matrix that reflects the similarity of states in the environment. Similarly, we
assume that each one of the residuals, �V ⇡

(si), is generated independently of all the
others (i.e., [�V ⇡

(si)�V ⇡
(sj)] = 0, for i 6= j) and follows a white Gaussian distribution

with variance, �i = �2, for all i 2 {1, . . . , t}. Since Nt = Ht�Vt, it becomes apparent
that the noise vector is zero-mean Gaussian, Nt ⇠ N

(0,⌃t), with the covariance given
as: ⌃t = �2

tHtH>
t . Thus, the posterior distribution over the value of state s, conditioned

on an observed sequence of rewards, is also Gaussian:

(V ⇡
(s)|Rt�1) ⇠ N

(

ˆV (s), pt(s)), (2.1.6)

where mean and covariance are respectively given by:

ˆV (s) = kt(s)
>qt, pt(s) = k(s, s)� kt(s)

>Ctkt(s) (2.1.7)

with

qt = H>
t (HtKtH

>
t +⌃t)

�1Rt�1 and Ct = H>
t (HtKtH

>
t +⌃t)

�1Ht. (2.1.8)

Nevertheless, evaluating the parameters qt and Ct of the posterior is computationally
infeasible for large sets of samples, since we need to store and invert a matrix of size
t⇥ t at a cost of O(t3).
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2.1.1 Online Sparcification

A key restriction on the application of kernel methods, such as Gaussian Processes, in
large scale problems is that the number of unknown model coe�cients is equal to the
number of sampled data. Apart from reducing the generalization capability, this may
lead to severe computational problems, as the computational cost is linear with the
size of the kernel matrix. These problems become much more evident in reinforcement
learning approaches, such as GPTD algorithm, where new input samples are arrived
sequentially over time.

In this direction, an online kernel sparsification methodology has been proposed in
[45], which is based on the Approximate Linear Dependency (ALD) analysis. To perform
ALD analysis, a dictionary D with the most representative states is defined, which is
initially empty, D0 = {}. At each time step t, a state st is observed and tested if its
feature space image ���(st) can be approximated adequately, by combining the images of
states already admitted in the dictionary. Thus, having observed t�1 training samples
{si}t�1

i=1 and supposing that a dictionary consisting of a subset of the training samples,
Dt�1 = {˜s1, . . . , ˜s|Dt�1|}, has been created, the approximation of ���(st) in terms of this
dictionary is given by the solution of the following least-squares problem:

min

↵↵↵

�

�

�

�

�

Dt�1
X

j=1

↵j���(sj)� ���(st)

�

�

�

�

�

2

. (2.1.9)

According to the Mercer’s Theorem, the kernel function can be viewed as an inner prod-
uct in a general high dimensional Hilbert space H, via a general non-linear mapping
��� : S ! H, for which h���(s),���(s0

)iH = k(s, s0
) (see [111], for details). Thus, expand-

ing Eq. 2.1.9 and employing the kernel trick, the following minimization problem is
formulated:

min

↵↵↵

n

↵↵↵>
˜Kt�1↵↵↵� 2↵↵↵>k̃t�1(st) + 1

o

, (2.1.10)

where k̃t�1(st) = (k(˜s1, st), . . . , k(˜s|Dt�1|, st))
> is a |Dt�1|⇥ 1 vector, and ˜Kt�1 is the ker-

nel matrix of the dictionary states at time t� 1 (i.e., ˜Kt�1 = [k̃t�1(˜s1), . . . , k̃t�1(˜s|Dt�1|)]),
which is square, symmetric, and positive definite. The solution to the above optimiza-
tion problem is given by:

↵↵↵t =
˜K�1
t�1k̃t�1(st). (2.1.11)

Thus, the squared error incurred by the approximation is:

�t = 1� k̃t�1(st)
>↵↵↵t = 1� k̃t�1(st)

>
˜K�1
t�1k̃t�1(st). (2.1.12)

If �t > ⌫, the state st is inserted to the dictionary, Dt = Dt�1 [ {st}. Now, as st is
represented explicitly by itself, we set ↵↵↵t = (0, . . . , 0, 1)>. Otherwise, if �t  ⌫, the
dictionary remains unchanged, Dt = Dt�1. It is worth noting that ⌫ is an accuracy
threshold parameter that controls the level of sparsity in the model1. In this way, all

1For ⌫ = 0, the approximations become exact.
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feature vectors that correspond to the states observed up to time t can be su�ciently
approximated by combining the images of the states already located in the dictionary
Dt, with a maximum squared error ⌫:

���(si) =

|Dt|
X

j=1

↵i,j���(˜sj) + ���res
i , where k���res

i k2  ⌫. (2.1.13)

Therefore, for all samples encountered up to time t, Eq. 2.1.13 can be written in a more
concise form as:

�t =
˜�tA

>
t + �res

t (2.1.14)

where At = [↵↵↵1, . . . ,↵↵↵t]
>, �t = [���(s1), . . . ,���(st)], ˜�t = [���(˜s1), . . . ,���(˜s|Dt|)], and �res

=

[���res
1 , . . . ,���res

t ]. Moreover, multiplying Eq. 2.1.14 by its transpose and making use of
the kernel trick, we obtain:

Kt ⇡ At
˜KtA

>
t . (2.1.15)

Similarly, since kt(s) = �>
t ���(s), it holds that:

kt(s) ⇡ Atk̃t(s). (2.1.16)

2.1.2 Online Gaussian Process TD

Algorithm 2.1: Online Gaussian Process Temporal Di�erence
Input : ⌫, �0, �, s1.
Output : Dt, q̃t, ˜Ct.
Initialize: D1 = {s1}, q̃1 = 0, ˜C1 = 0, ˜K�1

1 = 1.
1 for t = 2, 3, . . . do
2 Perform transition st�1 ! st;
3 Observe reward R(st�1);
4 if �t > ⌫ then (2.1.12) // Insert st to the dictionary

5 Dt = Dt�1 [ {st};
6 Compute ˜K�1

t ;
7 end
8 Compute q̃t and ˜Ct (2.1.18);
9 end

An online sparse algorithm for GPTD is derived (see [46], for details) by substituting
the approximations (2.1.15, 2.1.16) to the GP solution (2.1.7), as given below:

ˆVt(s) = k̃t(s)q̃t and pt(s) = 1� k̃t(s)
>
˜Ctk̃t(s), (2.1.17)

where

q̃t =
˜H>
t (

˜Ht
˜Kt

˜H>
t +⌃t)

�1Rt�1, ˜Ct =
˜H>
t (

˜Ht
˜Kt

˜H>
t +⌃t)

�1
˜Ht (2.1.18)
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and ˜Ht , HtAt. Thus, the only parameters that need to be stored and updated are q̃t

and ˜Ct, whose dimensions are |Dt| ⇥ 1 and |Dt| ⇥ |Dt|, respectively. This fact renders
the GPTD algorithm practical, since it results in significant computational savings.
Recursive update formulas for the above mean q̃t and covariance ˜Ct may be also derived
[46]. Algorithm 2.1 illustrates the basic steps of the online GPTD.

2.2 Relevance Vector Machine Temporal Di�erence

In this section, we present the Relevance Vector Machine Temporal Di�erence (RVMTD)
methodology, which deals with the tasks of policy evaluation and control learning. The
main idea of RVMTD is to convert the reinforcement learning task into a regression prob-
lem. The concept of a dictionary containing the most representative states has been
adopted in order to reduce the computational complexity of the RVMTD algorithm, ren-
dering it practical in large scale domains. Finally, an incremental, highly-accelerated
version of the standard Relevance Vector Machine (RVM) [129] regression scheme has
also been employed for the value function approximation.

We now explain the basic components of RVMTD algorithm in detail. Firstly, we
give the general scheme of the RVMTD algorithm, transforming the RL policy evaluation
problem into a regression problem. Next, in Section 2.2.2, we present the optimization
RVM scheme used for tuning the model parameters. In Section 2.2.3 an episodic version
of RVMTD is described, while Section 2.2.4 presents a modified version of RVMTD that
is able to solve the complete RL problem (decision making), namely, the task of finding
optimal or near-optimal policies in unknown environments.

2.2.1 Relevance Vector Machine TD for Policy Evaluation

Policy evaluation constitutes one of the most crucial reinforcement learning compo-
nents as it constitutes an integral part of many RL algorithmic schemes including
policy iteration. This section introduces a Bayesian solution to the policy evaluation
problem in general state spaces, by using function approximation. Following the same
analysis as that of GPTD, the sequence of rewards corresponding to a sample trajectory
of states {s1, . . . , st} can be expressed as:

Rt�1 = HtVt +Nt. (2.2.1)

In our approach, we assume that the (hidden) vector of the value functions is de-
scribed with the functional form of a linear model:

Vt = �>
t wt , (2.2.2)

where wt is the vector of the t unknown model regression coe�cients and �t =

[���(s1), . . . ,���(st)] is the ‘design’ matrix that contains t state basis functions. There-
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fore, Eq. 2.2.1 may be written as:

Rt�1 = Ht�
>
t wt +Nt. (2.2.3)

As the feature space may be of high dimensionality, the manipulation of matrices
such as �t becomes prohibitive. To overcome this problem, we follow the suggestions
presented in [45], expressing the weight vector wt as the weighted sum of the state
feature vectors:

wt =

t
X

i=1

���(st)wi = �tw, (2.2.4)

where w = (w1, . . . ,wt)
> are the corresponding coe�cients. Substituting Eq. 2.2.4 into

Eq. 2.2.3 and using the kernel trick, we get:

Rt�1 = HtKtw +Nt. (2.2.5)

The problem with the resulting regression scheme is that the order of the model
is equal to the number of training samples, leading to severe overfitting. Moreover,
as the training samples arrive sequentially, one at each time step, the estimation of
the coe�cient vector w and the evaluation of the value function of a new state become
prohibitive in terms of both memory and time. To overcome these handicaps and
make the algorithm practical reducing the computational complexity, we adopt the
sparsification method described in Section 2.1.1. More specifically, we use a smaller
set of samples instead of the entire training set, which becomes extremely large or
infinite as mentioned above. Therefore, we maintain a dictionary of samples that is
adequate to approximate any training sample in the feature space with high accuracy
(i.e. the level of accuracy is determined by the positive threshold parameter ⌫). Using
the approximation �t ⇡ ˜�tA> (Eq. 2.1.14) and replacing at Eq. 2.2.4, we get:

wt = �tw ⇡ ˜�tA
>
t w =

˜�tw̃t =

|Dt|
X

j=1

w̃j���(sj), (2.2.6)

where w̃t , A>
t w is a |Dt|⇥ 1 vector of unknown coe�cients. Thus, Eq. 2.2.3 gets the

following form:

Rt�1 = Ht�t
˜�tw̃t +Nt

= HtAt
˜Ktw̃t +Nt

=

˜Ht
˜Ktw̃t +Nt, (2.2.7)

where ˜Ht , HtAt and ˜Kt is the kernel matrix of the dictionary states at time step t

(i.e., ˜Kt = [k̃t(˜s1), . . . , k̃t(˜s|Dt|)]) . Taking the pseudoinverse2 of ˜Ht, we end up using the
following linear regression model:

˜H†
tRt�1 =

˜Ktw̃t +
˜H†
tNt )

(

˜H>
t
˜Ht)

�1
˜H>
t Rt�1 =

˜Ktw̃t +
˜H†
tNt )

Ptvt =
˜Ktw̃t + et, (2.2.8)

2M† indicates the pseudoinverse of matrix M .
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where Pt , (

˜H>
t
˜Ht)

�1, vt , ˜H>
t Rt�1, and et , ˜H†

tNt. The vector et plays the role of
model noise. It a nutshell, the only parameters that need to be stored and updated are
Pt, ˜Kt and vt, whose dimensions are |Dt| ⇥ |Dt|, |Dt| ⇥ |Dt| and |Dt| ⇥ 1, respectively.
In the following, we derive update rules for Pt, ˜Kt and vt. At each time step t, where
the agent moves to a new state st receiving a reward rt�1 , we fall in one of the following
two cases:

1. �t  ⌫. In this case, the dictionary remains unchanged (i.e., Dt = Dt�1) as the
feature vector ���(st) can be su�ciently approximated by combining the images of
the dictionary states.

2. �t > ⌫. The state st is added to the dictionary (i.e., Dt = Dt�1 [ {st}) as the ���(st)

is not approximate linear dependent on dictionary states Dt�1. Therefore, the
dimension of dictionary kernel ˜Kt increases by 1.

At this point, we derive the recursive RVMTD update equations for each one of the
above two cases.
Case 1: Dt = Dt�1

Due to the fact that the dictionary remains unchanged, ˜Kt =

˜Kt�1 resulting to
˜K�1
t =

˜K�1
t�1. In the specific case, only matrices At and Ht change between successive

time steps:

At =

"

At�1

↵̃↵̃̃↵>
t

#

, Ht =

"

Ht�1 0

ht

#

, (2.2.9)

where ↵̃↵̃̃↵t =
˜K�1
t�1

˜kt�1(st) (given by Eq. 2.1.11), ht = (0, . . . , 0, 1,��)> and 0 is a vector
of zeros of appropriate length. Therefore,

˜Ht = HtAt =

"

˜Ht�1

↵̃↵̃̃↵>
t�1 � �↵̃↵̃̃↵>

t

#

=

"

˜Ht�1

h̃>
t

#

, (2.2.10)

where we define h̃t , ↵̃↵̃̃↵t�1 � �↵̃↵̃̃↵t. Multiplying the transpose of Eq. 2.2.10 by itself, we
get the following recursive formula:

˜H>
t
˜Ht =

h

˜H>
t�1 h̃t

i

"

˜Ht�1

h̃>
t

#

=

˜H>
t�1

˜Ht�1 + h̃th̃
>
t . (2.2.11)

In this way, we derive the following recursive formula for Pt, by using the matrix inver-
sion Lemma (Appendix A.2):

Pt = (

˜H>
t�1

˜Ht�1 + h̃th̃t)
�1

= Pt�1 �
Pt�1h̃th̃>

t Pt�1

1 + h̃>
t Pt�1h̃t

. (2.2.12)
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Finally, it is easily seen that the vector vt can be obtained recursively as follows:

vt =
˜H>
t Rt�1 =

h

˜H>
t�1 h̃t

i

"

Rt�2

rt�1

#

=

˜H>
t�1Rt�2 + h̃trt�1

= vt�1 + h̃trt�1. (2.2.13)

Case 2: Dt = Dt�1 [ {st}
In this case, ˜Kt 6= ˜Kt�1, as state st is added to the dictionary. Now, the dictionary

kernel matrix is given by:

˜Kt =

"

˜Kt�1 k̃t�1(st)

k̃t�1(st)
>

1

#

. (2.2.14)

Using the partitioned matrix inverse formula, we derive the following recursive formula
for ˜K�1

t (see Appendix A.2):

˜K�1
t =

1

�t

"

�t ˜K
�1
t�1 + ↵̃↵̃̃↵t↵̃↵̃̃↵>

t �↵̃↵̃̃↵t

↵̃↵̃̃↵t 1

#

, (2.2.15)

where ↵̃↵̃̃↵t =
˜K�1
t�1k̃t�1(st) (2.1.11) and �t = 1 � k̃t�1(st)

>↵̃↵̃̃↵t (2.1.12). After performing
the above update, we set ↵̃↵̃̃↵t equal to (0, . . . , 0, 1)>. This happens as the dictionary Dt

contains the state st and consequently its feature vector���(st) can be exactly represented
by itself. Moreover, matrices At and Ht are now formed as:

At =

"

At�1 0

↵̃↵̃̃↵t

#

and Ht =

"

Ht�1 0

ht

#

, (2.2.16)

where ht = (0, . . . , 0, 1,��)> and 0 is a vector of zeros of appropriate length. Therefore,

˜Ht = HtAt =

"

˜Ht�1 0

↵̃↵̃̃↵>
t�1 ��

#

=

"

˜Ht�1 0

h̃>
t

#

, (2.2.17)

where

h̃t =

"

↵̃↵̃̃↵t�1

0

#

� �↵̃↵̃̃↵t =

"

↵̃↵̃̃↵t�1

�

#

. (2.2.18)

Furthermore, we get the following update rule by multiplying the transpose of Eq. 2.2.17
by itself,

˜H>
t
˜Ht =

"

˜H>
t�1 ↵̃↵̃̃↵t�1

0> ��

#"

˜Ht�1 0

↵̃↵̃̃↵>
t�1 ��

#

=

"

˜H>
t�1

˜Ht�1 + ↵̃↵̃̃↵t�1↵̃↵̃̃↵>
t�1 ��↵̃↵̃̃↵t�1

��↵̃↵̃̃↵>
t�1 �2

#

. (2.2.19)
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Thus, using the partitioned matrix formula (Appendix A.2), we get the following recur-
sive formula for Pt:

Pt =

"

Pt�1
1
�Pt�1↵̃↵̃̃↵t�1

1
� ↵̃↵̃̃↵

>
t�1Pt�1

1
�2 ↵̃↵̃̃↵>

t�1Pt�1↵̃↵̃̃↵t�1 +
1
�2

#

. (2.2.20)

Finally, we derive the following recursive update rule for vt:

vt =
˜H>
t Rt�1 =

"

H>
t�1 h̃t
0>

#"

Rt�2

rt�1

#

=

"

H>
t�1Rt�2

0

#

+ h̃trt�1

=

"

vt�1

0

#

+ h̃trt�1. (2.2.21)

Therefore, we achieve to convert the reinforcement learning policy evaluation prob-
lem to a regression problem, by deriving recursive formulas for the computation of Pt,
˜Kt and vt parameters. It is also worth noting that the overall computational cost is
bounded by O(|Dt|2), per time step. Therefore, assuming that we bound the size of the
final dictionary, our scheme meets all the online reinforcement learning requirements.
The pseudocode for this scheme is illustrated in Algorithm 2.2. The only remaining
question is how to calculate the unknown parameters, w̃t, of the linear regression
model (2.2.8). In this work, we adopt a Bayesian sparse kernel technique, which leads
to sparse solutions whilst maintaining high generalization capabilities.

2.2.2 Sparse Bayesian Regression

In the previous section, we have shown how the policy evaluation problem can be
converted into a regression problem through a sequential kernel sparsification scheme.
The only open issue now for the completion of the policy evaluation problem is the
approximation of the value function of a given policy, ⇡. At this point, we describe
the Bayesian optimization scheme adopted for the estimation of the unknown model
parameters, w̃t. For notation simplicity, the linear regression model of Eq. 2.2.8 can
be written more concisely as:

yt =
˜Ktw̃t + et, (2.2.22)

where yt , Ptvt represents the observations of our model. The term et plays the role
of the stochastic model noise and is assumed to be a zero-mean Gaussian distribution
with precision �t, i.e. et ⇠ N

(0, ��1
t I). In view of this, the conditional probability

density of the sequence yn is also Gaussian, i.e.

p(yt|w̃t, �t) = N

(yt| ˜Ktw̃t, �
�1
t I). (2.2.23)

An important issue is how to define the optimal order of the above regression model.
Sparse Bayesian methodology o�ers an advanced solution to this problem, by penalizing
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Algorithm 2.2: Relevance Vector Machine Temporal Di�erence Algorithm

Input : ⌫, �, s1;
Output : Dt, ˜Kt,vt, Pt;
Initialize: D1 = {s1}, ˜K1 = 1, ˜K�1

1 = 1, P1 = 1,v1 = 0, ↵̃↵̃̃↵1 = 1;
1 for t = 2, 3, . . . do
2 Observe transition st, rt�1;
3 ↵̃↵̃̃↵t =

˜K�1
t�1k̃t�1(st);

4 �t = 1� k̃t�1(st)
>↵̃↵̃̃↵t;

5 if �t > ⌫ then
6 Dt = Dt�1 [ {st};
7 Compute ˜Kt (Eq. 2.2.14);
8 Compute ˜K�1

t (Eq. 2.2.15);

9 Pt =

"

Pt�1
1
�Pt�1↵̃↵̃̃↵t�1

1
� ↵̃↵̃̃↵

>
t�1Pt�1

1
�2 ↵̃↵̃̃↵>

t�1Pt�1↵̃↵̃̃↵t�1 +
1
�2

#

;

10 h̃t =

"

↵̃↵̃̃↵t�1

�

#

;

11 vt =

"

vt�1

0

#

+ h̃trt�1;

12 ↵̃↵̃̃↵t = (0, . . . , 0, 1)>;
13 else
14 h̃t = ↵̃↵̃̃↵t�1 � �↵̃↵̃̃↵t;

15 Pt = Pt�1 � Pt�1h̃th̃>
t Pt�1

1+h̃>
t Pt�1h̃t

;

16 vt = vt�1 + h̃trt�1;
17 end

18 end

large order models. This is the idea behind the Relevance Vector Machines [129]. More
specifically, a heavy-tailed prior distribution, p(w̃t), is imposed over the regression
coe�cients w̃t to zero out most of the weights after the learning process. This is
achieved in a two-phase hierarchical way:

• Firstly, a zero-mean Gaussian distribution is considered over vector parameters
w̃t:

p(w̃t|⌅t) = N

(w̃t|0,⌅�1
t ) =

|Dt|
Y

i=1

N

(w̃i|0, ⇠�1
i ), (2.2.24)

where ⌅t is a diagonal matrix of size |Dt| ⇥ |Dt|, with the elements of the preci-
sion vector ⇠⇠⇠t = (⇠1, . . . , ⇠|Dt|)

> on the main diagonal. Thus, a separate hyper-
parameter is introduced to each weight parameter w̃i, instead of a single common
hyper-parameter.
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• Secondly, a Gamma hyperprior is imposed over each hyper-parameter ⇠i:

p(⇠⇠⇠t) =

|Dt|
Y

i=1

Gamma(⇠i|a, b). (2.2.25)

It must be noted that both Gamma parameters a and b are a priori set to zero in
order to make these priors uninformative.

This two-stage hierarchical prior is actually a Student’s-t distribution that provides
sparseness to the model [129], since it enforces most of the parameters ⇠i to become
large and as a result the corresponding weights w̃i are set to zero. Therefore, the
complexity of the regression model is controlled automatically, while at the same time
overfitting is avoided. Furthermore, we obtain the marginal likelihood distribution of
sequence yt, by integrating out the weights w̃t, which is also a zero mean Gaussian
distribution:

p(yt|⇠⇠⇠t, �t) =
Z

p(yt|w̃t, �t)p(w̃t|⇠⇠⇠t)dw̃ =

N

(0, Ct), (2.2.26)

where the covariance matrix has the form Ct , ˜Kt⌅
�1
t

˜K>
t + ��1

t I.
From the Bayes rule, the posterior distribution of the weights is again Gaussian and

takes the following form [129]:

p(w̃t|yt,⇠⇠⇠t, �n) = N

(w̃t|µµµt,⌃t), (2.2.27)

where the mean and covariance are respectively given by:

µµµt = �t⌃t
˜K>
t yt, (2.2.28)

⌃t = (�t ˜K
>
t
˜Kt + ⌅t)

�1. (2.2.29)

The maximization of the log-likelihood function given by Eq. 2.2.26 leads to the
following update rules for the model parameters [129]:

⇠i =
�i
µ2
i

, (2.2.30)

��1
t =

kyt � ˜Ktµµµtk2
n�

Pn
i=1 �i

, (2.2.31)

where n = |Dt|. The quantity �i is defined as �i , 1 � ⇠i[⌃t]ii and measures how well
the corresponding parameter w̃i is determined by the data. Moreover, [⌃t]ii denotes
the i-th diagonal element of the posterior covariance ⌃t (Eq. 2.2.29). Therefore, the
learning algorithm is involved by iterated applications of Equations (2.2.28), (2.2.29),
(2.2.30) and (2.2.31) until a suitable convergence criterion is satisfied. Finally, when
the learning procedure converges, the value function of the new state s is evaluated
based on the predictive distribution which is also Gaussian and is given by:

(

ˆV ⇡
(s)|yt) v N

⇣

ˆV ⇡
(s)|µµµ>

t k̃t(s), �
�1
t + k̃t(s)

>⌃tk̃t(s)
⌘

. (2.2.32)

The hyper-parameters are set to their optimized values obtained at the end of the
learning procedure.
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Incremental Learning

Despite the e�ciency of the standard RVM scheme, its application in large scale prob-
lems is prohibitive since inversion of matrix ⌃n (Eq. 2.2.29) is required at each iteration
step of the learning process. In our approach, this becomes obvious when the dictionary
size (|Dt|) becomes quite large. To overcome this handicap, we follow an incremental
learning algorithm that has been proposed in [130] and o�ers a significantly faster
procedure for hyper-parameters optimization.

Initially, the specific approach assumes that all dictionary states (all basis functions)
have been pruned from the model due to the sparsity constraint. This is equivalent to
assuming that ⇠i = 1, 8i = {1, . . . , |Dt|}. Then, at each iteration, a basis function is
examined whether to be added to the model or removed from the model or re-estimated.
Adding a basis function to the model, the value of the hyper-parameter ⇠i is estimated
according to the maximum likelihood criterion. In particular, it is easily verified that
the term of the marginal likelihood of Eq. 2.2.26, which refers to the hyper-parameter
⇠i, is given by:

`(⇠i) =
1

2

✓

log ⇠i � log(⇠i + si) +
q2i

⇠i + si

◆

, (2.2.33)

where
si =

⇠iSi

⇠i � Si
, qi =

↵iQi

↵i � Si
, (2.2.34)

and Si = k̃>
i C

�1
t k̃i, Qi = k̃>

i C
�1
t yt, k̃i = (k(˜s1, ˜si), . . . , k(˜s|Dt|, ˜si))

>. It is worth noting
that the matrix inversion is avoided by using the matrix inversion lemma (Appendix
A.2). As it has been shown in [130], the log-likelihood has a single maximum at:

⇠i =
s2i

q2i � si
, if q2i > si, (2.2.35)

⇠i =1, if q2i  si. (2.2.36)

Thus, a basis function ˜ki is added to the model in the case of q2i > si ( the correspond-
ing state of the dictionary becomes active). Otherwise, the specific basis function is
removed from the model.

2.2.3 Episodic tasks

In the preceding sections, we have presented the online RVMTD algorithm for infinite
horizon problems (continuing tasks), where the agent is placed initially at a random
state and then is let to wander-o� indefinitely. Since most of the RL tasks are episodic,
a modification to our approach is required to handle episodic learning tasks. In this
case, our approach has to consider a series of episodes, rather than a unique sequence
of time steps. During an episodic task, the agent follows a trajectory until it reaches
an absorbing state after a finite number of time steps. When an absorbing state is
reached, a new episode (epoch) starts and the agent is placed in a usually unknown
random initial position.
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An absorbing state may be thought as a special state that only zero-rewards are gen-
erated and actions do not have any impact since transitions lead to the same state. In
this case, once an absorbing state is reached, all subsequent rewards vanish. There-
fore, the discounted return of the state preceding the terminal state is equal to the
immediate received reward. In this direction, a zero reward is assumed to be received
during the transition from terminal state to the starting state of the next episode. Prac-
tically, this is achieved by setting the discount factor � temporarily to zero, every time
the agent reaches a terminal state. Therefore, the matrix Ht gets the following form:

Ht =

2

6

6

6

6

6

6

4

1 �� 0 · · · 0 0

0 1 �� · · · 0 0

...
...

...
...

0 0 · · · 1 �� 0

0 0 · · · 0 1 0

3

7

7

7

7

7

7

5

. (2.2.37)

This new form of matrix Ht is the only modification we make to our approach in order
to deal with episodic tasks. After a sequence of episodes, matrix Ht becomes a square
block diagonal matrix, with each block corresponding to a completed episode.

2.2.4 Relevance Vector Machine TD for Policy Improvement

Until now, our research is mainly focused on the policy evaluation problem. In this
section, we turn our attention to the control learning problem, where the agent has to
discover a (near) optimal policy, while interacting with an unknown environment. As
the MDP’s transition model is unknown in advance, we need to learn the action-value
function (Q) rather than the state-value function (V ), in order to find out an optimal or
near-optimal policy.

In light of this, we have considered transitions between state-action pairs instead
of transitions between single states, since the model environment is completely un-
known. This is achieved by defining a kernel function over state-action pairs, i.e.,
k : (S ⇥ A) ⇥ (S ⇥ A) ! R. Since states and actions are independent entities, the
kernel function can be considered as a product of a state kernel ks and an action
kernel ka, i.e., k(s, a, s0, a0) = ks(s, s0

)ka(a, a0) (legitimate kernel, [111, 17]). Using the
new state-action kernel function, the RVMTD algorithm approximates the action-value
function, Q⇡

(s, a), of the policy used to make decisions, ⇡. In addition, our approach
makes use of the ✏-greedy exploration scheme3 for selecting an action at each time
step. Consequently, actions are selected greedily (choosing the action with the maxi-
mum action-value estimation) most of the time, while with a small probability ✏, actions
are selected uniformly random. In this way, RVMTD can be considered an on-policy
reinforcement learning algorithm, since the estimated policy is used to make decisions
at each time step.

3Di�erent exploration schemes may be used, e.g. softmax.
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2.3 Empirical Evaluation

We have conducted two sets of experiments to analyse the online performance of the
RVMTD algorithm. Comparisons have been made with an online variant of GPTD [46]
for policy improvement over 1000 episodes. Both algorithms are based on the same
online kernel sparsification methodology, where the threshold parameter ⌫ controls the
level of sparsity of the solution. In all experiments, we set the sparsity factor ⌫ equal
to 0.1.

A covariance kernel function is also defined over state-action pairs (see Section 2.2.4).
A Gaussian kernel is used as the kernel function over the state space S, with a di�er-
ent scalar parameter for each dimension. Furthermore, a simple kernel has also been
used over the action space A, which is equal to 1 in the case of similar actions and
0 otherwise4. Finally, actions are selected ✏-greedily by choosing the best action, and
slowly decreasing ✏ toward zero.

2.3.1 Domains

We have consider two well-known continuous state, discrete-action, episodic domains.
The first one is the mountain car domain and the second one is the inverted pendulum
domain.

Mountain Car

The objective in this domain is to drive an under-powered car up a steep mountain road
to the top of a hill. Due to the force of gravity, the car cannot accelerate up to the tophill
and thus, it must go to the opposite slope to acquire enough momentum, so as to reach
the goal on the right slope (at position > 0.5). The state space consists of two continuous
variables: the position (p 2 [�1.2,+0.5]) and the current velocity (u 2 [�0.07, 0.07]) of
the car. There are three actions: reverse, zero, and forward throttle. All three actions
are noisy as a uniform noise in [�0.2, 0.2] is added to the chosen action. At each
time step, it receives a negative reward r = �1 except for the case where the target
is reached (zero reward). An episode terminates either when the car reaches the goal
at the right tophill, or when the total number of steps exceeds a maximum allowed
value (1000). At the beginning of each episode, the vehicle is positioned at a new state,
with the position and velocity uniformly randomly selected. The discount factor � is
set to 0.99. Moreover, the algorithms under comparison use a Gaussian state kernel
with di�erent scalar parameters. In the case of RVMTD, the scalar parameters of the
two variables (i.e., position and velocity), are set to 0.08 and 0.0008, respectively. On
the other side, for the GPTD we set the position and velocity scalar parameters equal
to 0.04 and 0.0004, respectively. It is worth noting that the GPTD algorithm is quite

4In the case of GPTD algorithm in the mountain car domain, the action kernel is equal to 0.6 if actions
are adjacent (e.g. forward action is adjacent to neutral action), 1 in the case of similar actions and 0

otherwise.
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sensitive to the specific parameters. Last but not least, the prior variance noise of the
GPTD algorithm is equal to 1.

Inverted Pendulum

The target in this task is to balance a pendulum by applying forces of a fixed magnitude
(50 Newtons). The state space consists of two continuous variables, the vertical angle
(✓) and the angular velocity ( ˙✓) of the pendulum. At each time step, the agent has at his
arsenal three actions: no force, left force and right force. All three actions are noisy as
a uniform noise in [�10, 10] is added to the chosen action. A zero reward is received at
each time step except for the case where the pendulum falls. In this case, a negative
reward (r = �1) is given and a new episode begins. An episode also ends with a reward
of r = 0 after 3000 steps. In this case, we consider that the pendulum is successfully
balanced. Each episode starts by setting the pendulum in a perturbed state close to the
equilibrium point. More information about the specific dynamics can be found in [75].
The discount factor � is set to 0.95. In the case of the Gaussian kernel state, we set the
scalar parameters for the angle and velocity of the pendulum equal to 0.01 and 0.25,
respectively. Finally, the GPTD parameter for the prior variance noise is set equal to
0.1.

2.3.2 Results

In our results, we show the average performance in terms of the number of steps of each
method, averaged over 100 runs. For each average, we also plot the 95% confidence
interval for the accuracy of the mean estimate with error bars. In addition, we present
the 90% percentile region of the runs, in order to indicate the inter-run variability in
performance.

Figure 2.1 shows the results of the experiments in both mountain car and pendulum
domains. For the mountain car, it is clear that RVMTD significantly outperforms GPTD
algorithm. Another interesting remark is the ability of RVMTD to discover a good or
near-optimal policy in a much higher rate compared to the GPTD. Furthermore, the
RVMTD algorithm presents a more robust behaviour, as it achieves to discover optimal
policies at each run. Last but not least, RVMTD generates a much smaller dictionary
(|D| ' 129) in contrast to that generated by GPTD (|D| ' 220).

For the pendulum, the performance di�erence between the two algorithms is even
more impressive. More specifically, RVMTD is more stable, while it achieves to discover
the optimal policy in all runs. This remark stems from the fact that after 70 episodes
more than 90% of the runs are optimal, while many GPTD runs fail to find a good
solution even after hundreds of episodes. It is also worth noting that both approaches
generate dictionaries of similar size (|D| ' 230).

Figure 2.2 illustrates the value functions of the policies learned by the RVMTD
algorithm in both mountain car and pendulum, at the end of a single successful run
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(i.e., 1000 episodes).
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Figure 2.1: Experimental evaluation. The solid line shows RVMTD, while the dashed
line shows GPTD. The error bars denote 95% confidence intervals for the mean (i.e.,
statistical significance). The shaded regions denote 90% percentile performance (i.e.,
robustness) across runs.
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Figure 2.2: Value functions of the learned policies at the end of a single run.
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2.4 Summary

In this chapter, we have presented an advanced kernelized Bayesian methodology for
model-free value function approximation using the RVM regression framework as the
generative model. The key aspect of the proposed technique is the translation of the
policy evaluation problem to a regression problem. An online sparsification kernel
technique has been adopted in order to render the proposed algorithm practical in
large scale domains. Furthermore, we have also proved that recursive formulas can be
derived for the update of the model observations at each time step. A sparse Bayesian
regression framework has been used for the estimation of the unknown model coe�-
cients, incorporating powerful modeling capabilities. We have also applied an incre-
mental learning strategy that accelerates the optimization procedure. Finally, we have
proposed an extension of the RVMTD algorithm for the estimation of action-value func-
tions, allowing the gradual improvement of policies, without knowledge of the model of
the environment. As experimental analysis has shown, the proposed RVMTD algorithm
is able to achieve better performance than GPTD algorithm.
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Chapter 3

Model-based Reinforcement Learning

using an Online Clustering Scheme

3.1 Clustering for Feature Selection

3.2 Model-based Value Function Approximation

3.3 Empirical Evaluation

3.4 Summary

O ne of the most important challenges for modeling sequential decision making
in stochastic environments is that of finding a suitable representation of the
state space. Discovering a good set of features is of central interest for the

development of an e�ective value function approximation scheme, as the quality of the
approximation depends on the set of features [133]. This happens due to the fact that
the value function is represented as a linear combination of a set of features (basis
functions). In this way, states are mapped into feature vectors allowing the approxi-
mation of the value function in continuous state spaces. Practically, the selected set of
features a�ects not only the quality of the obtained solution, but also the convergence
rate of the learning process.

Generally, the basis functions used for approximating the value function remain
fixed during the learning process (see Section 1.2.2). For instance, in the work pre-
sented in [73], a number of fixed Fourier basis functions are used for value function
approximation. Nevertheless, various approaches have been proposed for the estima-
tion and adaptation of the basis functions during the learning procedure. The specific
approaches are able to tackle the problem of finding an appropriate set of features in an
automatic way, and can be divided into two distinct categories. The first category relies
on the dynamics of the environment (i.e. transition model), which are learned through
the interaction of the agent with the environment. More specifically, the observed
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transitions between states are used for the construction of a state connectivity graph.
Thereafter, spectral clustering methodologies [80] are used for the construction of the
state features. The resulting features capture interesting transition properties of the
environment (e.g. di�erent spatial resolution) and are reward-independent. The latter
property allows the e�ective re-computation of value functions in the case of problem
changes in terms of rewards. On the other hand, the methods that lie in the second
category are based on the minimization of the Bellman error for the construction of an
appropriate set of basis functions [69, 95]. In this case, features are reward-oriented,
and are formed based on the reduction of the value function estimation error. In the
work presented in [85], a set of k RBF basis function are adjusted directly over the
Bellman’s equation of the value function. Furthermore, in [99] the probability density
function and the reward model, which are assumed to be known, are used for creat-
ing basis function from Krylov space vectors (powers of the transition matrix used to
systems of linear equations). However, in contrast to the features constructed by the
methods of the former category, in this case the resulting features cannot be easily
interpreted.

In this chapter, we propose a novel model-based framework for value function ap-
proximation which addresses the online construction of a number of appropriate basis
functions. An online version of the Expectation-Maximization (EM) algorithm is used
for separating the input space (i.e. state-action pairs) into clusters. Furthermore, a
mechanism for automatically adding clusters has also been proposed. In this way, a
number of clusters are automatically constructed and updated through the interaction
of the agent with the environment. Based on the structure of the created clusters, we
develop a dictionary of basis functions which are subsequently used for the approxima-
tion of the value function. At the same time, an approximate model of the environment
is learnt, by keeping useful statistics for each cluster. Thus, we learn the transition
probabilities between clusters as well as their expected returns. Policy is then evalu-
ated at each time step by estimating the linear weights of the value function through
the least-squares solution. The above learning procedure is repeated after each transi-
tion to a new state, improving the policy followed by the agent. The proposed method
has been tested on several simulated and real environments where comparisons have
been made with an online version of LSPI algorithm that uses a fixed number of basis
functions.

The remainder of this chapter is organised as follows. In Section 3.1, we initially
introduce the concept of cluster analysis. Sections 3.1.1 and 3.1.2 present the proposed
online clustering scheme for features selection, which are used for value approximation.
The proposed model-based reinforcement learning algorithm for policy evaluation is
presented in Section 3.2. The empirical analysis on simulated and real environments
is discussed in Section 3.3. Finally, Section 3.4 summarizes the chapter.
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3.1 Clustering for Feature Selection

Clustering (or cluster analysis) aims to organize a collection of data items into clusters,
such that items within a cluster are more similar to each other than they are to items
in the other clusters. This notion of similarity can be expressed in very di�erent ways,
according to the purpose of the study, to domain-specific assumptions and to prior
knowledge of the problem. Clustering is usually performed when no information is
available concerning the membership of data items to predefined classes. For this
reason, clustering is traditionally seen as part of unsupervised learning and can be
viewed as the learning of a hidden data concept. Some application areas related with
clustering are computer vision, pattern recognition, information retrieval, data mining,
bioinformatics, etc. Several taxonomies of clustering methods have been suggested
within the literature [43, 17]. A rough but widely agreed frame is to classify clustering
techniques as hierarchical and partitional clustering, based on the properties of clusters
generated.

Hierarchical clustering aims to obtain a hierarchy of clusters, called dendrogram,
that indicates how the clusters are related to each other. These methods proceed
either by iteratively merging small clusters into larger ones (agglomerative algorithms)
or by splitting large clusters (divisive algorithms). A partition of the data items can
be obtained by cutting the dendrogram at a desired level. Agglomerative algorithms
need criteria for merging small clusters into larger ones. Most of the criteria concern
the merging of pairs of clusters (thus producing binary trees) and are variants of the
classical single-link, complete-link or minimum-variance criteria [43].

Partitional clustering aims to directly obtain a single partition of the collection of
items into clusters. Many of these methods are based on the iterative optimization of a
criterion function reflecting the ‘agreement’ between the data and the partition. Some
important categories of partitional clustering methods are:

• Methods using the squared error rely on the possibility to represent each cluster
by a prototype and attempt to minimize a cost function that is the sum over all
the data items of the squared distance between the item and the prototype of the
cluster it is assigned to. In general, the prototypes are the cluster centroids, as in
the popular k-means algorithm and its extension k-medoid, fuzzy c-means etc.

• Density-based methods consider that clusters are dense sets of data items sep-
arated by less dense regions; clusters may have arbitrary shape and data items
can be arbitrarily distributed. Such methods rely on the study of the density of
items in the neighborhood of each item. Many of the graph-theoretic clustering
methods are also related to density-based clustering. The data items are repre-
sented as nodes in a graph and the dissimilarity between two items is the ‘length’
of the edge between the corresponding nodes. Spectral clustering is a kind of
such techniques based on similarity information between data points. That is,
similar data points (or points with high a�nity) are more likely to belong to the
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same cluster than points with low a�nity.

• Model-based clustering methods, assume that the data are generated from a mix-
ture of probability distributions with each component corresponding to a di�erent
cluster [82, 17]. In these methods the expectation-maximization (EM) algorithm
[36] is the most frequent choice for solving the estimation problem and tuning the
mixture parameters.

A fundamental issue in clustering is the determination of the number of clusters in a
given data set. Most clustering methods assume that this number is a priori known,
and then try to place K clusters in the space defined by the data. In the literature quite
a few methods have been proposed for determining the number of clusters. A common
approach is to apply a clustering technique using a range of values for K and select the
solution that performs best according to certain evaluation (information-based) criteria,
such as the Akaike information criterion, the Bayesian information criterion and the
cross-validation criterion. Under the Bayesian framework model selection is treated
by the posterior distribution for the model uncertainty. Finally, other numerical ap-
proximation schemes have been considered, for calculating the posterior distribution,
such as the Laplace approximation, Markov chain Monte Carlo (MCMC) methods, and
variational approaches (for a brief survey, see [52, 60]).

3.1.1 Clustering using Mixture Models

In this section we present the proposed model-based reinforcement learning scheme
which is based on a policy evaluation scheme that incrementally separates the input
space into clusters and estimates the transition probabilities among them. Thus, a
dictionary of features is dynamically constructed for modeling the value functions. In
the following, we assume that the input samples are state-action pairs, denoted as
xn = (sn, an). We also consider a finite action space of size M .

Let us suppose that a data set of {x1, x2, . . . , xN} is given, consisting of N sam-
ples. The task of clustering aims at partitioning the input set into k disjoint clusters,
with each cluster to disclose the intrinsic structures of the data. Mixture modeling
[17] o�ers a convenient and at the same time elegant framework for clustering, where
the properties of a single cluster cj, are implicitly described via a probability distribu-
tion with parameters ✓j. Therefore, mixture modeling can be formulated as a linear
superposition of k probability distributions given by:

p(x|⇥k) =

k
X

j=1

ujp(x|✓j), (3.1.1)

where ⇥k denotes the set of mixture model parameters. Each one of the probability
densities is called as a component of the mixture model. The parameters uj, for j =
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1, . . . , k, represent the mixing coe�cients and must satisfy the following property:
k
X

j=1

uj = 1, (3.1.2)

together with 0  uj  1, in order to yield valid probabilities. Since two uncorrelated
sources of information are incorporated in the data (state-action) of our scheme, we
consider that the conditional density for each one of the clusters can be written as the
product of two probability density functions:

• A Gaussian pdf for the state space:

N

(s|µµµj,⌃j) / exp

⇢

�1

2

(s� µµµj)
>⌃�1

j (s� µµµj)

�

. (3.1.3)

• A Multinomial pdf for the action space:

Multinomial (a|⇢j) =

M
Y

i=1

⇢I(a,i)ji , (3.1.4)

where ⇢j is an M ⇥ 1 probabilistic vector (

PM
i=1 ⇢ji = 1), and I(a, i) is a binary

indicator function, defined as:

I(a, i) =

(

1, if a = i

0, otherwise
.

Thus, the probability of x conditioned on cluster cj is given by:

p(x|✓j) = N

(s|µµµj,⌃j)Multinomial (a|⇢j) , (3.1.5)

where ✓j = {µj,⌃j,⇢j} denotes the set of the model component parameters.
Mixture modeling treats clustering as an estimation problem for the model parame-

ters, ⇥k = {uj, ✓j}kj=1. This is achieved by maximizing the log-likelihood function given
as:

`(⇥k) =

N
X

n=1

log

(

k
X

j=1

uj N

(sn|µj,⌃j)Multinomial (an|⇢j)

)

. (3.1.6)

The Expectation-Maximization (EM) algorithm [36] is an e�cient framework that can
be used for the estimation of the model parameters. Its main characteristic is that it
leads to closed-form update rules for the model parameters (see [17] for an overview).
More specifically, the EM algorithm iteratively alternates between an expectation step
and a maximization step, as described below:

• E-step: Evaluate the current posterior probabilities of a sample belonging to a
cluster, by using the current values of the parameters:

znj =
ujp(xn|✓j)

Pk
j0=1 uj0p(xn|✓j0)

. (3.1.7)

• M-step: Re-estimate model parameters by maximizing the expected complete log-
likelihood.
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3.1.2 Online EM Learning

Since in reinforcement learning the samples are non-stationary and arrive sequentially,
the standard EM algorithm cannot be used. In this section, we present an extension
of the standard EM scheme [89] for online estimating mixture models that meets our
needs. The proposed online clustering scheme consists of two main phases. Firstly, we
decide whether a new cluster must be created or not, by using a decision mechanism.
Secondly, the main EM procedure is performed for adjusting the cluster parameters,
so as to incorporate a received sample.

Let’s assume that a random sample xn = (sn, an) has been observed and that k

clusters have been created until that point. Initially, the proposed scheme performs the
expectation step (E-step) and calculates the posterior probability values znj (Eq. 3.1.7),
according to the current k-order mixture model. The winner cluster cj⇤ 2 {c1, . . . , ck}
is then selected according to the maximum posterior value, i.e.,

cj⇤ =
k

argmax

j=1
{znj}. (3.1.8)

We assume here that the degree of belongingness of sample xn in the cluster cj⇤ is given
by a kernel function k(xn, cj⇤). As mentioned previously, the input sample incorporates
information of two di�erent sources (e.g., xn = (sn, an)). In this case, the specific kernel
function can be written as a product of two kernel functions, one for each type of the
input (state-action):

k(xn, cj⇤) = ks(xn, cj⇤)ka(xn, cj⇤) , (3.1.9)

where
ks(xn, cj⇤) = exp{�0.5(sn � µµµj⇤)

>⌃�1
j⇤ (sn � µµµj⇤)}

is the kernel of the state space, and

ka(xn, cj⇤) =
M
Y

i=1

⇢I(an,i)j⇤i

is the kernel of the action space. If the degree of belongingness of sample xn in cluster
cj⇤ is less than a predefined threshold value ⌫, a new cluster (k + 1) is created. Then,
the created cluster is properly initialized as follows:

µµµk+1 = sn,

⌃k+1 =
1

2

⌃j⇤ ,

⇢k+1,i =

(

⇠, if i = a
1�⇠
M�1 , otherwise

,

where ⇠ is set to a large value (e.g. ⇠ = 0.9). The maximization step (M-step) is then
applied, providing a step-wise procedure for the adaptation of the model parameters.
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In this case, the following update rules are used:

uj = (1� �)uj + �znj, (3.1.10)

µµµj = µµµj + �znjsn, (3.1.11)

⌃j = ⌃j + �znj(si � µµµj)(si � µµµj)
>, (3.1.12)

⇢ji =
nji

PM
l=1 njl

, (3.1.13)

with nji , nji + I(an, i)znj representing the number of times the action an has been
selected in cluster cj. The term � is a small positive step-size parameter (e.g., � =

0.09), known as learning rate, which determines to what extent the newly acquired
information overrides existing information. Moreover, in stochastic problems (like in
our case) the learning rate can decrease over time by a small fraction, so as convergence
is achieved. At this point, it is worth noting that in the maximization step (M-step) of
the standard EM algorithm, the update rules for both Gaussian parameters have the
quantity

PN
n=1 znj in their denominator e.g., µj =

P
n znjsnP
n znj

. In the online EM algorithm,
each new sample contributes to the computation of these parameters by a factor equal
to znj/

PN
n=1 znj. Therefore, when the number of observations becomes extremely large,

the incoming new sample barely influences the parameters of the mixture model. To
overcome this handicap, the above presented update rules are selected, where the
contribution of each new samples is determined by the learning rate, �.

3.2 Model-based Value Function Approximation

As becomes obvious from the discussion in the previous section, the EM-based on-
line clustering approach performs a partitioning of the input (state-action) space into
clusters that also have the same transition dynamics. Clusters can be supposed as
nodes of a directed (not full) graph that communicate with each other. The learning
scheme described so far constructs new nodes in this graph, by performing a splitting
process. In this case, useful information, such as the frequency of node visits and the
distance between adjacent nodes are provided. In another point of view, the proposed
scheme can be seen as a type of relocatable action model (RAM), that has been recently
proposed in [77] in order to provide a decomposition or factorization of the transition
function.

In this section, we present a model value function approximation algorithm for the
reinforcement learning control problem that estimates the action-values of each graph
node (cluster). In this case, a number of useful statistics about the environment model
must be learnt and kept in memory. To make our analysis more clear, we assume
that a trajectory of transitions (si, ai, ri, si+1) is observed. During the online clustering
process, the following statistics are maintained for each one of the clusters:

• ¯tj,j0: mean number of time-steps between two successively observed clusters cj, c0j.
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• R(cj, c0j): mean return received during the transition from cluster cj to cluster c0j.

• nj,j0: total number of transitions from cluster cj to cluster c0j.

• nj: total number of visits to cluster cj.

Based on the above statistics, the following quantities can be easily calculated and
used during the process evaluation process:

• The statistic P (c0j|cj) represents the transition probability between two (adjacent)
clusters. It is calculated based on the relative frequencies, according to the fol-
lowing rule:

P (c0j|cj) =
nj,j0

nj
(3.2.1)

• The quantity R(cj) declares the expected return that is received by the agent,
starting from cluster cj and following policy ⇡, until the end of the episode:

R(cj) =
X

j0

P (c0j|cj)R(cj, c
0
j). (3.2.2)

Based on the above statistics, the Bellman equation [102] for the action-value func-
tion of cluster cj, may be written as:

Q(cj) = R(cj) +
k
X

j0

P (c0j|cj)� t̄j,j0Q(c0j) , (3.2.3)

where the summation may be only performed over the neighbourhood of node cj (adja-
cent nodes c0j where P (c0j|cj) > 0). Therefore, a set of k equations are available for the
expected returns R(cj) (observations) of the k graph nodes, which can be written in a
more comprehensive form as:

Rk = Hkqk , (3.2.4)

where we have considered that the vector of the action-value functions is expressed by
the functional form of a linear model:

qk = �>
k wk. (3.2.5)

In the proposed algorithmic scheme, the kernel ‘design’ matrix, �k = [���(c1), . . . ,���(ck)],
is explicitly derived from the online clustering solution. This is achieved by using the
kernel function given by Eq. 3.1.9. This results to:

[�k]jj0 = exp

⇢

�1

2

(µµµj � µµµj0)
>⌃�1

j0 (µµµj � µµµj0)

�

⇢

>
j ⇢j0 (3.2.6)

Furthermore, Hk is a square matrix of size k ⇥ k that keeps the statistics of Eq. 3.2.3.
More specifically, at each line j, if two clusters are adjacent (P (j0|j) > 0), we get
[Hk]jj = 1 and [Hk]j,j0 = �P (c0j|cj)� t̄j,j0 . Finally, Rk is a k⇥ 1 vector that represents the
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Algorithm 3.1: Online EM Temporal Di�erence Algorithm
Initialize: x1 = (s1, a1), k = 1.

1 for t = 2, 3,. . . , do
2 Execute action at�1;
3 Observe transition st, rt�1;
4 at = argmax

M
i=1 Q(st, ai); // ✏-greedy selection

5 cj⇤ = argmax

k
j=1{znj}; // Find winning cluster

6 if K(xt+1,mj⇤) < ⌫ then
7 Create new cluster (k = k + 1), where mk = xt;
8 Create new weight wk with random initialization (wt = wt [ {wk});
9 else

10 Update the prototype mj⇤ (Eqs. 3.1.10-3.1.13);
11 end
12 Update environment model statistics;
13 Update model coe�cients wt (Eq. 3.2.7);
14 end

expected returns of each node, i.e., Rk = [R(1), . . . , R(k)]. The only remaining issue
is the estimation of the linear model unknown coe�cients, wk. This is achieved by
applying the least-squares solution, given by:

wk = (�kHk�
>
k )

�1�kRk. (3.2.7)

Thus, the action-value function of an input state-action pair x , (s, a) is estimated as
follows:

Q(x) = ���(x)>wk, (3.2.8)

where ���(x) = [k(x, c1), . . . , k(x, ck)]>. The above procedure is repeated each time a
transition is performed. The proposed algorithm starts with a single cluster (k = 1)

initialized with the first sample observed by the agent. At every time step, the online
EM clustering procedure and the policy evaluation stage are sequentially performed.
The overall concept of the proposed methodology is described in Algorithm 3.1.

3.3 Empirical Evaluation

A series of experiments have been conducted in a variety of simulated and real envi-
ronments, in order to study the performance of the proposed model-based approach.
Comparisons have been made using the Least Square Temporal Di�erence (LSTD) [20]
algorithm in the case of policy evaluation problem (Boyan’s Chain), i.e., the evaluation
of value function of a given policy ⇡, and the online Least Square Policy Iteration (LSPI)
[27] algorithm in the case of control problem, i.e., discovery of the optimal policy. Both
methods are considered state-of-the-art RL algorithms for the policy evaluation and the
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control problem, respectively, where the action value function is represented with the
functional form of a linear model. In our experimental analysis, an equidistant fixed
grid of radial basis functions (RBFs) over the state space has been used for the value
function representation, following the suggestions presented in [27]. It is worth noting
that in our experiments the state space is small, either 1D or 2D, and the agent has
at his arsenal a small discrete set of actions. This fact makes both the LSTD and the
LSPI methodologies practically applicable (not a huge number of basis functions) and
since they cover all possible state-action pairs, they are capable of finding an optimal
solution. The objective of our study is to analyse the ability of the proposed scheme to
achieve high performance by using as few basis functions as possible, constructed and
adapted based on the online EM clustering procedure as previously described.

In all examined environments, the discount factor � has been set to 0.999, except for
the case of Boyan’s chain where � = 1.0. Furthermore, threshold ⌫, which determines
whether a new cluster must be created or not, is set to 0.7. Finally, in order to introduce
stochasticity into the transitions and at the same time to attain better exploration of
the model environment, actions are chosen by using the ✏-greedy exploration scheme.
In our experiments, ✏ is initially set to 0.1 and decreases steadily over time.

3.3.1 Domains

Simulated Environments

The first set of experiments have been made using two well-known continuous state,
discrete-action, episodic simulated benchmarks. The first one is the Boyan’s chain [20]
and the second one is the Puddle world [120] environment.

Boyan’s Chain

Two chains with a di�erent number of states, N = 13 and N = 98, respectively,
have been examined in our empirical analysis. In the specific domain the states are
connected to a chain, where an agent located at a state s > 2 can move to states s� 1

and s�2. After each transition, a reward, r = �3, is received by the agent. On the other
hand, there are only deterministic transitions from states 2 and 1, to states 1 and 0,
respectively, where the received rewards are �2 and 0, respectively. At the beginning of
each episode, the agent is located at state N and his objective is to reach state 0 as soon
as possible. In Boyan’s chain domain, both the policy evaluation problem as well as the
problem of discovering the optimal policy (control problem) have been considered. The
policy evaluated at the former problem assumes that if an agent is located at a state
s > 2 he can move to states s� 1 or s� 2, with the same probability. It must be noted
that both LSTD and online LSPI methods have a number of RBF kernels in the state
space equal to the number of states with a kernel width equal to 1. In the same way,
our algorithm is allowed to construct the same number of clusters as LSTD and LSPI,
in an attempt to focus our study on the e�ect of the cluster transition probabilities.
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Puddle World

The Puddle World is a continuous 2-dimensional square world of width 1, found on the
RL-Glue Library1. In this domain, the objective is to reach the terminal state at the up-
per right corner starting from a uniformly random position. At the same time, two oval
puddles located at the center of the environment must be avoided. More specifically,
the puddles consist of the area of radius 0.1 around two line segments, respectively, one
from (0.1, 0.75) to (0.45, 0.75), and the other from (0.45, 0.4) to (0.45, 0.8). The agent has
at his disposal four actions that correspond to the four cardinal directions: up, down,
right and left. Upon selecting a specific action the agent moves 0.05 in the specified
direction with an additive Gaussian noise. The received reward is r = �1 except for the
case, where the agent inserts in a puddle region. In this case, a penalty between 0 and
�40 is received, depending on the proximity to the middle of the puddle.

In the particular problem, comparisons have been made with the online LSPI method
where an equidistant fixed grid (N ⇥N ) of RBFs has been selected for each one of the
four actions. In our experiments, three di�erent values of N , N = {15, 20, 25}, have
been used that correspond to 900, 1600, 2500 number of basis functions (N ⇥ N ⇥ 4),
respectively.

Real Environments

(a) Pioneer/PeopleBot (b) Stage world

Figure 3.1: The mobile robot and the 2D-grid map used in our experiments. This is
one snapshot from the MobileSim simulator with visualization of the robot’s laser and
sonar range scanners.

1Available at http://library.rl-community.org/wiki
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Experiments have also been conducted in a real world environment, by using the
wheeled real mobile robot platform Pioneer/PeopleBot, shown in Fig. 3.1(a), which
is based on the robust P3-DX base. The robot is equipped with the Advanced Robot
Interface for Applications (ARIA) library that provides a nice framework for controlling
and receiving data from the robot platform. At the same time, the robot has at its
disposal a number of sensors, such as sonar, laser, bumpers, pan-tilt-zoom camera,
etc. For the purposes of our experiments, only the sonar and the laser sensors have
been used for obstacle avoidance. Furthermore, an embedded motion controller is able
to provide the robot’s current state at each time step, such as its position (x, y, ✓),
range sensing data, etc. Due to numerous physical restrictions (e.g., battery life), the
training of the specific methodology is performed by using the MobileSim2 simulator.
MobileSim is built upon the famous Stage platform and manages to simulate the real
world environments with satisfactory precision and realism.

A 2-dimensional grid map (stage world) has been selected for our experiments, as
shown in Fig.3.1(b). The specific world has been designed and edited using the Mapper
toolkit. In this task, the objective of the robot is to reach a steady landmark (shown with
a rectangular green box in the map, Fig.3.1(b)) executing as few steps as possible. At
the beginning of each episode, the agent starts from a uniformly random position inside
the world and performs a finite number of actions. The particular task is episodic and
a new episode begins when one of the following incidents occurs: a maximum number
of steps is executed per episode (in our case it is equal to 100), robot hit an obstacle,
or the target is reached. The action space has been discretized into 8 major compass
winds, while the length of each step is equal to 1 meter. Finally, at each time step the
robot receives an immediate reward of r = �1, except for the case that an obstacle is
hit, where the reward is equal to r = �100.

3.3.2 Results

The results of the experiments for the Boyan’s chain are illustrated in Fig. 3.2. More
specifically, the Root Mean Square Error (RMSE) between the true and estimated value
function is represented for policy evaluation problem, while the expected return of
the last 100 episodes is used for evaluating the ability of online EM and online LSPI
algorithms to discover an optimal policy (control problem). As it becomes apparent, the
online EM algorithm achieves to approximate the value function of a given policy much
more accurately in comparison with the standard LSTD algorithm. This happens as the
proposed scheme approximates the model of the environment precisely, keeping explicit
statistics. With regard to the control learning problem, both methodologies achieve to
discover the optimal policies, with the proposed online EM scheme to converge at a
higher rate than the online LSPI algorithm.

Fig. 3.3 shows the results of the experiments on the Puddle world benchmark. In
2More details can be found at: http://robots.mobilerobots.com/wiki/MobileSim
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(b) 98-states chain

Figure 3.2: Comparative results on policy evaluation and learned policy in Boyan’s
chain domain with 13 (a) and 98 (b) states. Each curve is the average of 30 independent
trials.

the specific experiments, we evaluate the ability of the proposed scheme in discovering
an optimal or near-optimal policy. In this context, we illustrate the expected return
received by the agent during the last 30 episodes. The empirical results are in line with
our prior belief that selecting an appropriate number of basis functions is a very impor-
tant issue and that using a large number of RBFs does not imply better performance.
All the above stem from the fact that the online EM algorithm manages to discover the
optimal policy by creating approximately 450� 550 basis functions.

The comparative results on the real world environment are illustrated in Fig. 3.4.
The first plot shows the number of episodes required by the robot so as to discover
the target, per algorithm. Moreover, the second plot represents the expected return
received by the agent during the last 100 episodes. In the case of LSPI algorithm, an
equidistant, fixed 10 ⇥ 10 grid of Gaussian RBFs is used over the state spaces (800
RBFs in total). As it becomes clear, the online EM methodology achieves to discover
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Figure 3.3: Comparative results in the Puddle World domain.

an optimal policy at a much higher rate, while at the same time it reaches the target
in more episodes in contrast to the online LSPI method. Furthermore, our algorithmic
scheme does not require a large number of basis functions in order to discover an
optimal policy, as it happens in case of the online LSPI algorithm. More specifically,
the online EM algorithm constructs approximately 300 � 400 clusters that define the
basis functions of our model. Finally, Fig. 3.5 represents the learned policies of both
methods after 500 episodes. As we can observe, both algorithms tend to find the same
policies in most world areas, while they achieve to reach the target starting from any
position.
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Figure 3.4: Comparative results in the real world domain.
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(a) Online EM (b) Online LSPI

Figure 3.5: Learned policies by both comparative methods in the case of real world
domain.

3.4 Summary

In this chapter, we have presented a model-based reinforcement learning scheme for
both policy evaluation problem and control problem in unknown MDPs. The proposed
algorithm is based on the online partitioning of the input (state-action) space into clus-
ters, grouping data with similar properties. An appropriate mixture model has been
adopted for this purpose, which is updated incrementally by using an online extension
of the standard EM-algorithm. In this way, a number of basis functions are created and
updated in an online mode. These basis functions are then used for the approximation
of the value function, where the value function is formulated as a linear model. The
adopted clustering scheme also allows us to keep in memory statistics about the model
of the environment. Thus, the model of the environment is learnt as the agent wanders
o� inside it, and then it is used in the policy evaluation problem. The least-squares so-
lution is used for the evaluation of the unknown coe�cients of the value function model.
In this way, the proposed scheme is able to estimate and update the policy followed
by the agent at each time step. Experiments on both simulated and real environments
demonstrate that the proposed algorithm performs equally well or better than standard
reinforcement learning algorithms (e.g. LSPI), where a careful selection of the basis
function must have been done in advance based on our prior environment knowledge.
In contrast, our scheme achieves to discover the basis function automatically through
its interaction with the environment.
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Chapter 4

Linear Bayesian Reinforcement Learning

4.1 Bayesian Reinforcement Learning

4.2 Linear Bayesian Reinforcement Learning

4.3 Empirical Evaluation

4.4 Summary

B ayesian reinforcement learning models the reinforcement learning problem
as a decision-theoretic problem by placing a prior distribution p on the set
of possible MDPs M. However, the exact solution of the decision problem is

generally intractable as the transformed problem becomes a Markov decision processes
with exponentially many states [44].

This chapter focuses on Bayesian methods for solving the reinforcement learning
problem (see [146] for an overview). This is a decision-theoretic approach [33], with
two key ideas. The first is to select an appropriate prior distribution p about the
unknown environment, such that p(µ) represents our subjective belief that µ is the true
environment. The second is to replace the expected utility over the real environment,
which is unknown, with the expected utility under the subjective belief p, i.e.

E⇡
p U =

Z

M

�

E⇡
µ U
�

dp(µ), (4.0.1)

where U ,P1
t=0 �

trt is the agent’s utility. Formally, it is then possible to optimise with
respect to the policy which maximises the expected utility over all possible environ-
ments, according to our belief. However, our future observations will alter our future
beliefs according to Bayes’ theorem. In particular the posterior mass placed on a set
of MDPs B ⇢ M given a history ht composed of a sequence of states, st = s1, . . . , st,
actions at�1

= a1, . . . , at�1, is:

p(B | ht) ,
R

B

Qt
k=1

d
d⌫Pµ(st+1 | at, st) dp(µ)

R

M
Qt

k=1
d
d⌫Pµ(st+1 | at, st) dp(µ)

, (4.0.2)
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where d
d⌫Pµ denotes the Radon-Nikodym derivative with respect to some measure ⌫ on

S.1 Consequently, the Bayes-optimal policy must take into account all potential future
belief changes. For that reason, it will not in general be Markovian with respect to the
states, but will depend on the complete history.

Most previous work on Bayesian reinforcement learning in continuous environments
has focused on Gaussian process models for estimation. However, these su�er from
two limitation. Firstly, they have significant computational complexity. Secondly, each
dimension of the predicted state distribution is modeled independently. In this chapter,
we investigate the use of Bayesian inference under the assumption that the dynamics
are (perhaps under a transformation) linear. Then the modeling problem becomes
multivariate Bayesian linear regression, for which we can calculate Eq. 4.0.2 e�ciently
online.

An other novelty of our approach in this context is that we do not simply use the
common heuristic of acting as though the most likely or expected model is correct.
Instead, generate a sample model from the posterior distribution. We then draw tra-
jectories from the sampled model and collect simulated data which we use to obtain
a policy. The policy is then executed in the real environment. This form of Thomp-
son sampling is known to be a very e�cient exploration method in bandit and discrete
problems. We also show its e�cacy for continuous domains.

The remainder of this chapter is organised as follows. Section 4.1 gives an overview
of related work and our contribution. Section 4.2 formally introduces our approach,
with a description of the inference model in Sec. 4.2.1, and the policy selection method
used in Sec. 4.2.2. Finally, the details of the online and o�ine versions of our algorithms
are detailed in Sec. 4.2.3. Experimental results are presented in Sec. 4.3 and we
conclude with a discussion of future directions in Sec. 4.4.

4.1 Bayesian Reinforcement Learning and Our Contribution

One of the first and most interesting approaches for approximate Bayesian reinforce-
ment learning is Thompson sampling, which is also used in the work presented in this
chapter. The idea is to sample a model from the posterior distribution, calculate the
optimal policy for the sampled model, and then follow it for some period [117]. Thomp-
son sampling has been recently shown to perform very well both in theory and practice
in bandit problems [68, 2]. Extensions and related models include Bayesian sparse
sampling [148], which uses Thompson sampling to deal with node expansion in the
tree search. Taking multiple samples from the posterior can be used to estimate upper
and lower bounds on the Bayes-optimal value function, which can then be used for tree
search algorithms [37, 39]. Multiple samples can also be used to create an augmented
optimistic model [6, 28]; or they can be used to construct a better lower bound [40].

1In the discrete case we may simply use Pµ(st+1 | at, st).
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Finally, multiple samples can also be combined via voting schemes [42]. Other ap-
proaches attempt to build optimistic models without sampling. For example [71] adds
an exploration bonus to rewards, while [5] uses optimistic transition functions by con-
structing an augmented MDP in a Bayesian analogue of UCRL [62].

For continuous state spaces, most Bayesian approaches have focused on Gaus-
sian process (GP) models [103, 65, 46, 105, 35]. There are two key ideas that set our
method apart from this work. Firstly, GP models are typically employed independently
for each state feature. In contrast, the model we use deals naturally with correlated
state features – consequently, less data may be necessary. Secondly, we do not cal-
culate policies using the expected transition dynamics of the environment, as this is
known to have potentially bad e�ects [101, 40]. Instead, value functions and policies
are calculated by sampling from the posterior distribution of environments. This also
important for e�cient exploration.

In this chapter, we propose a linear model-based Bayesian framework for reinforce-
ment learning, for arbitrary state spaces S and for discrete action spaces A using
Thompson sampling. First, we define a prior distribution on linear dynamical mod-
els, using a suitably chosen basis. Bayesian inference in this model is fully closed
form, so that given a set of example trajectories it is easy to sample a model from the
posterior distribution. For each such sample, we estimate the optimal policy. Since
closed-form calculation of the optimal policy is not possible for general cost functions
even with linear dynamics, we use Approximate Dynamic Programming (ADP, see [14]
for an overview) with trajectories drawn from the sampled model. The resulting policy
can then be applied to the real environment.

We experimented with two di�erent ADP approaches for finding a policy for a given
sampled MDP. Both are Approximate Policy Iteration (API) schemes, using a set of
trajectories generated from the sampled MDP to estimate a sequence of value functions
and policies. For the policy evaluation step, we experimented with fitted value iteration
(FVI) [47] and Least-squares Temporal Di�erences (LSTD) [21].

In the case where we use LSTD, the approach can be seen as an online, Bayesian
generalisation of Least-squares Policy Iteration (LSPI) [75]. Instead of performing
LSTDQ on the empirical transition matrix, we perform a least-squares fit on a sam-
ple model drawn from the posterior. This fit can be very accurate by drawing a large
amount of simulated trajectories in the sampled model.

We consider two applications of this approach. In the o�ine case, data is collected
using a uniformly random policy. We then generate a model from the posterior distri-
bution and calculate a policy for it, which is then evaluated in the real environment.
In the online case, data is collected using policies generated from the sampled models,
as in Thompson sampling. At the beginning each episode, a model is sampled from the
posterior and the resulting policy is executed in the real environment. Thus, there is
no separate data collection and evaluation phase. Our results show that this approach
successfully finds optimal policies quickly and consistently both in the online and in
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the o�ine case, and that it has a significant overall advantage over LSPI.

4.2 Linear Bayesian Reinforcement Learning

The model presented in this chapter uses Bayesian inference to estimate the environ-
ment dynamics. The assumption is that, with a suitable basis, these dynamics are
linear with Gaussian noise. Unlike approaches using Gaussian processes, however,
the next-state distribution is not modeled using a product distribution, i.e. we do not
assume that the various components of the state are independent. In a further inno-
vation, rather than using the expected posterior parameters, we employ sampling from
the posterior distribution. For each sampled model, we then obtain an approximately
optimal policy by using approximate dynamic programming, which is then executed
in the real environment. This form of Thompson sampling [117, 128] allows us to per-
form e�cient exploration, with the policies naturally becoming greedier as the posterior
distribution converges.

4.2.1 The Predictive Model

In our model we assume that, for a state set S there exists a mapping, ��� : S ! X , to a k-
dimensional vector space X such that the transformed state at time t is xt , ���(st). The
next state st+1 is given by the output of a function, g : X ⇥A! S, of the transformed
state, the action and some additive noise:

st+1 = g(xt, at) + �t. (4.2.1)

In this work, we model the noise �t and the function g as a multivariate linear-Gaussian
model. This is parameterized via a set of k⇥ k design matrices {Ai | i 2 A}, such that

g(xt, at) = Aatxt (4.2.2)

and a set of covariance matrices {Vi | i 2 A} for the noise. Then, the next state
distribution is:

st+1 | xt = x, at = i ⇠
N

(Aix,Vi). (4.2.3)

In order to model our uncertainty with a (subjective) prior distribution p, we have
to specify the model structure. In our model, we do not assume independence between
the output dimensions, something which could potentially make inference di�cult.
Fortunately, in this particular case, a conjugate prior exists in the form of the matrix-
normal distribution for A and the inverse-Wishart distribution for V . Given Vi, the
distribution for Ai is matrix-normal, while the marginal distribution of Vi is inverse-
Wishart. More specifically,

Ai | Vi = bV ⇠
N

(Ai | M ,C, bV ) (4.2.4)

Vi ⇠ W

(Vi | W , n), (4.2.5)
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where
Ni is the prior distribution on dynamics matrices conditional on the covariance

and two prior parameters: M, which is the prior mean and C which is the prior output
(dependent variable) covariance. Finally,

W

is the marginal prior on covariance ma-
trices, which has an inverse-Wishart distribution with W and n. More precisely, the
distributions are:

N

(Ai | M ,C, bV ) / e�
1
2 tr

[

(Ai�M)>V�1
i (Ai�M)C

], (4.2.6)

W

(Vi | W , n) / |V�1W/2|n/2e� 1
2 tr(V�1W). (4.2.7)

Essentially, the model is an extension of the univariate Bayesian linear regression
model (see for example [33]) to the multivariate case via vectorisation of the mean
matrix. Since the prior is conjugate, it is relatively simple to calculate posterior values
of the parameters after each observation. While we omit the details, a full description
of inference using this model is given in [87].

Throughout this text, we shall employ pt = (

Nt,Wt) to denote our posterior distri-
butions at time t, with pt referring to our complete posterior. The remaining problem
is how to estimate the Bayes-expected utility of the current policy and how to perform
policy improvement.

4.2.2 Policy Evaluation and Optimisation

In the Bayesian setting, policy evaluation and optimisation are not trivial. The most
common method used is the expected MDP heuristic, where policies are evaluated
or optimised on the expected MDP. However, this ignores the shape of the posterior
distribution. Alternatively, policies can be evaluated via Monte Carlo sampling, but
then optimisation becomes hard. A good heuristic that does not ignore the complete
posterior distribution and for which it is easy to calculate a policy, called Thompson
sampling, is the one we shall actually employ in our scheme. The following paragraphs
give a quick overview of each method.

Expected MDP

A naive way to estimate the expected utility of a policy is to first calculate the expected
(or most probable) dynamics, and then use either an exact or an approximate dynamic
programming algorithm. This may very well be a good idea if the posterior distribution
is sharply concentrated around the mean, since then:

E⇡
p U ⇡ E⇡

µp
U, µp , Ep µ. (4.2.8)

where µp is the expected MDP model.2 However, as pointed out in [5, 40] this approach
may give completely incorrect results.

2Similar problems exist when using the most probable MDP instead.
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Monte Carlo Sampling

An alternative method is to take a number of samples µi from the current posterior
distribution and then calculate the expected utility of each, i.e.

E⇡
p U =

1

K

K
X

i=1

E⇡
µi
U +O(K�1/2

), µi ⇠ pt. (4.2.9)

This form of Monte Carlo sampling gives much more accurate results, at the expense of
some additional computation. However, finding an optimal policy over a set of sampled
MDPs is di�cult even for restricted classes of policies [40]. Nevertheless, Monte Carlo
sampling can also be used to obtain stochastic upper and lower bounds on the value
function, which can be used to improve the policy search [39, 37].

Thompson Sampling

An interesting special case is when we only sample a single MDP, i.e. when we perform
Monte Carlo sampling with K = 1. Then it is relatively easy to calculate the optimal
policy for this sample. This method, which we employ in this work, is called Thompson
sampling, and was first used in the context of reinforcement learning by [117]. The
idea is to sample an MDP from the current posterior and then calculate a policy that is
optimal with respect to that MDP. We then execute this policy in the environment. The
major advantage of Thompson sampling is that it is known to result in a very e�cient
form of exploration (see for example [2] for recent results on bandit problems).

4.2.3 Algorithm Overview

We can now put everything together for the complete linear Bayesian reinforcement
learning (LBRL) algorithm. The algorithm has four steps. Firstly, sampling a model
from the posterior distribution. Secondly, using the sampled model to calculate a new
policy. Finally, executing this policy in the real environment. In the online version of
the algorithm the data obtained by executing this policy is then used to calculate a new
posterior distribution.

Sampling from the Posterior

Our posterior distribution at time t is pt = (

Nt,Wt), with
Wt being the marginal posterior

on covariance matrices, and
Nt being the posterior on design matrices (conditional

on the covariance). In order to sample a model from the posterior, we first draw a
covariance matrix Vi using Eq. 5.2.4 for every action i 2 A, and then plug those into
Eq. 5.2.3 to generate a set of design matrices Ai. The first step requires sampling from
the inverse-Wishart distribution (which can be done e�ciently using the algorithm
suggested by [115]), and the second from the matrix-normal distribution.
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Algorithm 4.1: LBRL: Linear Bayesian Reinforcement Learning
Input: Basis ���, ADP parameters P , prior p0

1 for episode k do
2 µk ⇠ ptk(µ); // Generate MDP from posterior

3 ⇡k = ADP(µk, P ); // Get new policy

4 for t = tk, . . . , tk+1 � 1 do
5 at | st = s ⇠ ⇡(k)

(a | s); // Take action

6 pt+1(µ) = pt(µ | st+1, at, st); // Update posterior

7 end

8 end

ADP on the Sampled MDP

Given an MDP µ sampled from our posterior belief, we can calculate a nearly-optimal
policy ⇡ using approximate dynamic programming (ADP) on µ. This can be done with
a number of algorithms. Herein, we investigated two approximate policy iteration (API)
schemes, using either fitted value iteration (FVI) or least-squares temporal di�erences
(LSTD) for the policy evaluation step. Both of these algorithms require sample trajec-
tories from the environment. This is fortunately very easy to achieve, since we can use
the sampled model to generate any number of trajectories arbitrarily. Consequently,
we can always have enough simulated data to perform a good fit with FVI or LSTD.3 We
note here that API using LSTD additionally requires a generative model for the policy
improvement step. Happily, we can use the sampled MDP µ for that purpose.4

O�ine LBRL

In the o�ine version of the algorithm, we simply collect a set of trajectories from a
uniformly random policy, comprising a history ht of length t. Then, we sample an MDP
from the posterior pt(µ) = p0(µ | ht) and calculate the optimal policy for the sample
using ADP. This policy is then evaluated on the real environment.

Online LBRL

In the online version of the algorithm, shown in Alg. 4.1 we collect samples using our
own generated policies. We begin with some initial belief p0 = (

N0,W0) and a uniformly
random policy ⇡0. This policy is executed until either the episode ends naturally or due
to reaching a time-limit T . At the k-th episode, which starts at time tk, we sample a
new MDP µk ⇠ ptk from our current posterior ptk(·) = p(· | htk) and then calculate a

3These use no data collected in the real environment.
4In preliminary experiments, we also investigated the use of fitted Q-iteration and LSPI, but found

that these had inferior performance.
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near-optimal stationary policy for µ(k):

⇡k ⇡ argmax

⇡
E⇡

µ(k) U,

such that ⇡k(a | s) is a conditional distribution on actions a 2 A given states s 2 S.
This policy is then executed in the real environment until the end of the episode and the
data collected are used to calculate the new posterior. As the calculation of posterior
parameters is fully incremental, we incur no additional computational cost for running
this algorithm online.

4.3 Empirical Evaluation

We conducted two sets of experiments to analyse both the o�ine and the online perfor-
mance of the various algorithms. Comparisons have been made with the well-known
Least-Squares Policy Iteration (LSPI) algorithm [75] for the o�ine case, as well as an
online variant [27] for the online case. We used preliminary runs and guidance from
the literature to select the features for the LSTDQ algorithm used in the inner loop of
LSPI. The source for all the experiments can be found in [41].

We employed the same features for the ADP algorithms used in LBRL. However,
the basis used for the Bayesian regression model in LBRL was simply ���(s) , [s, 1]>.
In preliminary experiments, we found this su�cient for a high-quality approximation.
After that, we use API to find a good policy for a sampled MDP, where we experimented
with regularised FVI and LSTD for the policy evaluation step, adding a regularisation
factor 10�2I. In both cases, we drew single step transitions from a set of 3000 uniformly
drawn states from the sampled model.

For the o�ine performance evaluation, we first drew rollouts from k = {50, 100, . . . ,
1000} states drawn from the environment’s starting distribution, using a uniformly
random policy. The maximum horizon of each rollout was set equal to 40. The collected
data was then fed to each algorithm in order to produce a policy. This policy was
evaluated over 1000 rollouts on the environment.

In the online case, we simply use the last policy calculated by each algorithm at
the end of the last episode, so there is no separate learning and evaluation phase.
This means that e�cient exploration must be performed. For LBRL, this is done using
Thompson sampling. For online-LSPI, we followed the approach of [27], who adopts an
✏-greedy exploration scheme with an exponentially decaying schedule ✏t = ✏td, with ✏0 =
1. In preliminary experiments, we found ✏d = 0.9968 to be a reasonable compromise.
We compared the algorithms online for 1000 episodes.

4.3.1 Domains

We consider two well-known continuous state, discrete-action, episodic domains. The
first is the mountain car domain and the second is inverted pendulum the domain.
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Mountain Car

In the second experimental set, we have used the mountain car environment. Two
continuous variables characterise the vehicle state in the domain, its position (p) and
its velocity (u). The objective in this task is to drive an underpowered vehicle up a
steep road from a randomly selected position to the right hilltop (p � 0.5) with at
most 1000 steps. In order to achieve our goal, we can select between three actions:
forward, reverse and zero throttle. The received reward is r = �1 except in the case
where the target is reached (zero reward). At the beginning of each rollout, the vehicle
is positioned to a new state, with the position and the velocity uniformly randomly
selected. The discount factor is equal to 0.999. An equidistant 4 ⇥ 4 grid of RBFs over
the state space plus a constant term is selected for FVI/LSTD and LSPI.

Inverted Pendulum

The first set of experiments includes the inverted pendulum domain, which tries to
balance a pendulum by applying forces of a fixed magnitude (50 Newtons). The state
space consists of two continuous variables, the vertical angle (✓) and the angular velocity
( ˙✓) of the pendulum. The agent has at his arsenal three actions: no force, left force or
right force. A zero reward is received at each time step except in the case where the
pendulum falls (|✓|  ⇡/ 2). In this case, a negative (r = �1) reward is given and a new
rollout begins. Each rollout starts by setting the pendulum in a perturbed state close
to the equilibrium point. More information about the environment dynamics can be
found at [75]. Each rollout is allowed to run for 3000 steps at maximum. Additionally,
the discount factor is set to � = 0.95. For FVI/LSTD and LSPI, we used an equidistant
3 ⇥ 3 grid of RBFs over the state space following the suggestions of [75], which was
replicated for each action for the LSTDQ algorithm used in LSPI.

4.3.2 Results

In our results, we show the average performance in terms of number of steps of each
method, averaged over 100 runs. For each average, we also plot the 95% confidence
interval for the accuracy of the mean estimate with error bars. In addition, we show
the 90% percentile region of the runs, in order to indicate inter-run variability in per-
formance.

Figure 5.3(a) shows the results of the experiments in the o�ine case. For the
mountain car, it is clear that the most stable approach is LBRL-LSTD, while LSPI is the
most unstable. Nevertheless, on average the performance of LBRL-LSTD and LSPI is
similar, while LBRL-FVI is slightly worse. For the pendulum domain, the performance of
LBRL remains quite good, with LBRL-LSTD being the most stable. While LSPI manages
to find the optimal policy frequently, nevertheless around 5% of its runs fail.5

5We note that the results presented in [75] for LSPI are slightly better, but remain significantly below
the LBRL results.
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Figure 4.1: O�ine performance comparison between LBRL-FVI, LBRL-LSTD and LSPI.
The error bars show 95% confidence intervals, while the shaded regions show 90%
percentiles over 100 runs.

Figure 5.3(b) shows the results of the experiments in the online case. For the
mountain car, both LSPI and LBRL-LSTD managed to find an excellent policy in the
vast majority of runs. In the pendulum domain, we see that LBRL-LSTD significantly
outperforms LSPI. In particular, after 80 episodes all more than 90% of the runs are
optimal, while many LSPI runs fail to find a good solution even after hundreds of
episode. The mean di�erence is somewhat less spectacular, though still significant.

The success of LBRL-LSTD over LSPI can be attributed to a number of reasons.
Firstly, it could be the more e�cient exploration. Indeed, in the mountain car domain,
where the starting state distribution is uniform, we can see that LBRL and LSPI have
very similar performance. Another possible reason is that LBRL also makes better use
of the data, since it uses it to calculate the posterior distribution over MDP dynamics.
It is then possible to perform very accurate ADP using simulated data from a model
sampled from the posterior. This is supported by the o�ine results in the pendulum
domain.

4.4 Summary

In this chapter, we have presented a simple linear Bayesian approach to reinforce-
ment learning in continuous domains. Unlike Gaussian process models, by using a
linear-Gaussian model, we have the potential to scale up to real world problems which
Bayesian reinforcement learning usually fails to solve with a reasonable amount of
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Figure 4.2: Online performance comparison between LBRL-LSTD and LSPI. The error
bars show 95% confidence intervals, while the shaded regions show 90% percentiles
over 100 runs.

data. In addition, this model easily takes into account correlations in the state fea-
tures, further reducing sample complexity. We solve the problem of computing a good
policy in continuous domains with uncertain dynamics by using Thompson sampling.
This not much more expensive than computing the expected MDP and forces a natural
exploration behaviour.

In practice, the algorithm is at least as good as LSPI in o�ine mode, while being
considerably more stable overall. When LBRL is used to perform online exploration, we
find that the algorithm very quickly converges to a near-optimal policy and is extremely
stable. Experimentally, it would be interesting to compare LBRL with standard GP
methods that employ the expected MDP heuristic.
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Chapter 5

Cover Tree Bayesian Reinforcement

Learning

5.1 Bayesian Framework in Unknown MDPs

5.2 Cover Tree Bayesian Reinforcement Learning

5.3 Empirical Evaluation

5.4 Summary

E �cient learning and planning requires models of the environment that are
not only general, but can also be updated online with low computational
cost. In addition, probabilistic models allow the use of a number of near-

optimal algorithms for decision making under uncertainty. While it is easy to construct
such models for small, discrete environments, models for the continuous case have
so far been mainly limited to parametric models, which may not have the capacity to
represent the environment (such as generalised linear models) and to non-parametric
models, which do not scale very well (such as Gaussian processes).

In this chapter, we propose a non-parametric family of tree models, with a data-
dependent structure constructed through the cover tree algorithm, introduced by [16].
Cover trees are data structures that cover a metric space with a sequence of data-
dependent partitions. They were initially proposed for the problem of k-nearest neigh-
bour search, but they are in general a good method to generate fine partitions of a state
space, due to their low complexity, and can be applied to any state space, with a suit-
able choice of metric. In addition, it is possible to create a statistical model using the
cover tree as a basis. Due to the tree structure, online inference has low (logarithmic)
complexity.

We specifically investigate the case of a Euclidean state space. For this, we propose
a model generalising the context tree weighting algorithm proposed by [152], combined
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with Bayesian multivariate linear models. The overall prior can be interpreted as a
distribution on piecewise-linear models. We then compare this model with a Gaussian
process model, a single linear model, and the model-free method least-squares policy
iteration in two well-known benchmark problems in combination with approximate
dynamic programming and show that it consistently outperforms other approaches.

The remainder of the chapter is organised as follows. Section 5.1 introduces the
general setting of the Bayesian framework for reinforcement learning. Section 5.1.1
discusses the context tree notion and other related work. The model and algorithm
are described in Section 5.2. Finally, comparative experiments are presented in Sec-
tion 5.3 and we conclude with a discussion of the advantages of cover-tree Bayesian
reinforcement learning and directions of future work in Section 5.4.

5.1 Bayesian Framework in Unknown MDPs

We assume that the agent acts within a fully observable discrete-time Markov decision
process (MDP), with a metric state space S, for example S ⇢ Rm. At time t, the agent
observes the current environment state st 2 S, takes an action at from a discrete set
A, and receives a reward rt 2 R. The probability over next states is given in terms
of a transition kernel Pµ(S | s, a) , Pµ(st+1 2 S | st = s, at = a). The agent selects
its actions using a policy ⇡ 2 ⇧, which in general defines a conditional distribution
P⇡

(at | s1, . . . , st, a1, . . . , at�1, r1, . . . , rt�1) over the actions, given the history of states
and actions. This reflects the learning process that the agent undergoes, when the
MDP µ is unknown.

The agent’s utility is U , P1
t=0 �

trt, the discounted sum of future rewards, with
� 2 (0, 1) a discount factor such that rewards further into the future are less important
than immediate rewards. The goal of the agent is to maximise its expected utility:

max

⇡2⇧
E⇡
µ U = max

⇡2⇧
E⇡

µ

1
X

t=0

�trt,

where the value of the expectation depends on the agent’s policy ⇡ and the environment
µ. If the environment is known, well-known dynamic programming algorithms can be
used to find the optimal policy in the discrete-state case [102], while many approximate
algorithms exist for continuous environments [15]. In this case, optimal policies are
memoryless and we let ⇧1 denote the set of memoryless policies. Then MDP and policy
define a Markov chain with kernel P ⇡

µ (S | s, a) =
P

a2A Pµ(S | s, a)⇡(a | s).
However, since the environment µ is unknown, the above maximisation is ill-posed.

In the Bayesian framework for reinforcement learning, this problem is alleviated by per-
forming the maximisation conditioned on the agent’s belief about the true environment
µ. This converts the problem of reinforcement learning into a concrete, optimisation
problem. However, this is generally extremely complex, as we must optimise over all
history-dependent policies.
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More specifically, the main assumption in Bayesian reinforcement learning is that
the environment µ lies in a given set of environments M. In addition, the agent
must select a subjective prior distribution p(µ) which encodes its belief about which
environments are most likely. The Bayes-optimal expected utility for p is:

U⇤
p , max

⇡2⇧D
E⇡

p U = max

⇡2⇧D

Z

M

�

E⇡
µ U
�

dp(µ). (5.1.1)

Unlike the known µ case, the optimal policy may not be memoryless, as our be-
lief changes over time. This makes the optimisation over the policies significantly
harder [44], as we have to consider the set of all history-dependent deterministic poli-
cies, which we denote by ⇧D ⇢ ⇧. In this chapter, we employ the simple, but e�ective,
heuristic of Thompson sampling [128, 154, 32, 117] for finding policies. This strategy
is known by various other names, such as probability matching, stochastic dominance,
sampling-greedy and posterior sampling. Very recently [92] showed that it su�ers small
Bayes-regret relative to the Bayes-optimal policy for finite, discrete MDPs.

The second problem in Bayesian reinforcement learning is the choice of the prior
distribution. This can be of critical importance for large or complex problems, for two
reasons. Firstly, a well-chosen prior can lead to more e�cient learning, especially in
the finite-sample regime. Secondly, as reinforcement learning involves potentially un-
bounded interactions, the computational and space complexity of calculating posterior
distributions, estimating marginals and performing sampling become extremely impor-
tant. The choice of priors is the main focus of the work proposed in this chapter. In
particular, we introduce a prior over piecewise-linear multivariate Gaussian models.
This is based on the construction of a context tree model, using a cover tree structure,
which defines a conditional distribution on local linear Bayesian multivariate models.
Since inference for the model can be done in closed form, the resulting algorithm is very
e�cient, in comparison with other non-parametric models such as Gaussian processes.
The following section discusses how previous work is related to our model.

5.1.1 Context Trees Inference

One component in our model is the context tree. Context trees were introduced by [152]
for sequential prediction (see [11], for an overview). In this model, a distribution of
variable order Markov models for binary sequences is constructed, where the tree dis-
tribution is defined through context-dependent weights (for probability of a node being
part of the tree) and Beta distributions (for predicting the next observation). A recent
extension to switching time priors [142] has been proposed by [143]. More related to
this work is an algorithm proposed by [74] for prediction. This asymptotically converges
to the best univariate piecewise linear model in a class of trees with fixed structure.

Many reinforcement learning approaches based on such trees have been proposed,
but have mainly focused on the discrete partially observable case [31, 144, 12, 48].1

1We note that another important work in tree-based reinforcement learning, though not directly

68



However, tree structures can generally be used to perform Bayesian inference in a
number of other domains [93, 84, 153].

The core of our model is a generalised context tree structure that defines a distri-
bution on multivariate piecewise-linear-Gaussian models. Consequently, a necessary
component in our model is a multivariate linear model at each node of the tree. Such
models were previously used for Bayesian reinforcement learning in [137] and were
shown to perform well relatively to Least-Squares Policy Iteration (LSPI, [75]). Other
approaches using linear models include [116], which proves mistake bounds on rein-
forcement learning algorithms using online linear regression, and [1] who use separate
linear models for each dimension. Another related approach in terms of structure
is [24], which partitions the space into types and estimates a simple additive model for
each type.

Linear-Gaussian models are naturally generalised by Gaussian processes (GP).
Some examples of GP in reinforcement learning include those of [103], [35] and [34],
which focused on a model-predictive approach, while the work of [46] employed GPs
for expected utility estimation. GPs are computationally demanding, in contrast to
our tree-structured prior. Another problem with the cited GP-RL approaches is that
they employ the marginal distribution in the dynamic programming step. This heuris-
tic ignores the uncertainty about the model (which is implicitly taken into account in
Equations 5.1.1, 5.2.5). A notable exception to this is the policy gradient approach
employed by [56] which uses full Bayesian quadrature. Finally, output dimensions
are treated independently, which may not make good use of the data. Methods for
e�cient dependent GPs such as the one introduced by [4] have not yet been applied
to reinforcement learning. For decision making, our approach uses the simple idea of
Thompson sampling [128, 154, 32, 117], which has been shown to be near-optimal in
certain settings [68, 2, 92]. This avoids the computational complexity of building aug-
mented MDP models [8, 6, 28, 5], Monte-Carlo tree search [144], sparse sampling [148],
stochastic branch and bound [39] or creating lower bounds on the Bayes-optimal value
function [101, 40]. Thus the approach is reasonable as long as sampling from the
model is e�cient.

5.2 Cover Tree Bayesian Reinforcement Learning

The main idea of Cover Tree Bayesian Reinforcement Learning (CTBRL) is to construct
a cover tree from the observations, simultaneously inferring a conditional probability
density on the same structure, and to then use sampling to estimate a policy. We use
a cover tree due to its e�ciency compared with e.g., a fixed sequence of partitions or
other dynamic partitioning methods such as KD-trees. The probabilistic model we use
can be seen as a distribution over piecewise linear-Gaussian densities, with one local

related to ours, is that of [47], which uses trees for expected utility rather than model estimation.
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linear model for each set in each partition. Due to the tree structure, the posterior can
be computed e�ciently online. By taking a sample from the posterior, we acquire a
specific piecewise linear Gaussian model. This is then used to find an approximately
optimal policy using approximate dynamic programming.

An overview of CTBRL is given in pseudocode in Alg. 5.1. As presented, the algorithm
works in an episodic manner.2 When a new episode k starts at time tk, we calculate a
new stationary policy by sampling a tree µk from the current posterior ptk(µ). This tree
corresponds to a piecewise-linear model. We draw a large number of rollout trajectories
from µk using an arbitrary exploration policy. Since we have the model, we can use
an initial state distribution that covers the space well. These trajectories are used to
estimate a near-optimal policy ⇡k using approximate dynamic programming. During the
episode, we take new observations using ⇡k, while growing the cover tree as necessary
and updating the posterior parameters of the tree and the local model in each relevant
tree node.

Algorithm 5.1: CTBRL (Episodic, using Thompson Sampling)
Initialize: k = 0, ⇡0 = Unif (A), prior p0 on M.

1 for t = 1, . . . , T do
2 if episode-end then
3 k := k + 1.
4 Sample model µk ⇠ pt(µ).
5 Calculate policy ⇡k ⇡ argmax⇡ E⇡

µk
U .

6 end
7 Observe state st.
8 Take action at ⇠ ⇡k(· | st).

9 Observe next state st+1, reward rt+1.
10 Add a leaf node to the tree Tat, containing st.
11 Update posterior: pt+1(µ) = pt(µ | st+1, st, at) by updating the parameters of

all nodes containing st.
12 end

We now explain the algorithm in detail. First, we give an overview of the cover
tree structure on which the context tree model is built. Then we show how to perform
inference on the context tree, while Section 5.2.3 describes the multivariate model used
in each node of the context tree. The sampling approach and the approximate dynamic
method are described in Section 5.2.4, while the overall complexity of the algorithm is
discussed in Section 5.2.5.

2An online version of the same algorithm (still employing Thompson sampling) would move line 5 to
just before line 8. A fully Bayes online version would ‘‘simply’’ take an approximation of the Bayes-optimal
action at every step.
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5.2.1 The Cover Tree Structure

Cover trees are a data structure that can be applied to any metric space and are,
among other things, an e�cient method to perform nearest-neighbour search in high-
dimensional spaces [16]. In the particular work, we use cover trees to automatically
construct a sequence of partitions of the state space. Section 5.2.1 explains the prop-
erties of the constructed cover tree. As the formal construction duplicates nodes, in
practice we use a reduced tree where every observed point corresponds to one node in
the tree. This is explained in Section 5.2.1. An explanation of how nodes are added to
the structure is given in Section 5.2.1.

Cover Tree Properties

To construct a cover tree T on a metric space (Z, ) we require a set of points Dt =

{z1, . . . , zt}, with zi 2 Z, a metric  , and a constant ⇣ > 1. We introduce a mapping
function [·] so that the i-th tree node corresponds to one point z[i] in this set. The nodes
are arranged in levels, with each point being replicated at nodes in multiple levels, i.e.,
we may have [i] = [j] for some i 6= j. Thus, a point corresponds to multiple nodes
in the tree, but to at most one node at any one level. Let Gn denote the set of points
corresponding to the nodes at level n of the tree and C(i) ⇢ Gn�1 the corresponding set
of children. If i 2 Gn then the level of i is `(i) = n. The tree has the following properties:

1. Refinement: Gn ⇢ Gn�1.

2. Siblings separation: i, j 2 Gn,  (z[i], z[j]) > ⇣n.

3. Parent proximity: If i 2 Gn�1 then 9 a unique j 2 Gn such that  (z[i], z[j])  ⇣n

and i 2 C(j).

These properties can be interpreted as follows. Firstly lower levels always contain more
points. Secondly, siblings at a particular level are always well-separated. Finally, a
child must be close to its parent. These properties directly give rise to the theoretical
guarantees given by the cover tree structure, as well as methods for searching and
adding points to the tree, as explained below.

The Reduced Tree

As formally the cover tree duplicates nodes, in practice we use the explicit representa-
tion (described in more detail in Section 2 of [16]). This only stores the top-most tree
node i corresponding to a point z[i]. We denote this reduced tree by ˆT . The depth d(i)

of node i 2 ˆT is equal to its number of ancestors, with the root node having a depth of
0. After t observations, the set of nodes containing a point z, is:

ˆGt(z) ,
n

i 2 ˆT
�

�

�

z 2 Bi

o

,
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where Bi =
�

z 2 Z
�

�  (z[i], z)  ⇣d(i)
 

is the neighbourhood of i. Then ˆGt(z) forms a
path in the tree, as each node only has one parent, and can be discovered in logarithmic
time through the Find-Nearest function (Theorem 5, [16]). This fact allows us to
e�ciently search the tree, insert new nodes, and perform inference.

Inserting Nodes in the Cover Tree

The cover tree insertion we use is only a minor adaptation of the Insert algorithm by
[16]. For each action a 2 A, we create a di�erent reduced tree ˆTa, over the state space,
i.e., Z = S, and build the tree using the metric  (s, s0

) = ks� s0k1.
At each point in time t, we obtain a new observation tuple st, at, st+1. We select

the tree ˆTat corresponding to the action. Then, we traverse the tree, decreasing d and
keeping a set of nodes Qd ⇢ Gd that are ⇣d-close to st. We stop whenever Qd contains
a node that would satisfy the parent proximity property if we insert the new point at
d � 1, while the children of all other nodes in Qd would satisfy the sibling separation
property. This means that we can now insert the new datum as a child of that node.3

Finally, the next state st+1 is only used during the inference process, explained below.

5.2.2 Generalised Context Tree Inference

In our model, each node i 2 ˆT is associated with a particular Bayesian model. The
main problem is how to update the individual models and how to combine them. For-
tunately, a closed form solution exists due to the tree structure. We use this to define
a generalised context tree, which can be used for inference.

As with other tree models [152, 50], our model makes predictions by marginalising
over a set of simpler models. Each node in the context tree is called a context, and
each context is associated with a specific local model. At time t, given an observation
st = s and an action at = a, we calculate the marginal (predictive) density pt of the next
observation:

pt(st+1 | st, at) =
X

ct

pt(st+1 | st, ct)pt(ct | st, at),

where we use the symbol pt throughout for notational simplicity to denote marginal
distributions from our posterior at time t. Here, ct is such that if pt(ct = i | st, at) > 0,
then the current state is within the neighbourhood of i-th node of the reduced cover
tree ˆTat, i.e., st 2 Bi.

For Euclidean state spaces, the i-th component density pt(st+1 | st, ct = i) employs a
linear Bayesian model, which we describe in the next section. The graphical structure
of the model is shown in simplified form in Fig. 5.1. The context at time t depends only
on the current state st and action at. The context corresponds to a particular local
model with parameter �t, which defines the conditional distribution.

3The exact implementation is available in the CoverTree class in [41].
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st st+1

at

ct

�t

Figure 5.1: The generalised context tree graphical model. Blue circles indicate observed
variables. Green dashed circles indicate latent variables. Red rectangles indicate choice
variables. Arrows indicate dependencies. Thus, the context distribution at time t

depends on both the state and action, while the parameters depend on the context.
The next state depends on the action only indirectly.

The probability distribution pt(ct | st, at) is determined through stopping probabili-
ties. More precisely, we set it be equal to the probability of stopping at the i-th context,
when performing a walk from the leaf node containing the current observation towards
the root, stopping at the j-th node with probability wj,t along the way:

pt(ct = i | st, at) = wi,t

Y

j2Dt(i)

(1� wj,t),

where Dt(i) are the descendants of i that contain the observation st. This forms a path
from i to the leaf node containing st. Note that w0,t = 1, so we always stop whenever
we reach the root. Due to the e�ectively linear structure of the relevant tree nodes, the
stopping probability parameters w can be updated in closed form, as shown in ([38],
Theorem 1) via Bayes’ theorem as follows:

wi,t+1 =
pt(st+1 | st, ct = i)wi,t

pt(st+1 | st, ct 2 {i} [Dt(i))
. (5.2.1)

Since there is a di�erent tree for each action, ct = i uniquely identifies a tree, the action
does not need to enter in the conditional expressions above. Finally, it is easy to see, by
marginalisation and the definition of the stopping probabilities, that the denominator
in the above equation can be calculated recursively:

pt(st+1 | st, ct 2 {i}[Dt(i)) = wi,tpt(st+1 | st, ct = i)+(1�wi,t)pt(st+1 | st, ct 2 Dt(i)).

Consequently, inference can be performed with a simple forward-backward sweep
through a single tree path. In the forward stage, we compute the probabilities of the
denominator, until we reach the point where we have to insert a new node. Whenever
a new node is inserted in the tree, its weight parameter is initialised to 2

�d(i). We then
go backwards to the root node, updating the weight parameters and the posterior of
each model. The only remaining question is how to calculate the individual predictive
marginal distributions for each context i in the forward sweep and how to calculate
their posterior in the backward sweep. In this work, we associate a linear Bayesian
model with each context, which provides this distribution.
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5.2.3 The Linear Bayesian Model

In our model we assume that, given ct = i, the next state st+1 is given by a linear
transformation of the current state and additive noise �i,t:

st+1 = Aixt + �i,t, xt ,
 

st

1

!

, (5.2.2)

where xt is the current state vector augmented by a unit basis.4 In particular, each
context models the dynamics via a Bayesian multivariate linear-Gaussian model. For
the i-th context, there is a di�erent (unknown) parameter pair (Ai,Vi) where Ai is the
design matrix and Vi is the covariance matrix. Then the next state distribution is:

st+1 | xt = x, ct = i ⇠
N

(Aix,Vi).

Thus, the parameters �t which are abstractly shown in Fig. 5.1 correspond to the two
matrices A,V . We now define the conditional distribution of these matrices given ct = i.

We can model our uncertainty about these parameters with an appropriate prior
distribution p0. In fact, a conjugate prior exists in the form of the matrix inverse-
Wishart normal distribution. In particular, given Vi = V , the distribution for Ai is
matrix-normal, while the marginal distribution of Vi is inverse-Wishart:

Ai | Vi = V ⇠
N

(Ai | M ,C
|{z}

prior parameters

,V ) (5.2.3)

Vi ⇠ W

(Vi |
z}|{

W , n). (5.2.4)

Here
N

is the prior on design matrices, which has a matrix-normal distribution, condi-
tional on the covariance and two prior parameters: M, which is the prior mean and C
which is the prior covariance of the dependent variable (i.e., the output). Finally,

W

is
the marginal prior on covariance matrices, which has an inverse-Wishart distribution
with W and n. More precisely, the distributions have the following forms:

N

(Ai | M ,C,V ) / e�
1
2 tr

[

(Ai�M)>V�1(Ai�M)C
]

W

(V | W , n) / |V�1W/2|n/2e� 1
2 tr(V�1W).

Essentially, the model extends the classic Bayesian linear regression model (e.g., [33]) to
the multivariate case via vectorisation of the mean matrix. Since the prior is conjugate,
it is relatively simple to calculate the posterior after each observation. For simplicity,
and to limit the total number of prior parameters we have to select, we use the same
prior parameters (Mi,Ci,Wi, ni) for all contexts in the tree.

To integrate this with inference in the tree, we must define the marginal distribution
used in the nominator of Eq. 5.2.1. This is a multivariate Student-t distribution, so if
the posterior parameters for context i at time t are (M t

i ,C
t
i,W

t
i , n

t
i), then this is:

pt(st+1 | xt = x, ct = i) = Student(M t
i ,W

t
i /z

t
i , 1 + nt

i),

where zti = 1� x>
(Ct

i + xx>
)

�1x.
4While other transformations of st are possible, we do not consider them in this work.
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Regression Illustration
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E(st+1 | st) Ept(st+1 | st)

Eµ̂1(st+1 | st) Eµ̂2(st+1 | st)

Figure 5.2: Regression illustration. We plot the expected value for the real distribution,
the marginal, as well as two sampled models µ̂1, µ̂2 ⇠ pt(µ).

An illustration of inference using the generalised context tree is given in Fig. 5.2,
where the piecewise-linear structure is evident. The st variates are drawn uniformly
in the displayed interval, while st+1 | st = s ⇠

N

(sin(s), 0.1), i.e., drawn a normal dis-
tribution with mean sin(st) and variance 0.1. The plot shows the marginal expectation
Ept, as well as the expectation from two di�erent models sampled from the posterior
pt(µ).

5.2.4 Approximating the Optimal Policy with Thompson Sampling

Many algorithms exist for finding the optimal policy for a specific MDP µ, or for calcu-
lating the expected utility of a given policy for that MDP. Consequently, a simple idea
is to draw MDP samples µi from the current posterior distribution and then calculate
the expected utility of each. This can be used to obtain approximate lower and upper
bounds on the Bayes-optimal expected utility by maximising over the set of memoryless
policies ⇧1. Taking K samples, allows us to calculate the upper and lower bounds with
accuracy O(1/

p
K).

max

⇡2⇧1

E⇡
p U ⇡ max

⇡2⇧1

1

K

K
X

i=1

E⇡
µi
U  1

K

K
X

i=1

max

⇡2⇧1

E⇡
µi
U, µi ⇠ pt(µ). (5.2.5)

We consider only the special case K = 1, i.e., when we only sample a single MDP. Then
the two values are identical and we recover Thompson sampling. The main problems
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we have to solve now is how to sample a model and how to calculate a policy for the
sampled model.

Sampling a Model from the Posterior

Each model µ sampled from the posterior corresponds to a particular choice of tree
parameters. Sampling is done in two steps. The first generates a partition from the
tree distribution and the second step generates a linear model for each context in the
partition.

The first step is straightforward. We only need to sample a set of weights ŵi 2 {0, 1}
such that P(ŵi = 1) = wi,t, as shown in [38] (Rem. 2). This creates a partition, with one
Bayesian multivariate linear model responsible for each context in the partition.

The second step is to sample a design and covariance matrix pair (

ˆAi, ˆVi) for each
context i in the partition. This avoids sampling matrices for contexts not part of the
sampled tree. As the model suggests, we can first sample the noise covariance by plug-
ging the posterior parameters in Eq. 5.2.4 to obtain ˆVi. Sampling from this distribution
can be done e�ciently using the algorithm suggested by [115]. We then plug in ˆVi

into the conditional design matrix posterior Eq. 5.2.3 to obtain a design matrix ˆAi by
sampling from the resulting matrix-normal distribution.

The final MDP sample µ from the posterior has two elements. Firstly, a set of
contexts ˆCµ ⇢

S

a2A ˆTa, from all action trees. This set is a partition with associated
mapping fµ

: S⇥A! ˆCµ. Secondly, a set of associated design and covariance matrices
n

(Aµ
i , V

µ
i )

�

�

�

i 2 ˆCµ
o

for each context. Then the prediction of the sampled MDP is:

Pµ(st+1 | st, at) = N

(Aµ
f(st,at)

xt, V
µ
f(st,at)

), (5.2.6)

where xt is given in Eq. 5.2.2.

Finding a Policy for a Sample via ADP

In order to calculate an optimal policy ⇡⇤
(µ) for µ, we generate a large number of

trajectories from µ using a uniform policy. After selecting an appropriate set of basis
functions, we then employ a variant of the least-squares policy iteration (LSPI, [75]
algorithm, using least-squares temporal di�erences (LSTD, [21] rather than LSTDQ.
This is possible because since we have µ available, we have access to (5.2.6) and it
makes LSPI slightly more e�cient.

More precisely, consider the value function V ⇡
µ : S ! R, defined as:

V ⇡
µ (s) , E⇡

µ (U | st = s) .

Unfortunately, for continuous S finding an optimal policy requires approximations. A
common approach is to make use of the fact that:

V ⇡
µ (s) = ⇢(s) + �

Z

S
V ⇡
µ (s

0
) dP ⇡

µ (s
0 | s),
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where we assume for simplicity that ⇢(s) is the reward obtained at state s. The con-
ditional measure P ⇡

µ is the transition kernel on S induced by µ, ⇡, introduced in Sec-
tion 5.1. We then select a parametric family v! : S ! R with parameter ! 2 ⌦ and
minimise:

h(!) +

Z

S

�

�

�

�

v!(s)� ⇢(s)� �
Z

S
v!(s

0
) d

ˆP ⇡
µ (s

0|s)
�

�

�

�

d�(s), (5.2.7)

where h is a regularisation term, � is an appropriate measure on S and ˆP ⇡
µ is an

empirical estimate of the transition kernel, used to approximate the respective integral
that uses P ⇡

µ . As we can take an arbitrary number of trajectories from µ, ⇡, this can be
as accurate as our computational capacity allows.

In practice, we minimise Eq.5.2.7 with a generalised linear model (defined on an
appropriate basis) for v! while � need only be positive on a set of representative states.
Specifically, we employ a variant of the least-squares policy iteration (LSPI, [75]) algo-
rithm, using the least-squares temporal di�erences (LSTD, [21]) for the minimisation
of Eq. 5.2.7. Then the norm is the euclidean norm and the regularisation term is
h(!) = �k!k. In order to estimate the inner integral, we take KL � 1 samples from the
model so that

ˆP ⇡
µ (s

0 | s) , 1

KL

KL
X

i=1

I
�

si
t+1 = s0 | si

t = s
 

, (5.2.8)

si
t+1 | si

t = s ⇠ P ⇡
µ (· | s),

where I {·} is an indicator function and P ⇡
µ is decomposable in known terms. Equation

Eq. 5.2.8 is also used for action selection in order to calculate an approximate expected
utility q!(s, a) for each state-action pair (s, a):

q!(s, a) , ⇢(s) + �

Z

S
v!(s

0
) d

ˆP ⇡
µ (s

0|s)

E�ectively, this approximates the integral via sampling. This may add a small amount5

of additional stochasticity to action selection, which can be reduced6 by increasing KL.
Finally, we optimise the policy by approximate policy iteration. At the j-th iteration

we obtain an improved policy ⇡̂j(a | s) / P[a 2 argmaxa02A q!j�1(s, a
0
)] from !j�1 and

then estimate !j for the new policy.

5.2.5 Complexity

We now analyse the computational complexity of our approach, including the online
complexity of inference and decision making, and of the sampling and ADP taking
place every episode. It is worthwhile to note two facts. Firstly, that the complexity

5Generally, this error is bounded by O(K�1/2
L ).

6We remind the reader that Thompson sampling itself results in considerable exploration by sampling
an MDP from the posterior. Thus, additional randomness may be detrimental.
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bounds related to the cover tree depend on a constant c, which however depends
on the distribution of samples in the state space. In the worst case (i.e., a uniform
distribution), this is bounded exponentially in the dimensionality of the actual state
space. While we do not expect this to be the case in practice, it is easy to construct
a counterexample where this is the case. Secondly, that the complexity of the ADP
step is largely independent of the model used, and mostly depends on the number of
trajectories we take in the sampled model and the dimensionality of the feature space.

First, we examine the total computation time that is required to construct the tree.

Corollary 5.1. Cover tree construction from t observations takes O(t ln t) operations.

Proof. In the cover tree, node insertion and query are O(ln t) ([16], Theorems 5, 6).
Then note that

Pt
k=1 ln k 

Pt
k=1 ln t = t ln t.

At every step of the process, we must update our posterior parameters. Fortunately,
this also takes logarithmic time as we only need to perform calculations for a single
path from the root to a leaf node.

Lemma 5.1. If S ⇢ Rm, then inference at time step t has complexity O(m3
ln t).

Proof. At every step, we must perform inference on a number of nodes equal to the
length of the path containing the current observation. This is bounded by the depth
of the tree, which is in turn bounded by O(ln t) from [16] (Lemma 4.3). Calculating
Eq. 5.2.1 is linear in the depth. For each node, however, we must update the linear-
Bayesian model, and calculate the marginal distribution. Each requires inverting an
m⇥m matrix, which has complexity O(m3

).

Finally, at every step we must choose an action through value function look-up.
This again takes logarithmic time, but there is a scaling depending on the complexity
of the value function representation.

Lemma 5.2. If the LSTD basis has dimensionality mL, then taking a decision at time t

has complexity O(KLmL ln t).

Proof. To take a decision we merely need to search in each action tree to find a corre-
sponding path. This takes O(ln t) time for each tree. After Thompson sampling, there
will only be one linear model for each action tree. LSTD takes KL operations, and
requires the inner product of two mL-dimensional vectors.

The above lemmas give the following result:

Theorem 5.1. At time t, the online complexity of CTBRL is O((m3
+KLmL) ln t).

We now examine the complexity of finding a policy. Although this is the most
computationally demanding part, its complexity is not dependent on the cover tree
structure or the probabilistic inference method used. However, we include it here for
completeness.
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Lemma 5.3. Thompson sampling at time t is O(tm3
).

Proof. In the worst case, our sampled tree will contain all the leaf nodes of the reduced
tree, which are O(t). For each sampled node, the most complex operation is Wishart
generation, which is O(m3

) [115].

Lemma 5.4. If we use ns samples for LSTD estimation and the basis dimensionality is
mL, this step has complexity O(m3

L + ns(m2
L +KLmL ln t)).

Proof. For each sample we must take a decision according to the last policy, which
requires O(KLmL ln t) as shown previously. We also need to update two matrices (see
[20]), which is O(m2

L). So, O(ns(m2
L +KLmL ln t)) computations must be performed for

the total number of the selected samples. Since LSTD requires an mL ⇥ mL matrix
inversion, with complexity O(m3

L), we obtain the final result.

From Lemmas 5.2 and 5.4 it follows that:

Theorem 5.2. If we employ API with KA iterations, the total complexity of calculating a
new policy is O(tm3

+KA(m3
L + ns(m2

L +KLmL ln t))).

Thus, while the online complexity of CTBRL is only logarithmic in t, there is a sub-
stantial cost when calculating a new policy. This is only partially due to the complexity
of sampling a model, which is manageable when the state space has small dimension-
ality. Most of the computational e�ort is taken by the API procedure, at least as long
as t < (mL/m)

3. However, we think this is unavoidable no matter what the model used
is.

The complexity of Gaussian process (GP) models is substantially higher. In the
simplest model, where each output dimension is modelled independently, inference is
O(mt3), while the fully multivariate tree model has complexity O(m3t ln t). Since there
is no closed form method for sampling a function from the process, one must resort to
iterative sampling of points. For n points, the cost is approximately O(nmt3), which
makes sampling long trajectories prohibitive. For that reason, in our experiments we
only use the mean of the GP.

5.3 Empirical Evaluation

We conducted two sets of experiments to analyse the o�ine and the online performance.
We compared CTBRL with the well-known LSPI algorithm [75] for the o�ine case, as
well as an online variant [27] for the online case. We also compared CTBRL with
Linear Bayesian Reinforcement Learning (LBRL, [137]) and finally GP-RL, where we
simply replaced the tree model with a Gaussian process. For CTBRL and LBRL we use
Thompson sampling. However, since Thompson sampling cannot be performed on GP
models, we use the mean GP instead. In order to compute policies given a model, all
model-based methods use the variant of LSPI explained in Section 5.2.4. Hence, the
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only significant di�erence between each approach is the model used, and whether or
not they employ Thompson sampling.

A significant limitation of Gaussian processes is that their computational complex-
ity becomes prohibitive as the number of samples becomes extremely large. In order
to make the GP model computationally practical, the greedy approximation approach
introduced by [45] has been adopted. This is a kernel sparsification methodology which
incrementally constructs a dictionary of the most representative states. More specif-
ically, an approximate linear dependence analysis is performed in order to examine
whether a state can be approximated su�ciently as a linear combination of current
dictionary members or not.

We used one preliminary run and guidance from the literature to make an initial
selection of possible hyper-parameters, such as the number of samples and the features
used for LSTD and LSTD-Q. We subsequently used 10 runs to select a single hyper-
parameter combination for each algorithm-domain pair. The final evaluation was done
over an independent set of 100 runs.

For CTBRL and the GP model, we had the liberty to draw an arbitrary number of
trajectories for the value function estimation. We drew 1-step transitions from a set of
3000 uniformly drawn states from the sampled model (the mean model in the GP case).
We used 25 API iterations on this data.

For the o�ine performance evaluation, we first drew rollouts from k = {10, 20, . . . , 50,
100, . . . , 1000} states drawn from the true environment’s starting distribution, using a
uniformly random policy. The maximum horizon of each rollout was set equal to 40.
The collected data was then fed to each algorithm in order to produce a policy. This
policy was evaluated over 1000 rollouts on the environment.

In the online case, we simply use the last policy calculated by each algorithm at the
end of the last episode, so there is no separate learning and evaluation phase. This
means that e�cient exploration must be performed. For CTBRL, this is done using
Thompson sampling. For online-LSPI, we followed the approach of [27], who adopts
an ✏-greedy exploration scheme with an exponentially decaying schedule ✏t = ✏td, with
✏0 = 1. In preliminary experiments, we found ✏d = 0.997 to be a reasonable compromise.
We compared the algorithms online for 1000 episodes.

5.3.1 Domains

We consider two well-known continuous state, discrete-action, episodic domains. The
first is the mountain car domain and the second is the inverted pendulum domain.

Mountain Car

The aim in this domain is to drive an underpowered car to the top of a hill. Two
continuous variables characterise the vehicle state in the domain, its position and its
velocity. The objective is to drive an underpowered vehicle up a steep valley from a
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randomly selected position to the right hilltop (at position > 0.5) within 1000 steps.
There are three actions: forward, reverse and zero throttle. The received reward is
�1 except in the case where the target is reached (zero reward). At the beginning of
each rollout, the vehicle is positioned to a new state, with the position and the velocity
uniformly randomly selected. The discount factor is set to � = 0.999. An equidistant
4 ⇥ 4 grid of RBFs over the state space plus a constant term is selected for LSTD and
LSPI.

Inverted Pendulum

The goal in this domain, is to balance a pendulum by applying forces of a fixed magni-
tude (50 Newtons). The state space consists of two continuous variables, the vertical
angle and the angular velocity of the pendulum. There are three actions: no force, left
force or right force. A zero reward is received at each time step except in the case where
the pendulum falls. In this case, a negative (-1) reward is given and a new episode be-
gins. An episode also ends with 0 reward after 3000 steps, after which we consider that
the pendulum is successfully balanced. Each episode starts by setting the pendulum
in a perturbed state close to the equilibrium point. More information about the specific
dynamics can be found at [75]. The discount factor is set to � = 0.95. The basis we
used for LSTD/LSPI, was equidistant 3⇥ 3 grid of RBFs over the state space following
the suggestions of [75]. This was replicated for each action for the LSTD-Q algorithm
used in LSPI.

5.3.2 Results

In our results, we show the average performance in terms of number of steps of each
method, averaged over 100 runs. For each average, we also plot the 95% confidence
interval for the accuracy of the mean estimate with error bars. In addition, we show
the 90% percentile region of the runs, in order to indicate inter-run variability in per-
formance.

Figure 5.3(a) shows the results of the experiments in the o�ine case. For the
mountain car, it is clear that CTBRL is significantly more stable compared to GPRL
and LSPI. In contrast to the other two approaches, CTBRL needs only a small number
of rollouts in order to discover the optimal policy. For the pendulum domain, the
performance of both CTBRL and GPRL is almost perfect, as they need only about
twenty rollouts in order to discover the optimal policy. On the other hand, LSPI despite
the fact that manages to find the optimal policy frequently, around 5% of its runs fail.

Figure 5.3(b) shows the results of the experiments in the online case. For the
mountain car, CTBRL managed to find an excellent policy in the vast majority of runs,
while converging earlier than GPRL and LSPI. Moreover, CTBRL presents a more stable
behaviour in contrast to the other two. In the pendulum domain, the performance
di�erence relative to LSPI is even more impressive. It becomes apparent that both
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CTBRL and GPRL reach near optimal performances with an order of magnitude fewer
episodes than LSPI, while the latter remains unstable. In this experiment, we see that
CTBRL reaches an optimal policy slightly before GPRL. Although the di�erence is small,
it is very consistent.

The success of CTBRL over the other approaches can be attributed to a number of
reasons. Firstly, it could be a better model. Indeed, in the o�ine results for the moun-
tain car domain, where the starting state distribution is uniform, and all methods have
the same data, we can see that CTBRL has a far better performance than everything
else. The second could be the more e�cient exploration a�orded by Thompson sam-
pling. Indeed, in the mountain car online experiments we see that the LBRL performs
quite well (Fig. 5.3(b)), even though its o�ine performance is not very good (Fig. 5.3(a)).
However, Thompson sampling is not su�cient for obtaining a good performance, as
seen by both the o�ine results and the performance in the pendulum domain.

5.4 Summary

We proposed a computationally e�cient, fully Bayesian approach for the exact inference
of unknown dynamics in continuous state spaces. The total computation for inference
after t steps is O(t ln t), in stark contrast to other non-parametric models such as
Gaussian processes, which scale O(t3). In addition, inference is naturally performed
online, with the computational cost at time t being O(ln t).

In practice, the computational complexity is orders of magnitude lower for cover
trees than GP, even for these problems. We had to use a dictionary and a lot of tuning to
make GP methods work, while cover trees worked out of the box. Another disadvantage
of GP methods is that it is infeasible to implement Thompson sampling with them.
This is because it is not possible to directly sample a function from the GP posterior.
Although Thompson sampling confers no advantage in the o�ine experiments (as the
data there were the same for all methods), we still see that the performance of CTBRL
is significantly better on average and that it is much more stable.

Experimentally, we showed that cover trees are more e�cient both in terms of
computation and in terms of reward, relative to GP models that used the same ADP
method to optimise the policy and to a linear Bayesian model which used both the
same ADP method and the same exploration strategy. We can see that overall the
linear model performs significantly worse than both GP-RL and CTBRL, though better
than ✏-greedy LSPI. This shows that the main reason for the success of CTBRL is the
cover tree inference and not the linear model itself, or Thompson sampling.

CTBRL is particularly good in online settings, where the exact inference, combined
with the e�cient exploration provided by Thompson sampling give it an additional
advantage. We thus believe that CTBRL is a method that is well-suited for exploration
in unknown continuous state problems. Unfortunately, it is not possible to implement
Thompson sampling in practice using GPs, as there is no reasonable way to sample a
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Figure 5.3: Experimental evaluation. The dashed line shows CTBRL, the dotted line
shows LBRL, the solid line shows LSPI, while the dash-dotted line shows GPRL. The
error bars denote 95% confidence intervals for the mean (i.e., statistical significance).
The shaded regions denote 90% percentile performance (i.e., robustness) across runs.
In all cases, CTBRL converges significantly quicker than the other approaches. In
addition, as the percentile regions show, it is also much more stable than LBRL, GPRL
and LSPI.
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function from the GP posterior. Nevertheless, we found that in both online and o�ine
experiments (where Thompson sampling should be at a disadvantage) the cover tree
method achieved superior performance to Gaussian processes.
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Chapter 6

A Reinforcement Learning Agent for Ms.

PacMan

6.1 The Game of Ms. PacMan

6.2 Reinforcement Learning in Games

6.3 The Reinforcement Learning PacMan Agent

6.4 Empirical Evaluation

6.5 Summary

D igital games have received enormous research interest in Artificial Intel-
ligence (AI) community, during the last decades. As game environments
become more complex and realistic through the years, they o�er a range

of fascinating toy examples that capture the complexity of real-world situations while
maintaining the controllability of computer simulations. A key problem is the devel-
opment of AI driven agents that will be competitive with human intelligence as well as
adaptive to dynamically changed environments [53]. These agents can take a variety of
roles such as player’s opponents, teammates or other non-player characters.

Reinforcement learning (RL) covers the capability of learning from experience [66,
118] gained by interacting within an unknown environment. Thus, o�ers a very attrac-
tive and powerful platform for learning to control an agent in unknown environments
with limited prior knowledge. At the same time, games are ideal testbed environments
for the RL paradigm, since they are goal-oriented sequential decision problems, where
each decision can have long-term e�ect. Games also exhibit a number of interesting
properties that are important in RL research. For example, a game environment can be
either static or dynamic, there can be either single-agent or two-player or multi-agent
problems, transitions can be either deterministic or stochastic, and game environments
can be either fully known or partially observable.
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A number of strategies based on the reinforcement learning scheme has been pro-
posed in a variety of classical games, such as Chess, Backgammon, Computer Go, Tetris,
etc. (see [122] for an overview). Among them, the arcade video game Ms. Pac-Man con-
stitutes a really challenging domain. That makes Ms. Pac-Man really attractive is its
simplicity of playing in combination with the complex strategies that are required to
obtain a good performance [123]. The game of Ms. Pac-Man meets all the criteria of a
reinforcement learning task. The environment is di�cult to be predicted, as the ghost’s
behaviour is stochastic and their tracks are unpredictable. The reward function can be
easily defined covering particular game events and score requirements. Furthermore,
there is a small action space consisting of the four directions in which Ms. Pac-Man can
move (up, down, right, left) at each time step. However, a di�culty is encountered with
designing an appropriate state space encoding for the particular domain. Specifically,
incorporating a large number of features for describing a single game snapshot, may
limit the e�ciency of the agent as the complexity of the problem grows exponentially
with the number of variables. On the other hand, a poor representation does not allow
the agent to distinguish the majority of di�erent game situations. Therefore, establish-
ing an expressive state representation is of central interest, as allows the development
of an e�cient agent which will be able to discover policies in reasonable time.

In this chapter, our study is especially focused on designing an appropriate state
space representation for building an e�cient RL agent to the Ms. Pac-Man game. The
proposed state representation is informative as incorporates all the necessary knowl-
edge about any game snapshot. At the same time, it presents an abstract description
which achieves to reduce the computational cost and accelerate the learning procedure
without compromising the decision quality. It has been demonstrated that providing
a proper feature set as input to the learner is of outmost importance for simple rein-
forcement learning algorithms. The last observation constitutes the main contribution
of our study and suggests the need of a careful modeling of the domain. The on-policy
reinforcement learning algorithm, SARSA(�), has been used for decision making. Sev-
eral experiments have been conducted where the learning capabilities of the proposed
methodology are measured along with its e�ciency in discovering optimal policies in
unknown mazes. It is worth mentioning that a direct comparison is not possible as
di�erent versions of the game (i.e. Ms. PacMan simulators) have been employed in
the literature. Nevertheless, we believe that the proposed agent yields very promising
results along with a considerable improved performance.

The remainder of this chapter is organised as follows. In Section 6.1, the envi-
ronment and rules of the Pac-Man game are briefly described. Section 6.2 reviews
reinforcement learning methodologies in games. The proposed RL-PacMan agent is
presented in Section 6.3, consisting of the adopted state representation along with
the general temporal-di�erence (TD) scheme used to solve the prediction problem. An
experimental illustration is given in Section 6.4, followed by concluding remarks in
Section 6.5
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6.1 The Game of Ms. PacMan

Figure 6.1: A screenshot of the Pac-Man game in a typical maze (Pink maze)

Pac-Man is a real-time arcade video-game released in 1980 and since then has
reached immense success as it is considered to be one of the most popular video games
up to date. The player guides the main character called Pac-Man through a number of
mazes (Figure 6.1 illustrates a typical such maze) filled with pills. The game’s objective,
is the collection of all these pills, avoiding or chasing the ghosts (enemies) which roam
the maze trying to capture the Pac-Man. There are four di�erent ghosts: Blinky (red),
Pinky (pink), Inky (cyan) and Sue (yellow). At the start of a game, Pac-Man has at his
disposal three lives and a life is taken away every time he collides with a non scared
ghost. After losing a life, the ghosts as well as Pac-Man return to their initial positions
on that maze. A level is cleared when all the pills are consumed by the Pac-Man. The
game ends naturally when Pan-Man has spent all lives.

Four special pills are located near the corners of each maze, called power pills.
Whenever a power pill is consumed by the Pac-Man the ghosts become edible, i.e. the
ghosts turn blue for a short time period, and they are not constitute threat for the
Pac-Man. As long as the ghosts are in that state, their movement speed is decreased
and they are forced to reverse their direction in an attempt to move away from the
Pac-Man. Each time a ghost is eaten, it returns to the lair at the center of the maze and
remains there for a short time period before joining the maze again. On the opposite
side, Pac-Man is able to eat them and gains 200 ⇤ n points for each ghost eaten, where
n 2 {1, 2, 3, 4} is the total number of ghosts eaten after taken the last power pill.
Moreover, the Pac-Man gains 10 points for each pill eaten, and 50 points per power pill.
As it becomes apparent, the player would want to eat all four ghosts per power pill in
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order to gain the highest possible score. For example, the maximum achievable score for
the maze represented at Fig. 6.1 is: 220⇥10+4⇥50+4⇥(200+400+800+1600) = 14400

1.
In the original version of Pac-Man, ghosts move on a complex but deterministic

route, so it is possible for the player to discover easy a deterministic sequence of actions
(pattern) without the need of any observation. On the other side, in Ms. Pac-Man,
randomness is added to the movements of each ghost. Therefore there is not a single
optimal policy and observations are necessary for an optimal decision making at each
time step. In our case, ghosts moved randomly in 20% of the time and straight towards
Ms. Pac-Man in the remaining 80%. In both cases, ghosts are allowed to make a move
only if they are at a junction in the maze. In contrast, they can only traverse forward if
they are on a corridor (a corridor lies between two junctions).

6.2 Reinforcement Learning in Games

Games constitute a really challenging area for reinforcement learning research, with a
large number of applications. A number of popular techniques such as Temporal-
di�erence learning [119], Monte-Carlo tree search [70], evolutionary reinforcement
learning [86], etc., have been applied with success until now. In the most of the cases,
the proposed RL approaches are competitive with the other AI techniques as well as
human experts. Nevertheless, a lot of challenges and open problems left to solve. For
example, the appropriate choice of algorithm is just one among many factors that could
drive to success or failure, while in most of cases is not even the most significant fac-
tor. At the same time, a number of components such as the appropriate choice of
state representation, the encoding of domain knowledge as well as the proper setting
of parameters can have great influence at the e�ciency of any application of RL.

Backgammon is the game where reinforcement learning reached its first great suc-
cess, achieving to reach and exceed the level of world’s strongest grandmasters. Tesauro’s
TD-Gammon [125, 126] is a combination of the TD(�) learning algorithm and nonlinear
function approximation. More specifically, a multilayer neural network consisted of a
single hidden layer is used for estimating the value of any board position. The input of
the network is a representation of the board position and its output is an estimation
of the probability of winning starting from that state. To accomplish this, rewards is
defined as zero for all time steps except those on which the game is won (+1 for win-
ning). After its dice roll, the move that will lead to the position with the highest possible
value, will be selected. Then, the TD error is back-propagated in order to adjust the
network’s weights. As a huge number of games is required for the training of the net-
work, TD-Gammon overcomes this handicap by playing against itself and learning from
the outcomes. In that way, TD-Gammon is considered as a self-teaching methodology
which results in a program with incredible playing abilities.

1In the original version of the game, extra fruits at random time intervals and prizes appear and roam
around the maze.
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Chess is a two-player strategy, full informative, zero-sum board game. Its popular-
ity, prestige and complexity has made it one of the most actively AI research games.
In spite of the research e�ort in the last decades, Chess is one of the game where the
playing level even of the best RL approaches is still modest, compared to the great
success in many other games. There are a number of reasons for the weakness of RL
to be competitive. First of all, the extraction of su�cient features for the encoding of
the game structure is not trivial. In addition to that, Chess is also hard for state-space
sampling approaches (e.g. UCT [70]), even when augmented with heuristic evaluation
functions. Another factor that make it hard for the RL is the deterministic nature of
the Chess. In that way, agents have to explore actively the state space in order to gain
experience. A common approach for playing chess is the combination of the evaluation
functions with a multi-step lookahead algorithm (e.g. minimax search). In [10], the
idea of TD-Leaf is presented for the training of an evaluation function. On the other
hand, a modification of the TD-Leaf algorithm, called TreeStrap, has been proposed to
[145]. It has been shown that TreeStrap achieves to approximately reach the same level
as TD-Leaf by using expert trainers. An interesting remark is that for the first time, an
algorithm learns to play master level Chess entirely through self play.

Similarly to Chess, Go is a two-player, zero sum board game (standard board size
is 19⇥ 19) that originated in ancient China. To date, the best Go programs play at the
Master level, way below the level of the best human players. Due to its di�culty, smaller
and simpler boards such as 9 ⇥ 9 and 13 ⇥ 13 are typically used by many programs.
Go has proved to poses a number of challenges because of is intuitive nature, and
requires a di�erent approach in contrast to other games. Firstly, the large search space
caused by the great number of legal model along with the game’s length, are often
cited as the principal reasons for the di�culty of the Go. Secondly, the discovery of
a reasonable and suitable evaluation function has been proved to be a far from easy
task. In [113], the reinforcement learning architecture, Dyna-2, has been presented
and applied to the Computer Go reached pretty good performance on small boards.
The main idea in Dyna-2 is the combination of two separated memories: a permanent
memory that is updated from real experience and a transient memory that is updated
from simulated experience. Both memories use linear function approximation to form
a compact representation of the state space, and are updated by temporal-di�erence
(TD) learning. Due to the lack of good evaluation functions, a number of Monte-Carlo
sampling methods for board evaluation have been successfully applied. In that way,
UCT and the other MCTS algorithms constitute the basis of all state-of-the-art Go
programs.

Tetris is a popular single-player game played on a two-dimensional board (10 ⇥ 20

grid). A number of factors have led Tetris to become one of the most popular game for
testing and benchmarking RL algorithms (see [127], for an overview). First of all, Tetris
fits the MDP properties quite well as a fully-observable game with randomness. In
addition to that, it is known to be computationally hard to solve. One of the first works
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that apply RL on Tetris is that proposed in [15]. There the state space is represented
as a 21-dimensional feature vector consisting of the individual column heights (10 fea-
tures), the absolute di�erences between the heights of adjacent columns (9 features),
the maximum height among the columns and the number of holes in the wall. The
�-policy iteration algorithm, which generalizes the standard value iteration and policy
iteration algorithms, is applied in order approximate the value function as a linear
model using simulations. Two other reinforcement learning works reused the above
feature representation. The first one applies a natural policy gradient method [67],
whereas the second one applies a linear programming approach [49]. In [76], the least
squares policy iteration (LSPI) method with some original features is applied at Tetris.
In contrast to the �-policy iteration where samples are collected at each iteration, the
samples are collected only once at the beginning using a hand-crafted policy. An in-
teresting remark is that the LSPI approach shows interesting convergence properties
compared to the �-policy iteration method.

6.2.1 Reinforcement learning in PacMan

In recent years, Pac-Man style games have received great attention in Artificial Intel-
ligence research. The specific works can be divided into two main categories: those
that use AI techniques and those which are based on hand-coded approaches. In this
section, we focus on works that fall in the former group and briefly discuss the most
related ones.

A reinforcement learning approach has been presented in [19], where a neural net-
work has been used for the estimation of the action-value function. A number of
features has been extracted and given as inputs to the neural network. It has been also
shown that in unknown mazes a single network for all actions outperforms multiple
action networks holding better generalization capabilities. In [26], the learning e�-
ciency of temporal di�erence learning and evolutionary algorithms has been analysed,
showing that under the specific experimental configuration, evolution outperforms the
temporal di�erence learning. A di�erent approach to playing Ms Pac-Man has been
proposed in [123]. The aim is the automatic construction of a simple rule based policy.
Rules are organised into action modules and a decision about which direction to move
in is made based on priorities assigned to the modules in the agent. The cross-entropy
optimisation algorithm is used for learning policies that play well.

Due to the successful application of MCTS in games and more specifically in the
game of Computer Go, the interest in developing MCTS agents for Ms. PacMan has
increased. In [110], an MCTS agent has been developed using a max

n tree search
and modeling Pac-Man as a 5-player game. A tree node is defined as the target for
PacMan in the maze, while MCTS determines the best move discovering the optimal
route to the target. An achievement of MCTS on Pac-Man is the one presented in
[61], where an agent is designed to solve the problem of avoiding pincer moves (every
escape path for Pac-Man is blocked) of the ghosts. A number of MCTS agents has also
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proposed for achieving specific goals in the Ms. Pac-Man game, such as ghost avoidance
[131] and endgame situations [132]. Recently, in [97] a real-time MCTS approach has
been proposed for controlling the Pac-Man character. For the enhancement of the
performance of MCTS in a real-time environment such as Pac-Man game, the search
tree is reused between successive moves where the stored values are decayed by a
factor �. Three di�erent tactics have also been adopted for determining the objective of
Pac-Man at each turn.

6.2.2 Challenges in Games

As pointed out previously, a suitable representation is of central interest in applica-
tions of reinforcement learning. A rich domain knowledge about game can assist in the
representation design. At the same time, extracting relevant information from sensors
is the main source for obtaining the representation. On the other side, an e�cient
feature mapping of the input has the dual advantage of: abstract away less relevant
information, and map similar situations to the same feature vectors, promoting gener-
alization. Last but not least, exploration is a central factor in driving the agent towards
an optimal solution. In most games, the exploration stems from the game itself, due to
the game dynamics (Backgammon) or the agent’s opponents. Nevertheless, Boltzmann
and ✏-greedy action selection are the most commonly used form of exploration.

6.3 The Reinforcement Learning PacMan Agent

This section discusses the main components upon which the proposed RL-PacMan
agent is built up. First, a description of the proposed state space encoding is provided.
In the following, the reinforcement learning scheme used for decision making is pre-
sented. Finally, we present an extension of proposed agent, where the MCTS method
is used for selecting the most appropriate target suggested to be followed by the agent.

6.3.1 The Proposed State Space Representation

The state space representation is of central interest for the development of an e�cient
agent. A suitable representation plays main role in system modeling as well as in
decision making mechanism. At each time step, the agent has to make decisions
according to the observations received by the environment. In that way, the state
should represent the internal behaviour of system dynamics by modeling a relationship
between inputs and outputs. In particular, the description of the state space in the
Ms. Pac-Man game should incorporate useful information about his position, the food
(pills, edible ghosts) as well as the ghosts. An ideal state space representation for Ms.
Pac-Man should include all the raw sensory information, such as:

• the relative position and direction of Ms. Pac-Man in the maze,
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• the relative position and direction of each one of the ghosts,

• the ghosts’ state. It declares whether or not a ghost is edible, and if so, for how
long remains at the specific situation,

• the existence of a pill or power-pill at a specific position,

• the number of pills/power-pills left,

• the number of lives left.

Although its seemingly benefits, the adoption of such a detailed state space repre-
sentation can lead to a number of undesirable e�ects, such as: high computational
complexity, low convergence rate, high demands on resources, etc.. Incorporating all
the above information, the size of the resulting state space becomes insu�ciently large,
making the task of discovering a proper policy impractical. In spite of the above men-
tioned handicaps, a little e�ort has been paid in the direction of seeking a reasonable
and informative state structure.

Considering all the above, our study has focused on the careful construction of an
abstract state space description that will be able to incorporate all the useful infor-
mation. In our approach, the state space is structured as a 10-dimensional, discrete
valued, feature vector, s = (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10). A detailed description of
each one of them, is given below:

• The first four (4) features, (s1, . . . , s4), are binary and indicate the existence (1) or
not (0) of the wall in the Ms. Pac-Man’s four wind directions (north, west, south,
east), respectively. Some characteristic examples are illustrated in Fig. 6.2. For
example, the state feutures (s1 = 0, s2 = 1, s3 = 0, s4 = 1) indicates that the Ms.
Pac-Man is found in a horizontal corridor (Fig. 6.2(a)). On the other hand, state
values (s1 = 1, s2 = 0, s3 = 1, s4 = 0) means that Ms. Pac-Man is located between
a west and east wall (Fig. 6.2(b)). When the Ms. Pac-Man is location at a junction,
the first four features are equal to zero.

• The fifth feature, s5, suggests the direction of the nearest target where it is prefer-
able for the Ms. Pac-Man to move. It takes four (4) values, between 0 to 3, that
correspond to the four wind directions. The desired target depends directly on
the distance between the Ms. Pac-Man and the nearest ghost to agent. In par-
ticular, when the Ms. Pac-Man is going to be trapped by the ghosts (i.e. at least
one ghost with distance less than eight (8) steps is moving threateningly towards
Ms. Pac-Man), the direction to the closest safe exit (escape junction) has been
chosen (Fig.6.2(d)). In any other case, the specific feature takes the direction to
the closest food, either it is a pill or an edible ghost, with priority to be given to the
most valuable among them. Roughly speaking, if an edible ghost exists within a
maximum distance of five (5) steps, the direction to the particular ghost will be
selected (Fig.6.2(a)). On the other hand, it takes the direction that leads to the
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(a) s = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0) (b) s = (1, 0, 1, 0, 1, 0, 0, 0, 1, 0)

(c) s = (0, 1, 0, 1, 2, 0, 0, 0, 0, 0) (d) s = (1, 0, 0, 0, 3, 0, 1, 1, 0, 0)

(e) s = (1, 0, 1, 0, 3, 0, 1, 0, 1, 1) (f) s = (1, 0, 1, 0, 1, 0, 0, 0, 0, 0)

Figure 6.2: Representative game situations along with their state description

nearest dot (Fig.6.2(c,f)). Note here that for calculating the distance as well as the
direction between Ms. Pac-Man and target, the well-known A⇤ search algorithm
[58] has been used for finding the shortest path.

• The next four features, (s6, . . . , s9), are binary and specify the situation of any
direction (north, west, south, east) in terms of a direct ghost threat. If a ghost
with distance less that eight steps (8) is moving towards Ms. Pac-Man from a
specific direction, the feature that corresponds in that direction set equal to 1.
An example given in Fig.6.2(d), where the Ms. Pac-Man is approached by two
ghosts. More specifically, the first ghost approaches the agent from the east
(s7 = 1) and the other one from the south direction (s8 = 1).

• The last feature indicates whether the Ms. Pac-Man is trapped in a corridor or
not. The Ms. Pac-Man is pointed out as trapped only in the case where no safe
junction is available (Fig.6.2(e)). In all other cases the Ms. Pac-Man is considered
as free (Fig.6.2(a, b, c, d, f)). The specific feature is very important as informs the
agent whether or not can wander freely inside the maze.

Table 6.3.1 summarizes the proposed state space representation. Obviously, its size
is quite small containing only 4 ⇤ 29 = 2048 states. Taking also into account that a lot
of the above state combinations is inactive (e.g. there is not possible for the agent to
be enclosed by walls, (s1 = 1, s2 = 1, s3 = 1, s4 = 1)), the specific number is much less.
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This fact allows the construction of a computationally e�cient RL agent without the
need of any approximation scheme. Last but not least, the adopted reasonable state
space combined with the small action space speed up the learning process and enables
the agent to discover optimal policies with su�cient generalization capabilities.

Table 6.1: A summary of the proposed state space representation
Feature Range Source

[s1 s2 s3 s4] {0, 1} Ms. Pac-Man view
s5 {0, 1, 2, 3} target direction

[s6 s7 s8 s9] {0, 1} ghost threat direction
s10 {0, 1} trapped situation

6.3.2 SARSA Algorithm for Online Learning

The reinforcement learning scheme has been adopted in order to discover a proper pol-
icy, ⇡, based on which our agent selects the most appropriate action at each state of
the game. SARSA [118] is one of the most popular on-policy reinforcement learning al-
gorithm that estimates the policy being followed. As it belongs to the family of temporal
di�erence control methods, it is naturally implemented in an online, fully incremental
way without the need of waiting until the end of an episode. In addition to that, SARSA
algorithm learns from raw experience without a model of the environment’s dynam-
ics. For the above-mentioned reasons, SARSA constitutes a suitable platform for our
control problem.

As a model-free control method, SARSA is based on the estimation of the action-
value function, Q. Learning a policy therefore means updating the Q-function to make
it more accurate. One important aspect of model-free algorithms is that there is a need
for exploration. To account for potential inaccuracies in the Q-function, the agent must
try out di�erent actions to explore the environment for finding possible better policies.
The ✏-greedy action selection strategy is an e�ective means of balancing exploration and
exploitation in reinforcement learning. According to that, the agent behaves greedily
most of the time, but with small probability, ✏, selects an action uniformly random.

Due to the small state space and the finite number of actions, the value estimations
of all state-action pairs can be kept in the main memory being stored in a table (one
entry for each state-action pair), known as the tabular case. Thus, the SARSA scheme
performs updates to individual Q-value entries in this table. Assuming that an action
at is taken and the agent moves from belief state st to a new state st+1 while receiving
a reward rt, a new action at+1 is chosen according to the current policy:

⇡(st+1) = argmax

a
Q⇡

t (st+1, a). (6.3.1)
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In that way, the estimated Q value of the new state-action pair is used to update the
action-value of the previous state-action pair:

Qt+1(st, at) = Qt(st, at) + ↵�t, (6.3.2)

where
�t = rt + �Q⇡

t (st+1, at+1)�Q⇡
t (st, at) (6.3.3)

is known as the one step temporal-di�erence (TD) error. The term ↵ is the learning rate
which set to some small value (e.g. ↵ = 0.01) and can be occasionally decreased during
the learning process.

An additional mechanism that has been employed is that of eligibility traces. This
allows rewards to back-propagated to recently visited states, allocating them some
proportion of the current reward. Every state-action pair in the Q table is given its own
eligibility value (e) and every time when the agent visits a particular state-action pair,
its eligibility value set equal to 1 (replacing traces, [114]). On each step, the eligibility
traces for all state-action pairs are decayed by a factor of ��, where � 2 [0, 1] is the trace
decay parameter. The TD error forward proportional in all recently visited state-action
pairs as signalised by their non-zero traces according to the following update rules:

Q⇡
t+1(s, a) Q⇡

t (s, a) + ↵�tet(s, a) 8s, 8a, (6.3.4)

where

et(s, a) =

8

>

>

<

>

>

:

1 if s = st and a = at

0 if s = st and a 6= at

��et�1(s, a) otherwise

8s, 8a. (6.3.5)

The purpose of eligibility traces is to propagate TD-error to the action-values faster
so as to accelerate the exploration of the optimal strategy. The specific version, known
as SARSA(�) [118], has been adopted for the learning of the Ms. Pac-Man agent. An
overview of the learning scheme of RL-PacMan agent is given in Algorithm 6.1.

6.3.3 Extension: a Monte Carlo Tree Search based Strategy

This section considers the following open issues, met in our proposed agent. The
first one is the selection of the fifth feature, s5, of our state representation, which is
of outmost importance. This is because it suggests the most appropriate target that
should be followed by the agent. Nevertheless, the selection of the best target is far
from being a trivial task. The second issue is the selection of the most adequate tactic,
which determines the behaviour of the RL-PacMan ghost. For example, which is the
smallest distance between a ghost and the agent such as the ghost is not considered
as threatening.

MCTS [23] is an e�cient search method that could be used for discovering the most
appropriate target at each time step. It is a best-first search method, which is based on
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Algorithm 6.1: The SARSA(�) Algorithm on the RL-PacMan Agent
Initialize: Q0(s, a) arbitrary and e(s, a) = 0 for all s,a.

1 begin
2 t = 0;
3 for each episode do
4 Initialize st, at;
5 repeat for each step
6 Execute action at and receive reward rt ;
7 Observe state st+1 (Sec. 6.3.1);
8 Select action at+1 using policy derived from Qt (✏-greedy);
9 Calculate temporal di�erence error, �t (Eq. 6.3.3);

10 Update traces (et+1) and Q-values (Qt+1) 8s,a (Eqs. 6.3.5, 6.3.4);
11 t = t+ 1;
12 until s is terminal;
13 end

14 end

a randomized exploration of the search space. A search tree is built iteratively over time
until a predefined computational budget is reached, i.e., a number of iterations, a time
constraint, or a memory limit. Afterwards, the best performed root action is selected,
where the root of the tree corresponds to the current agent’s position. Each tree node
contains two important statistics: the estimated collected return and the number of
visits of each node. The MCTS consists of four steps (see, Fig. 6.3), which are executed
at each search iteration [29]:

• Selection: Starting from the root node, children are chosen based on a selection
policy until a leaf node is reached.

• Expansion: All children are added to the selected leaf node according to the
available actions.

• Playout: A simulated playout is executed from the new added node according to
a default policy until a terminal state is reached.

• Backpropagation: The result of the simulated playout is backpropagated through
the selected nodes up to the root node, updating nodes’ statistics.

An ensemble of learning schemes would be considered for the selection of the most
appropriate tactic that should be followed by the agent. More specifically, a number of
reinforcement learning agents will be trained simultaneously, with each one following
its tactic. It is worth noting that a tactic is defined by the proposed representation of the
state space. For example, a survival tactic is supposed to be a strategy where ghosts
are considered threatening any time. On the other side, in a greedy tactic the agent’s
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Figure 6.3: Steps of Monte Carlo tree search

target is to eat as much as possible food even if a ghost is approaching threateningly.
In this way, the selection of the most appropriate strategy is translated into a multi-
armed bandit problem, where the Upper Confidence Bound (UCB) [7] algorithm can
be employed, o�ering a balance between exploration and exploitation. Thus, the most
appropriate strategy is selected and based on this strategy the best move is chosen.

6.4 Empirical Evaluation

A series of experiments has been made for the evaluation of the performance of the pro-
posed RL-PacMan agent at the Ms. Pac-Man domain. All experiments were conducted
by using the MASON multi-agent simulation package [79] which provides a faithful ver-
sion of the original game. Due to the low complexity of the RL-PacMan agent along with
its limited requirements on memory and computational resources, the experiments
took place on a conventional PC (Intel Core 2 Quad (2.66GHz) CPU with 2GiB RAM).

Three mazes of the original Pac-Man game, illustrated in Figs. 6.1 and 6.4, are
used in our experiments. The first one (Fig. 6.1) was used during the learning phase
for training the RL agent, while the other two mazes (Fig. 6.4) were applied during the
testing process. In all experiments, we have set the discount factor (�) equal to 0.99

and the learning rate (↵) equal to 0.01.
The reward function used in our research is listed in Table.6.4. It must be noted

that our method does not show any significant sensitivity to the above reward values.
However, a careful selection of the reward values is necessary as the agent’s goal is
formalized in terms of the reward signal passed from the environment to the agent.
Additionally, we consider the Ms. Pac-Man game as an episodic task where an episode
is terminated either when all the dots are collected (win) or the Ms. Pac-Man is col-
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(a) Light blue maze (b) Orange maze

Figure 6.4: Mazes used for evaluating the proposed RL agent

Table 6.2: The reward function for di�erent game events
Event Reward Description

Step �0.5 Ms. Pac-Man performed a move in the empty space
Lose �35 Ms. Pac-Man was eaten by a non-scared ghost
Wall �100 Ms. Pac-Man hit the wall
Ghost +1.2 Ms. Pac-Man ate a scared ghost
Pill +1.2 Ms. Pac-Man ate a pill

lided with a non-scared ghost. Finally, the performance of the proposed approach was
evaluated in terms of four distinct metrics:

• Average percentage of successfully level completion.

• Average number of wins.

• Average number of steps per episode.

• Average score attained per episode.

A two-stage strategy has been followed by the RL-PacMan agent during the learning
process. At the first phase, the agent is trained without the presence of any ghost in
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the maze. In that case, the agent’s goal is to eat all the dots as fast as possible. At
the second phase, the agent is initialized with the policy discovered at the first phase
and the ghosts are inserted into the maze. Likewise, the agent’s objective is to clear
the maze avoiding the ‘non-scared’ ghosts and gaining as much points as possible by
eating pills and chasing the edible ghosts.
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Figure 6.5: Learning progress of the agent at the pink maze without ghosts

Figure 6.5 illustrates the depicted learning curve during the first phase. More
specifically, the mean number of steps (after 20 di�erent runs) required by the agent in
order to clear all the pills at the first maze (Fig. 6.1) is represented. In order to study the
e�ectiveness of the eligibility trace (Eqs. 6.3.5) to the RL-PacMan agent, three di�erent
values (0, 0.2, 0.8) of the trace decay parameter � are examined. It is worth noting
that for each one of these values, the RL-PacMan discovers almost the same policy .
Another useful remark is that the learned policies are close enough to the optimal ones
as the RL-PacMan agent achieves to eat all of the pills (220) appearing at the maze,
by performing only 260 steps (only 15% moves performed in positions with no pills).
Nevertheless, it becomes apparent that the value of � = 0.8 accelerates the learning
process, as our agent achieves to reach an optimal policy quite faster compared to the
other two values. For this reason, we set the trace decay parameter, �, equal to 0.8 for
the experiments that follow.

The learning performance of our agent at the second phase is illustrated in Fig.
6.6, in terms of (a) the percentage of level completion and (b) the number of wins
(successful level completion) in the last 100 episodes. As it becomes apparent, the RL-
PacMan converges quite rapidly at an optimal policy as only 800 episodes are required.
At the same, the RL-PacMan agent manages to handle trapped situations with success,
completing the level with a high-probability. In our view, the 40% of the level completion
suggests a satisfactory playing capability of our agent at the Ms. Pac-Man game.
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Figure 6.6: Learning progress of the agent at the pink maze with ghosts

For the measurement of the generalization capability of the proposed mechanism,
the policy that was discovered at the end of the learning phase tested into two un-
known mazes (Fig. 6.4). Table 6.3 depicts the performance of the fixed policy in the
three mazes, where the statistics (mean value and standard deviation) of the evalua-
tion metrics were calculated after running 100 episodes. It is interesting to note that
the RL-PacMan agent shows a remarkable stability on his behaviour to both unknown
mazes providing high generalization abilities.

Table 6.3: Testing performance
Maze Level completion Wins # Steps Score

Pink (Fig. 6.1) 80% (±24) 40% 348.7 (±153) 2292.3 (±977)
Light blue (Fig. 6.4(a)) 70% (±24) 33% 319.4 (±143) 2538.4 (±1045)
Orange (Fig. 6.4(b) 80% (±20) 25% 360.8 (±155) 2515.7 (±1011)

Finally, the obtained policy was tested by playing 50 consecutive games (starting
with 3 lives and adding one live at every 10000 points). Table 6.4 summarizes the
results where the mean score along with the maximum score found in all three tested
mazes are calculated. The particular results verify our previous observations about
the generalization ability of the RL-PacMan agent which manages to discover a generic
optimal policy allowing the agent to navigate safely at each maze.
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Table 6.4: RL-PacMan achieved game score
Mazes Average Scores Max Score

Pink maze (Fig. 6.1) 9665 20860

Light blue maze (Fig. 6.4(a)) 12753 38840

Orange maze (Fig. 6.4(b) 11587 27620

6.5 Summary

In this chapter, we have presented the reinforcement learning RL-PacMan agent that
learns to play the famous arcade game Ms. Pac-Man. An abstract but informative
state space representation has been introduced that allows flexible operation definition
possibilities through the reinforcement learning framework. The on-policy, SARSA(�),
reinforcement learning algorithm has been used to discover an optimal policy. The
experimental study demonstrates the ability of the RL-PacMan agent to reach optimal
solutions in an e�cient and rapid way. Finally, it has been proved that providing a
proper feature set as input to the learner is of outmost importance as speed up the
learning process without the necessity of any function approximation scheme.
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Chapter 7

A Bayesian Ensemble Regression

Framework on the Angry Birds Game

7.1 The Angry Birds Game

7.2 Artificial Intelligence on Angry Birds

7.3 AngryBER Agent Strategy

7.4 Empirical Evaluation

7.5 Summary

P hysics-based simulation games such as Angry Birds, have received consid-
erable and increasing attention during the last years. They are based on a
simulator that has complete knowledge about the physical properties of all

objects of the game world. This makes these games quite realistic, as they are able to
simulate each move and its consequences to the real world with high precision. De-
spite the fact that these games are seemingly simple at a first glance, that is far from
true. The extremely large or infinite number of the available actions, makes the par-
ticular games demanding and simultaneously attractive. The large number of moves
stems from the fact that small devations may result in di�erences in the outcome of
the physics simulation. At the same time, the action’s outcome is really hard to be
predicted in advance without an explicit knowledge of the game’s physical properties.
In addition, it must be mentioned that the game scene can usually be observed through
a vision system taking screenshots which corresponds to how humans are perceiving
these games. Consequently, it becomes apparent that a number of issues have arisen
which demand new techniques that can investigate the fundamental physical game
processes, so as to establish e�cient AI agents which will be able to play as good or
better than the best human players.
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In this chapter, we propose a Bayesian ensemble regression framework for designing
an intelligent agent for the Angry Bird domain. The novelty of proposed methodology
lies in the construction of an informative encoding scheme of the game scenes, as
well as its ability to make accurate predictions and measure the e�ectiveness of each
possible target through a compact ensemble model. These aspects are very important
since they manage to build a low complexity agent, being in a form that is suitable
for real-time rendering and allowing that to be applicable in a real-time game such as
Angry Birds.

Two are the main building blocks of our methodology:

• Firstly, a novel tree structure is proposed for mapping scenes of game levels,
where the nodes represent di�erent material of solid objects. More specifically,
each tree’s node depicts adjacent objects which are constructed by the same ma-
terial. This scene representation is informative as incorporates all the necessary
knowledge about game snapshots, and simultaneously abstract so as to reduce
the computational cost accelerating the learning procedure. The specific tree rep-
resentation allows the construction of an e�cient and simultaneously powerful
feature space that can be used next during the prediction process.

• Secondly, an ensemble learning approach [86] is designed where every possible
pair of ‘object material’ - ‘bird type’ has its own Bayesian linear regression model
for the estimation of the expected return. In this way, the prediction ability of
our scheme becomes much more accurate as it is able to distinguish possible
associations between di�erent types of birds and objects’ materials. An ensemble
integration framework based on the UCB algorithm [7] has employed using the
predictions of every regressor, to obtain the final ensemble prediction. After
finishing the shot, an online learning procedure is executed in order to adjust
the model parameters of each selected regressor.

As experiments indicate, the proposed agent o�ers both flexibility and robustness and
obtains superior modeling solutions. Since there are public available results of all
teams participating in the last two years AIBIRDS competitions, we have made com-
parison with all of them, as well as with the naive agent which is a su�cient baseline
for evaluation. In all cases we took excellent results.

The remainder of this chapter is organised as follows. Angry Birds game is presented
in Section 7.1. Section 7.2 review a number of related artificial intelligence techniques
on the Angry Birds. The general framework of our methodology is described step-by-
step in Section 7.3, that consists of the proposed tree structure (Section 7.3.1), together
with the Bayesian ensemble mechanism of linear regression models (Section 7.3.4).
Furthermore, some issues are discussed about the feasibility property of tree nodes
(Section 7.3.3), as well as about the tap timing decision strategy (Section 7.3.5). In
Section 7.4, we assess the performance of the proposed methodology reporting results
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obtained by applying our method to the first two levels of the ‘Poached Eggs’ game set.
Finally, Section 7.5 summarizes this chapter.

7.1 The Angry Birds Game

Figure 7.1: A screenshot of the Angry Birds game (21st level at the first series of episodes
on the freely available ‘Poached Eggs’ season)

Angry birds (Fig. 7.1) was first launched in 2008 by Rovio(TM), and since then it
has become one of the most popular games nowadays. The objective is to shoot birds
using a slingshot in a way that all pigs are killed with the fewest number of used birds.
The pigs are usually protected by complicated structures consisting of various types of
building materials which must be destroyed for killing pigs. Several types of birds are
available, with some of them being more e�ective against particular materials. At each
time step, the point where the bird is released from the slingshot must be selected. In
addition, the player have to decide the exact tap time during the flight of the bird where
its optional special feature will be activated o�ering extra power to that. The score (or
return) is calculated in terms of the number of pigs killed, the number of the unused
birds, as well as the destruction on the structure that achieved after each shot. The
fewer birds are used as well as the more damage to the structures achieved, the higher
the received score (or return).

Due to its nature (e.g. large state and action spaces, continuous tap timing, various
objects’ properties, noisy object detection, inaccurate physical models, etc.), Angry
Birds constitutes a really challenging task for the development of intelligent agents. At
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the same time, the Angry birds competition1 (AIBIRDS [106]) provides a very attractive
venue which o�ers the opportunity to various AI approaches to compete against each
other, as well as to evaluate their performance by playing in unknown game levels. A
basic game platform [54] is provided by the organizers, that is based on the Chrome
version of the Angry Birds and incorporates a number of components such as, computer
vision, trajectory planning and game playing interface which can be freely used. We
have also used this platform for developing the proposed agent.

7.2 Artificial Intelligence on Angry Birds

During the last two years, a number of interesting approaches have been proposed
which are focused on the development of AI agents with playing capabilities similar
to those exhibited by expert human players. These particular works rely on various
AI techniques, such as logic programming, qualitative reasoning, advanced simulation,
structural analysis, analysis of predicted damage, and machine learning methodologies.

In [157, 147, 51], the qualitative spatial representation and reasoning framework of
[30] has been adopted for extracting relationships among scene objects. In [157], an
extension of Rectangle Algebra [9] has been proposed for the determination of structure
properties, such as its stability or the consequences after some external influences
act. On the other hand, in [147] a qualitative physics method has been presented for
the examination of the structure properties. In these two works, the action selection
was made by measuring all possible shots in terms of a heuristic value function which
depends on the shot’s influence on the structures. On the other hand, in [51] a decision
making under uncertainty scheme was applied for selecting of the most appropriate
target according to an utility function.

An alternative work has been presented in [88] that employs the Weight Majority
algorithm and the Naive Bayesian Network for selecting the most appropriate shot at
each time step. However, a disadvantage on this scheme is that the constructed feature
space is extremely large, since it incorporates a large amount of information about the
game scene. In addition, it requires a huge amount of training data to be gathered
in advance by using a number of di�erent playing agents. Also, an extra e�ort is
needed so as to manually label input data as positive (shots in winning games) and
negative (shots in losing games) examples. Another work has been described in [100]
based on a model-based methodology for learning the physical model of the world.
For this reason, a number of trajectories are evaluated in the approximated model
by performing a maximum impact selection mechanism. Last but not least, there are
works that combine a limited number of di�erent strategies, some of them really simple,
and select the most adequate between them according to the game level, with quite good
performance.

1https://aibirds.org/
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7.3 AngryBER Agent Strategy

The proposed methodology is focused on describing the game scenes with an appropri-
ate and useful tree structure so as to build an e�cient state space representation. In
addition, a decision making mechanism has been designed using a Bayesian ensemble
regression framework that o�ers robustness and adaptability to dynamically changing
situations. Our work is based on the Angry Bird Game Playing software (version 1.32).

1. Tree structure
construction

2. Feasibility
examination

3. Prediction: expected
reward calculation

4. Target and
tap time selection

5. Regression model
parameters adjustment

Figure 7.2: Flow diagram of the proposed method

Figure 7.2 illustrates briefly the main building blocks of the proposed approach. A
step-by-step description is the following:

1. Construct the tree structure of the game scene and establish a feature space.

2. Examine the nodes feasibility in terms of their ability to be reached (possible
targets).

3. Predict the return of each feasible node (target) according to a Bayesian Ensemble
Regression scheme, which takes into account the type of the object’s material and
the available bird. The most appropriate node is then selected as target.

4. Tap timing selection and perform shooting.

5. Adjust the model parameters of the selected regressor using an online learning
procedure.

Next, we give a detailed description of the above parts of our methodology.
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7.3.1 A Tree Structure Representation of Game Scenes

The computer vision component of the Angry Birds game is used to analyze the video
game scenes. It provides a list of all objects in the scene and identifies information
about their type, location, and bounding box. The vision component can recognize the
next seven (7) types of objects’ materials:

Ice/Glass (I) Wood (W)
Stone (S) Rolling Stone (RS)

Rolling Wood (RW) Pig (P)
TNT (T)

The state space representation of the proposed method is based on the construction
of an e�cient tree structure in an attempt to arrange and manipulate all the scene
objects and their attributes into a compact structure. It consists of a number of nodes
that represent di�erent spatial objects of the scene and a number of edges between
them that signify their relations.

The proposed tree structure is created through a two-stage process. At first, a
complete tree of the game scene is designed by scanning a snapshot in the horizontal
direction starting from the ground (level 1). Every time a di�erent object is found
(either in material type, or in shape), a new node is added to an appropriate level of
the tree. Furthermore, a virtual root node is created and connected with all nodes that
corresponds to roof objects, i.e. objects that do not have any other object in higher
level; see for example nodes s11, s15 and s91 at Fig. 7.3. The tree structure provides a
convenient and attractive layout of the objects relationships, as well as a natural way
for handling complex objects. An example is shown in Fig. 7.3 that illustrates the tree
of the first game level.

After building the initial tree structure, a tree reduction procedure is performed.
During this phase, we traverse the tree and merge nodes of either adjacent, or the
same level, in a recursive manner. Merging is done between nodes that have the same
material type, are (approximately) adjacent and whose their (vertical or horizontal) sides
are equal. Obviously, the merging procedure is not allowed for the object’s type of pigs
and TNTs. As it is expected, the merging procedure is capable of significantly reducing
the size of the tree and therefore the computational cost of the decision making process
that follows, since it finally can produce less possible targets for shooting. An example
of this phase is shown in Fig. 7.5 for the game scene of Fig. 7.4, where the number of
nodes is reduced from 30 (initial phase) to 18. In this example the complete tree nodes
s71, s72, s81, s82 that belong to the same or adjacent levels of the complete (left) tree, are
merged into a single node (s51) in the reduced (right) tree. Similarly, nodes s11, s12, s21
are merged together.

It must be noted that in the recursive procedure the direction (vertical or horizontal)
for merging nodes does not play any significant role in most of cases, since it leads
to the same final solution. However, during the experiments priority is given to the
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Figure 7.3: The proposed tree structure consisting of 16 nodes at the first game level.

vertical direction. Thus, nodes of adjacent levels (vertical direction) are merged first
and in the subsequent step we merge nodes of the same level (horizontal direction).
The whole procedure is repeated until no merging can be performed among nodes, see
Fig. 7.4. Algorithm 7.1 sketches the main steps for the construction of the proposed
tree structure representation.

7.3.2 Feature Extraction

The tree structure framework allows us to extract quantitative features at each node s

of the tree. We have selected the following features:

• x1(s): Individual weight calculated as the product of the object’s area Area(s)

with coe�cient cs whose value depends on the material of the object, i.e. x1(s) =

Area(s) ⇥ cs. All types of objects have the same value for this coe�cient, cs = 1,
except for Pig (P) and TNT (T) which have a much larger value (cs = 10).

• x2(s): Distance (in pixels) to the nearest pig, normalized to [0, 1] dividing the
original distance by a threshold value for the maximum distance (100 in our case).

• x3(s): Cumulative weight calculated as the sum of individual weights of all
ancestors P(s) of the node s in the tree, i.e. x3(s) =

P

s02P(s) x1(s0).
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Algorithm 7.1: The Tree Structure Construction Algorithm
Input : A set of the stucture objects, O
Output : The tree structure, T
Initialize: k = 1; T = ;

1 begin
2 Complete tree structure construction phase.;
3 while O 6= ; do
4 Discover the object with the lowest center to the ground, o 2 O;
5 Draw a straight horizontal line which passes through its center;
6 Find the separated objects intersected by the line, Ok;
7 Sort Ok according to their positions at x-axis;
8 Insert Ok at level Tk, where each object o 2 Ok is added as a separated

node;
9 O = O \ Ok;

10 k ++;
11 end

12 Add virtual root node at the highest level k;

13 Reduction phase: Merge nodes of the same or adjacent levels according to
type and shape properties;

14 Extract features from all tree nodes;

15 return T ;
16 end

• x4(s): Distance from the farthest ancestor, normalized to [0, 1] by dividing with
a threshold value for the maximum height (e.g. 200).

The above feature extraction strategy constructs an abstract but powerful feature
space for all possible targets of a game scene. The proposed features are mostly spatial
and concern information about geometrical, directional and topological properties of all
tree nodes. An example can be seen at Table 7.1 that represents the features values of
all 16 nodes of the tree illustrated in Fig. 7.3.

7.3.3 Feasibility Examination

The next step to our approach is to examine each node of the reduced tree structure
in terms of its possibility to be reached (possible target). Reachability depends only on
the location of objects.

Infeasible situations could be happened in cases where there is a sheltering struc-
ture around an object making that not directly reachable to the bird, see for example
Fig. 7.6(b). Moreover, it is possible some stable obstacles in the path such as hills, to
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(c) (d)

Figure 7.4: A step-by-step representation of the tree reduction procedure at the 16

th

level of the ‘Poached Eggs’ season. Each bounding box illustrates an individual object
or a group of adjacent objects of the same material, and corresponds to a tree node. (a)
Tree nodes that corresponds to the initial tree structure. (b) At the second step, the tree
nodes of adjacent levels (vertical direction) are merged. (c) At the third step, the tree
nodes of the same level (horizontal direction) are merged. (d) Finally, the tree nodes of
adjacent levels are concatenated if it is possible. The tree reduction phase is completed
since no nodes are available for concatenation.

block a target (see for example the direct shot at Fig. 7.6(a)). Therefore, an examination
step is initially required at each node of the tree so as to ensure that they are reachable.

Two di�erent trajectories are considered: a) a direct shot (angle <= 45

�) and b) a
high arching shot (angle > 45

�). Both of them are examined to any node of the reduced
tree structure in order to estimate their feasibility property. In case where a node can be
reached directly from at least one shot it is labeled as feasible (Fig. 7.6(a)), otherwise
it is considered as infeasible and thus cannot be treated as possible target. If both
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Figure 7.5: Tree structure represention at the 16

th level of the ‘Poached Eggs’ season,
before and after tree reduction phase. (a) The initial tree structure (Fig.7.4(a)). (b) The
final tree structure (Fig.7.4(d)).

(a) (b)

Figure 7.6: Tree’s node feasibility examination. (a) Represents a feasible node (pig) as
it is reachable by at least one trajectory. The direct shot is infeasible due to the fact
that a hill is interposed between the slingshot and the target. (b) An infeasible node
(wood) is represented as it is not directly reachable due to the tree structure.

trajectories are accepted, priority is given on the direct shot due to its e�ectiveness.
However, there are some special cases which are treated in a di�erent way.

• In the case of the white bird a node is considered as feasible if can be reached by
the bird’s egg (Fig. 7.8), as opposed to the other types of birds.
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Table 7.1: The feature vectors along with the feasible and type labels for the 16 tree
nodes of Fig. 7.3.

Features
x1(s) x2(s) x3(s) x4(s)

Level Type
Personal
Weight

Pig
Distance

Cumulative
Ancestors

Weight

Farthest
Ancestor
Distance

Node

s11 1 Wood 78 0.818 0 0
s12 1 Wood 318 0.501 2467 0.65
s13 1 Wood 188 0.660 5532 0.64
s14 1 Wood 318 0.501 2467 0.645
s15 1 Wood 78 0.818 0 0
s21 2 Ice 156 0.504 2623 0.61
s22 2 Ice 130 0.504 2623 0.61
s31 3 Wood 156 0.341 2467 0.48
s41 4 Wood 371 0.151 2096 0.385
s51 5 Wood 318 0.164 416 0.36
s52 5 Wood 72 0.082 556 0.35
s53 5 Wood 318 0.198 416 0.36
s61 6 Pig 140 0.170 416 0.32
s71 7 Wood 182 0.431 234 0.1
s81 8 Stone 156 0.521 78 0.065
s91 9 Wood 78 0.651 0 0

• Tree nodes that represent a pig are considered as feasible even if the correspond-
ing pig is protected by material objects which are forming its sheltering structure.
This is not true only in the case where a steady structure (e.g. hills) protects the
pig.

• Finally, the nodes that correspond to objects which are located right from the
rightmost pig, rolling stone or rolling wood are characterised as infeasible either
they are reachable or not.

After the feasibility examination phase, we end up with a set which contains the
tree’s feasible nodes, denoted as F . Only the nodes that belong at F (s 2 F ) con-
didered as possible targets, thereafter. Figure 7.7 illustrates the tree structure at
the previously mentioned example (Fig. 7.3) after the feasibility examination (F =

{s11, s12, s41, s51, s61, s71, s81, s91}), where the infeasible nodes are represented by opac-
ity.
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Figure 7.7: The tree structure after the feasibility examimation phase at the first game
level. The infeasible nodes are represented by opacity.

7.3.4 Ensemble of Linear Regression Models

The feasible nodes of the tree structure constitute a set of possible targets of the scene,
i.e. points to be hit by a bird. In our approach the task of target selection has been
made through an ensemble regression framework. Specifically, as shown previously,
each feasible node s 2 F is described with a feature vector x(s). We assume that
during the game a sequence of game scores t resulting from each shot are observed.
This can be seen as the target attribute that can be modeled using a linear regression
scheme of the form:

t = w

>
�(x(s)) + ✏ =

M
X

j=1

wj�j(x(s)) + ✏ . (7.3.1)

In the above equation, M is the order of the regression model and w = (w1, . . . , wM)

>

is the vector of the M unknown regression coe�cients. According to this equation, the
score is represented as a linearly weighted sum of M fixed basis functions denoted as
�(x(s)) = (�1(x(s)),�2(x(s)), . . . ,�M(x)(s))>. The error term, ✏, is assumed to be zero
mean Gaussian with variance 1/�, i.e. ✏ ⇠

N

(0, ��1
).

To construct the M basis functions we have considered the following strategy: First
a number of samples (feature vectors) x(s) has been randomly collected from various
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game scenes. Then, an hierarchical agglomerative clustering approach has been per-
formed to them creating an hierarchy of data clusters. In our scheme the standardized
Euclidean distance was used as a criterion for merging pairs of clusters. At the end, a
number of M clusters were selected from the agglomerative tree whose statistics were
used for building the M basis functions and creating a kernel space. In our approach,
we have considered normalized Gaussian kernels of the form:

�j(x(s)) = exp

 

�
D
X

r=1

(xr(s)�mjr)
2

2�2
jr

!

, (7.3.2)

where D represents the size of feature space. Also, mj = (mj1, . . . ,mjD) and �

2
j =

(�2
j1, . . . , �

2
jD) are the mean and variance of the jth cluster, 8j = 1, . . . ,M . It must be

noted that the number of clusters M was not so crucial for the performance of the
method. During our experimental study, we have found that a number of M = 150

clusters was adequate.
Now consider a sequence of n input-target pairs of observations {(x1(s), t1), . . . ,

(xn(s), tn)}. Given the set of regression model parameter values {w, �} we can model
the conditional probability density of targets tn = (t1, . . . , tn) with the normal distribu-
tion, i.e.

p(tn|w, �) =
N

(tn|�nw, ��1In) , (7.3.3)

where the matrix �n = [�(x1(s)),�(x2(s)), . . . ,�(xn(s))]> of size n⇥M is called design
matrix and In is the identity matrix of order n.

An important issue when using a regression model is how to define its order M

(number of basis functions). Models of small order may lead to underfitting, while large
values of M may lead to overfitting. One approach to tackle this problem is through the
Bayesian regularization framework [129, 17]. According to this scheme, a zero-mean
(spherical) Gaussian prior distribution over weights w is considered:

p(w|↵) =
N

(w|0, a�1IM), (7.3.4)

where the hyperparameter ↵ is the inverse variance that controls the strength of the
prior and IM is the M-order identity matrix. Thus, the posterior distribution of the
weights w is also Gaussian and can be obtained as:

p(w|tn,↵, �) = N

(w|µn,⌃n) , (7.3.5)

where
µn = �⌃n�

>
n tn and ⌃n = (��>

n�n + aIM)

�1, (7.3.6)

are its mean value and the covariance matrix, respectively.
As mentioned previously, we are interested in making predictions for the score

value. Suppose we have observed a sequence of n score values tn = (t1, t2, . . . , tn).
According to the regression model, when examining a feasible node q 2 F of the tree

114



(possible target) that has a feature vector x(q), we can obtain the posterior predictive
distribution of its score tq which is also Gaussian:

p(tq|tn,↵, �) = N

(tq|µ>
n�(x(q)), �

2
nq) , (7.3.7)

where
�2
nq = ��1

+ �(x(q))>⌃n�(x(q)). (7.3.8)

This prediction can be used to evaluate a possible target of a game scene by calculating
the quantity:

ˆtq = µ

>
n�(x(q)) . (7.3.9)

However the decision about which is the optimum node to be selected as target
depends on the material type of objects, as well as the bird that is available to the
slingshot. Therefore, it is reasonable a separate regression estimator for every pair of
material type - bird to be used, so as to enhance the accuracy of the decision process.
In our approach, we have applied an ensemble scheme of regressors, where has been
considered that every combination of material type and bird type has its own parametric
regression model. Therefore, since there are 7 objects⇥ 5 birds = 35 combinations, we
have 35 di�erent linear regression models with parameters ✓l = {wl, �l}, l = 1, . . . , 35.
Every time only a subset of these regressors become active based on the type of bird
that is available and the type of object’s material found in the game scene. The feasible
nodes, q 2 F , of the tree are then evaluated by calculating the predicted reward value,
ˆtq, according to Eq. 7.3.9. This is made using the candidate regression model f(q) that
suits with the type of object’s material and bird type.

The final step before generating the shot is to select the target among all feasible
nodes q of the constructed tree. In our approach, we have considered the multi-armed
bandit model as the selection mechanism. Specifically, we have employed the Upper
Confidence Bound (UCB) strategy [7] which o�ers a balance between exploration and
exploitation during learning. According to the UCB framework we maintain the number
of times nf(q) that each arm (regressor f(q)) has been played. The decision procedure
is made by maximizing the following:

q⇤ = argmax

q2F

(

⇣

µ

f(q)
nf(q)

⌘>
�(x(q)) + C

s

2 lnN

nf(q)

)

, (7.3.10)

where N is the total number of plays so far and C is a tuning parameter of the UCB
decision making process that is used to trade o� exploration and exploitation (during
our experiments we have used C = 3000). Intuitively, the UCB framework manages to
balance between selecting actions with good belief (targets with large reward prediction)
and/or actions which have large uncertainty (small nf(q)).

7.3.5 Tap Timing

After the selection of best among the tree’s feasible nodes (F ), the tap timing procedure
is executed. Using the trajectory planner component of the game playing framework
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the corresponding tap time is calculated in advance and a tapping is performed right
before the estimated collision point. In our approach the tap time strategy depends on
the type of birds used:

• Red birds (Red) is the leader of the flock, but do not have any special feature at
their arsenal. Therefore, there is no need for tapping.

• Blue birds (the Blues) split into a set of three similar birds when the player taps
the screen. The agent performs a tap in an interval between the 65% and 80% of
the trajectory from the slingshot to the first collision object.

• Yellow birds (Chuck) accelerate upon tapping which performed between 90% and
95% of the trajectory in the case of high-arching shots (angle > 45

�). In the case
of direct shots (angle <= 45

�), tap time has been selected randomly between 85%

and 90% of the trajectory.

• White birds (Matilda) drop eggs in the target below them. In this case, tapping is
executed when the bird lies above the target (see, Fig. 7.8). As experiments have
shown, this strategy is very e�cient for handling the specific type of birds.

• Black birds (Bombs) are the most powerful member among the birds. No tapping
is performed by the agent during the bird flight. The bird blow up himself in a
short time period after his impingement with a scene object.

Figure 7.8: Tap timing procedure for the white bird. Tapping is performed only when
the bird lies above the target (pig).

7.3.6 Online Learning of Model Parameters

The final step of the proposed scheme is the learning procedure. Due to the sequential
nature of data, a recursive estimation framework has been followed for updating the
regression model parameters [17]. This can be considered as an online learning solution
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to the Bayesian learning problem, where the information on the parameters is updated
in an online manner using new pieces of information (rewards) as they arrive. The
underlying idea is that at each measurement we treat the posterior distribution of
previous time step as the prior for the current time step.

Suppose the tree node q⇤ has been selected based on the Bayesian ensemble mech-
anism (Eq. 7.3.10) that corresponds to the regression model k , f(q⇤). Then, the
selection frequency, nk, of this regressor is increased by one, we shoot the target and
we receive a score, tknk+1. The last constitutes a new observation for the kth regression
model, i.e. tknk+1 = (t

k
nk
, tknk+1) which is normally distributed:

p(tknk+1|wk) = N

(tknk+1|w>
k �(x(q

⇤
)), �k) , (7.3.11)

where xnk+1(q⇤) is the feature vector of the selected tree node, q⇤.
We can now obtain the posterior distribution of weights wk, as:

p(wk|tknk+1) / p(tknk+1|wk
)p(wk|tknk

) (7.3.12)

=

N

(wk|µk
nk+1,⌃

k
nk+1) , (7.3.13)

where we can obtain the following recursive forms:

⌃k
nk+1 =

⇥

(⌃k
nk
)

�1
+ �k�(x(q

⇤
))�(x(q⇤))>

⇤�1 , (7.3.14)

µ

k
nk+1 = ⌃k

nk+1

⇥

�k�(x(q
⇤
))t

k
nk+1 + (⌃k

nk
)

�1
µ

k
nk

⇤

. (7.3.15)

The above equations constitute an e�cient recursive procedure for adjusting the
model parameters of the winner regressor k, after shooting. That provides also the
opportunity to monitor learning process. In the beginning of the game, (i.e. step 0)
all the information we have about the parameters of all regression models, is the prior
distribution p(wk) which is assumed to be zero mean Gaussian (µk

0 = 0) with spherical
covariance matrix (⌃k

0 = a�1IM ).
Algorithm 7.2 summarizes the basic steps of the proposed method for playing the

Angry Bird game.

7.4 Empirical Evaluation

A series of experiments has been conducted in an e�ort to analyse the performance of
the proposed agent (AngryBER) in the Angry birds domain. Due to the low complexity
of the general framework where our agent is built up, the experiments have taken place
in a conventional PC2. The source code of the agent can be found in [140]. Our analysis
has concentrated mainly on the first 2 episodes from the freely available ‘Poached Eggs’
season of the Angry Birds game. Each one of the episodes consists of 21 levels, which
have to be passed, in order to assume that the episode is successfully completed.

2Intel Core 2 Quad (2.66GHz) CPU with 4GiB RAM
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Algorithm 7.2: AngryBER Learning Algorithm

1 while available bird on the slingshot do
2 Game scene’s objects detection;

3 Tree structure construction of the scene and feature extraction (Alg. 7.1);

4 Tree nodes feasibility examination, F (Sec. 7.3.3);

5 Select the target node with the maximum expected return among the feasible
nodes, q⇤ 2 F (Eq. 7.3.10). This corresponds to the regressor k , f(q⇤).

6 Compute the most e�ective timing for the tapping execution (Sec. 7.3.5);

7 Shot the target and receive reward, tnk+1;

8 Adjust the model parameters (Eqs. 7.3.14, 7.3.15) of the selected regressor, k;
9 end

The following procedure was used for training the AngryBER agent. Ten (10) com-
plete passes of the previously mentioned episodes have been sequentially executed.
The agent remains at the same level if he fails to destroy all pigs found in the game
scene. On the other hand, for evaluating our agent we have tried to comply with the
AIBIRDS competition rules3. Therefore, the agent has at his disposal at least 3 min-
utes on average in order to complete a game level, corresponding to a total time of 63
minutes for each episode. It must be noted that the results have shown that our agent
needs only a part of the available time for a successful episode completion.

In our experiments, we examine two variations of the AngryBER agent, named
‘AngryBER1’ and ‘AngryBER2’, respectively. The only di�erence between the two ver-
sions lies in the consideration of a diverse set of features (Sec. 7.3.2) that are used
to represent the feature space of each tree node. More specifically, both of them use
the first two distinctive features {x1, x2} that are referred to node’s personal weight
and its distance from the nearest pig, respectively. However, they di�er in the way
they examine the relation of nodes with their ancestors. Roughly speaking, the first
variation ‘AngryBER1’ takes into account the density of the structure lies above each
node (x3), while the second ‘AngryBER2’ considers the height of the structure located
above object materials.

In order to compare the AngryBER agent, we have used the naive agent provided
by [54], which uses an unsophisticated strategy. More particularly, the naive agent
shoots the birds directly to the pigs without any further reasoning. It is shown that
naive agent provides a su�cient baseline for agent’s evaluation. Moreover, we have
compared our agent with the agents proposed by all teams participated in 2013 and
2014 AIBIRDS competitions4 (30 teams in total). It is worth mentioning that for the 2nd

3AIBIRDS 2014 Competition Rules, https://aibirds.org/angry-birds-ai-competition/
competition-rules.html

4AIBIRDS 2014 Benchmarks, https://aibirds.org/benchmarks.html
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episode only results of the last year teams (2014) are provided (10 teams in total), since
an updated version of the vision system was released only last year. This vision system
is able to detect the real shape of objects, ground and hills.

We have run 30 independent experiments for each variation of our agent. The
results about the first two episodes of ‘Poached Eggs’ season are presented in Tables 7.2
and 7.3, respectively. In these tables various measures of descriptive statistics about
the score reached per level are provided, in an e�ort to obtain a more comprehensive
comparison study. These are: the mean, median, minimum and maximum score found
(measures of central tendency), as well as the standard deviation and the interquartile
range IQR = Q3�Q1, (measures of variability) of scores.

A number of interesting remarks stems from our empirical evaluation:

• The first one and most impressive observation is that both variants of our Angry-
BER agent achieve to pass every level with success. While it may seem easy at a
first glance, it is far from true as lot of agents fail to most levels, since the degree
of di�culty increases continuously with every successfully completed level.

• AngryBER obtains satisfactory scores in the majority of levels. According to the
results, the proposed agent manages to reach (26) high scores at the levels of the
two episodes: seven (7) and 19 high scores obtained at the levels of the first and
second episode, respectively.

• Additionally, our agents achieve to gain ‘3-stars’ in a considerably high percentage
of visited levels. ‘3-stars’ provides a baseline that indicates superior performance.
Gaining ‘3-stars’ could be considered as a measure of the agent’s ability to destroy
all pigs by using the least possible number of birds.

• Another interesting remark is that the mean scores of our agents are always better
than those of the benchmarks, with a single exception for the first level of the first
episode. Furthermore, considering the median statistic it is easily apparent that
our agent performs significantly better than half of the agents provided by the
benchmarks.

• Finally, robustness is a key feature of our method as indicated from the small
values on both variability measurements (standard deviation and interquartile
range) in most levels.

Obviously, the performance of both variations of the proposed approach is superior
to the majority of existed methods. Nevertheless, the second variant, AngryBER2,
performs slightly better than the first one, AngryBER1. This is more apparent in
di�cult levels. Moreover, AngryBER2 has reached 18 out of 26 high scores found by
both agents, and has gained ‘3-stars’ at 34 out of 42 levels in total, while AngryBER1

has gained ‘3-stars’ at 30 out of 42 levels. Thus, we conclude that the consideration
of the height of the structure lying above a tree node (feature, x4) seems to be more
e�ective than the information of the structure’s density (feature, x3).
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Another impressive characteristic of the proposed scheme is its ability to speed-up
the learning process and discover near optimal policies quickly. This is attributed to
the e�cient tree structure representation, in combination with the ensemble learning
strategy which allows AngryBER agent to be robust and adaptive to the polymorphic
properties of various material-bird types.

Last but not least, the ‘AngryBER1’ agent has joined to the 2014 AIBIRDS competi-
tion managing to win the second (2nd) price. Our participation in the competition, gave
us the opportunity to assess the performance and generalization capability of our agent
in unknown challenging levels. As it was proved, the AngryBER agent can cope with
success in the most of the assigned levels. The competition results can been found in
https://aibirds.org/angry-birds-ai-competition/competition-results.html.

7.5 Summary

In this chapter, we have presented an advanced intelligent agent for playing the Angry
Birds game, based on an ensemble of regression models. The key aspect of the proposed
method lies on an e�cient tree-like scene representation. This allows the exploitation
of its superior modeling capabilities to establish a rich feature space. An ensemble
scheme of Bayesian regression models is then proposed, where di�erent bird-material
type of regressors are combined and act in a competitive fashion. The best prediction
is then selected for the decision making process. Learning is achieved in terms of an
online estimation framework. Experiments on several game levels demonstrated the
ability of the proposed methodology to achieve improved performance and robustness
compared to other approaches on the Angry Birds domain.
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Table 7.2: Performance statistics at the 21 levels of the first ‘Poached Eggs’ episode

Level 3 stars Agent Mean Std Median IQR Min Max

AngryBER1 29068 ±116 29030 0 29030 29410

AngryBER2 28468 ±73 28430 80 28430 288001 32000
Benchmarks 29233 ±2682 29635 1360 18420 32660

AngryBER1 51196 ±4009 52410 230 33930 53850

AngryBER2 47363 ±6600 52420 9080 34160 527402 60000
Benchmarks 47932 ±8844 52180 9620 26240 62370

AngryBER1 41820 ±352 41910 0 40260 41910

AngryBER2 41804 ±405 41910 0 40260 419103 41000
Benchmarks 39029 ±4780 41280 1730 24070 42240

AngryBER1 21175 ±3932 19190 1470 18720 29150

AngryBER2 27471 ±3186 29010 1240 18990 290104 28000
Benchmarks 23458 ±6675 21420 8690 10120 36810

AngryBER1 63898 ±3028 64460 0 47870 64460

AngryBER2 63482 ±422 63520 0 61440 644605 64000
Benchmarks 60508 ±9078 64000 9340 35650 70350

AngryBER1 34580 ±3222 35640 0 24680 35720

AngryBER2 33938 ±4864 35385 60 15290 364706 35000
Benchmarks 23687 ±10630 25850 17400 0 36970

AngryBER1 33763 ±5115 37000 6600 21760 37140

AngryBER2 32933 ±5874 36940 8690 20550 457807 45000
Benchmarks 28053 ±14166 29350 14830 0 49120

AngryBER1 47439 ±10407 54730 18310 26630 57130

AngryBER2 40835 ±6644 38060 1830 28710 556308 50000
Benchmarks 39473 ±13377 43260 20330 0 57780

AngryBER1 32227 ±5758 31940 2900 23060 48780

AngryBER2 43731 ±4083 45220 0 32450 487809 50000
Benchmarks 37300 ±11914 38790 21710 0 51480

AngryBER1 46848 ±7064 47810 9530 34240 59670

AngryBER2 52939 ±8488 49720 13990 34900 6811010 55000
Benchmarks 43805 ±17857 50910 20080 0 68740

AngryBER1 44151 ±1719 44860 1050 35610 44860

AngryBER2 51347 ±2092 51425 1520 43220 5358011 54000
Benchmarks 45052 ±14644 48390 14780 0 59070

AngryBER1 52352 ±3018 53690 1300 39680 54980

AngryBER2 47412 ±7790 48985 15970 36990 5691012 45000
Benchmarks 48348 ±14306 53230 9540 0 61070
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AngryBER1 26739 ±5527 26580 8920 19450 39010

AngryBER2 37725 ±7541 37520 11080 21760 4924013 47000
Benchmarks 30125 ±14480 31425 15150 0 50360

AngryBER1 60955 ±6002 65640 10000 45640 65640

AngryBER2 64177 ±3805 65640 0 49370 6564014 70000
Benchmarks 52097 ±18770 57805 12970 0 65640

AngryBER1 40549 ±6401 39350 12360 31190 50020

AngryBER2 44908 ±4756 47370 7050 32480 4962015 41000
Benchmarks 36111 ±16019 41390 13660 0 55300

AngryBER1 54554 ±5612 52610 4390 45540 70590

AngryBER2 65191 ±6622 69590 7570 47540 6959016 64000
Benchmarks 47720 ±22513 55600 11470 0 66570

AngryBER1 47161 ±3391 46850 2050 39090 55760

AngryBER2 42631 ±3360 42935 5510 37400 4990017 53000
Benchmarks 39260 ±16278 44970 8570 0 54750

AngryBER1 42668 ±3961 43305 6810 36350 49790

AngryBER2 51669 ±5297 54180 7380 38860 5644018 48000
Benchmarks 35704 ±18691 43435 10370 0 54500

AngryBER1 33681 ±3763 35530 6750 27570 38090

AngryBER2 35461 ±2817 36690 2910 25420 3922019 35000
Benchmarks 25043 ±15020 30425 20120 0 40100

AngryBER1 46094 ±6784 45470 14500 36060 55590

AngryBER2 50124 ±6517 54040 8250 37170 5855020 50000
Benchmarks 27268 ±21750 36995 43730 0 56050

AngryBER1 63121 ±6029 62395 8190 50740 74240

AngryBER2 63551 ±6091 63000 8110 52370 7614021 75000
Benchmarks 34232 ±32956 53795 65190 0 75870
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Table 7.3: Performance statistics at the 21 levels of the second ‘Poached Eggs’ episode

Level 3 stars Agent Mean Std Median IQR Min Max

AngryBer1 51449 ±5559 52635 9960 42770 61470

AngryBer2 54363 ±5392 56880 7490 43950 648201 60000
Benchmarks 38922 ±27610 48120 59990 0 64050

AngryBer1 52769 ±2865 52795 3030 47140 59880

AngryBer2 53203 ±2747 53205 3270 47650 586402 60000
Benchmarks 19510 ±33934 0 45790 0 96180

AngryBer1 96909 ±6007 98165 8070 86510 114160

AngryBer2 100960 ±8532 99240 9400 87730 1165103 102000
Benchmarks 69156 ±47915 96375 99490 0 108510

AngryBer1 50784 ±7366 54540 10420 26490 58910

AngryBer2 51685 ±5862 52290 7680 32230 596904 50000
Benchmarks 26018 ±27511 24290 52620 0 56550

AngryBer1 84366 ±5676 84775 6410 69730 93910

AngryBer2 82075 ±6506 83800 7720 66650 913205 80000
Benchmarks 43862 ±37933 67440 74940 0 78810

AngryBer1 59301 ±4998 57905 8230 51270 69500

AngryBer2 60641 ±6010 58765 7470 53990 724806 62000
Benchmarks 34275 ±24892 41640 56750 0 58270

AngryBer1 42047 ±5583 43430 9710 33260 53740

AngryBer2 48265 ±6839 47980 8960 31480 621407 50000
Benchmarks 38245 ±20456 46855 8580 0 53450

AngryBer1 49397 ±5494 47915 9550 39470 58380

AngryBer2 48942 ±6170 48325 10840 38210 592608 53000
Benchmarks 34706 ±24160 47340 50300 0 57300

AngryBer1 23239 ±3288 22635 2370 19150 34430

AngryBer2 24416 ±3274 23340 3620 20420 333109 28000
Benchmarks 21007 ±13517 22650 6380 0 46240

AngryBer1 39714 ±3674 40720 2280 32940 49910

AngryBer2 35459 ±1517 35610 1170 30550 4126010 40000
Benchmarks 28863 ±16553 35535 16920 0 43600

AngryBer1 86921 ±9421 86490 12830 71780 103620

AngryBer2 87175 ±9486 85725 18050 74270 10115011 69000
Benchmarks 23159 ±38533 0 53470 0 90540

AngryBer1 46768 ±5216 46455 3420 37300 62340

AngryBer2 47335 ±5644 45785 5010 36820 6173012 60000
Benchmarks 18796 ±20255 15785 35880 0 46720
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AngryBer1 68954 ±7582 70825 12270 50440 78450

AngryBer2 73665 ±6492 72945 9190 58010 8566013 70000
Benchmarks 49398 ±34248 67425 71970 0 77000

AngryBer1 40646 ±4143 41765 6000 33220 47790

AngryBer2 46955 ±5308 46685 8170 33580 5671014 50000
Benchmarks 27376 ±19612 35275 43670 0 45230

AngryBer1 38923 ±6883 39325 8880 28270 52590

AngryBer2 38473 ±7922 38390 14040 28390 5378015 50000
Benchmarks 5935 ±12531 0 0 0 31120

AngryBer1 53034 ±3972 53435 4020 44160 60280

AngryBer2 54949 ±4099 55245 4480 46450 6650016 62000
Benchmarks 5614 ±17753 0 0 0 56140

AngryBer1 29289 ±2837 28535 5120 25350 35080

AngryBer2 29773 ±2258 29205 2390 27050 3561017 36000
Benchmarks 2944 ±9310 0 0 0 29440

AngryBer1 49648 ±7015 47945 8930 39910 67960

AngryBer2 51621 ±6740 51020 6810 40400 6910018 60000
Benchmarks 9734 ±20795 0 0 0 55800

AngryBer1 38727 ±5941 39550 6030 26890 54390

AngryBer2 42745 ±7840 40090 11540 32190 6152019 47000
Benchmarks 8335 ±17668 0 0 0 45580

AngryBer1 47751 ±8239 47130 16360 32990 56630

AngryBer2 52784 ±5267 55150 10 37770 5587020 52000
Benchmarks 0 ±0 0 0 0 0

AngryBer1 70323 ±8395 70500 9910 56890 90420

AngryBer2 68808 ±7316 67410 10300 53770 8779021 75000
Benchmarks 6849 ±21658 0 0 0 68490
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Chapter 8

Conclusions and Future Work

8.1 Conclude Remarks

8.2 Directions for Future Work

T he main objective of this dissertation is the development, implementation
and evaluation of machine learning techniques for intelligent agents, which
are able to act in unknown environments. Specifically, we elaborate on: i)

approximate reinforcement learning, ii) Bayesian reinforcement learning, and iii) AI in
games. In Section 8.1 we summarize the novel aspects of the current research on
all the aforementioned axed and in Section 8.2 we discuss some possible future work
directions.

8.1 Concluding Remarks

In the first part of this thesis, we have studied the approximate reinforcement learning
problem in continuous environments. In Chapter 2, an online Bayesian kernelized
reinforcement learning algorithm, called as RVMTD, has been presented for the policy
evaluation problem. The basic idea of this algorithmic scheme is the transformation
of the policy evaluation problem into a linear regression problem. A sparse Bayesian
methodology has been used for the estimation of the regression model parameters. An
online sparsification procedure has been also adopted, which is based on an incremen-
tal construction of a dictionary that contains the most representative states, rendering
our methodology practical in large scale continuous domains. Moreover, an extension
of the proposed algorithm has also been presented for the learning of the action-value
function, allowing us to perform model-free policy improvement.

In Chapter 3, we have presented a model-based reinforcement learning technique
for the control learning problem, which is based on an online clustering scheme. More
specifically, an online extension of the classical EM algorithm has been adopted, which
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is able to handle sequentially arrived samples. Thus, a number of clusters is created,
where each cluster encloses data samples with similar identities and hence a dictionary
of features is dynamically constructed for modeling the value function. The partition-
ing of the input space into a finite number of clusters allows the proposed scheme to
keep statistics about the model of the environment. Therefore, having approximated
su�ciently the dynamics of the environment, the action-value function can be approx-
imated by using the least-squares solution.

In the second part of this thesis, our study has been focused on the Bayesian rein-
forcement learning problem, where two di�erent Bayesian techniques for reinforcement
learning was proposed. Specifically, in Chapter 4 we have proposed a simple linear
Bayesian approach to tackle reinforcement learning problems. It has been shown that
with an appropriate basis, a Bayesian linear Gaussian model is su�cient for accurately
estimating the system dynamics, and in particular when correlated noise is allowed.
Policies are estimated by first sampling a transition model from the current posterior,
and then, performing approximate dynamic programming on the sampled model. This
form of approximate Thompson sampling results in good exploration in unknown en-
vironments. The specific approach can also be seen as a Bayesian generalisation of
least-squares policy iteration, where the empirical transition matrix is replaced with a
sample from the posterior.

In Chapter 5, an online tree-based Bayesian approach for reinforcement learning
has been proposed. For inference, we employ a generalised context tree model. This
defines a distribution on multivariate Gaussian piecewise linear models that can be
updated in closed form. The tree structure itself is constructed using the cover tree
method, which is proved to be e�cient in high dimensional spaces. Our formulation
combines the model with Thompson sampling and approximate dynamic programming
to obtain e�ective exploration policies in unknown environments. The flexibility and
computational simplicity of the model renders it suitable for many reinforcement learn-
ing problems in continuous state spaces. Actually, we have demonstrated this reason-
ing in an experimental comparison with a Gaussian process model, a linear model and
simple least-squares policy iteration algorithm.

In the third part of this thesis, we have focused on the development of e�cient
machine learning techniques for two famous video games, the Ms. PacMan and the
Angry Birds. In Chapter 6, an intelligent agent for the Ms. PacMan game has been
presented, which is based on an on-policy reinforcement learning algorithm for online
decision making. The reinforcement learning scheme has been adopted as has been
seen to be quite su�cient for designing intelligent agents, able to act in real time.
Nevertheless, the high dimensionality of the state spaces encountered in most game
domains are a significant barrier that makes them impractical. In this direction, we
have presented an approach that is able to deal with the large dynamical environment of
the Ms. PacMan game. More specifically, an abstract and at the same time informative
state space description has been demonstrated, which is of central interest for the
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design of an e�cient RL agent. This inference constitutes the main contribution of our
study as has been shown that a careful design of the state space representation renders
the basic reinforcement learning algorithms practical in large scale domains.

Finally, in Chapter 7 we have introduced the architecture of the AngyBER agent on
the Angry Birds domain, where a Bayesian ensemble inference mechanism is suggested
for decision making. More specifically, the proposed agent is based on an e�cient tree
structure for encoding and representing game screenshots, by exploiting its enhanced
modeling capabilities. This approach has the advantage of establishing an informative
feature space. Thus, the task of game playing is translated into a regression analysis
problem. A Bayesian ensemble regression framework has also been presented, by
considering the fact that each combination of objects material and bird type has its
own regression model. Therefore, we have addressed the problem of action selection
as a multi-armed bandit problem, where the Upper Confidence Bound (UCB) strategy
is used. An e�cient online learning procedure has also been developed for training
the regression models. The proposed AngryBER agents have been evaluated on several
challenging game levels and their performance have been compared with the results of
the agents appeared in the 2013 and 2014 Angry Birds AI competitions.

8.2 Directions for Future Work

In the following, we present some interesting directions for future research that elabo-
rate on a number of open issues related to the methodologies presented in this thesis.

In the sparse Bayesian kernelized reinforcement learning algorithm described Chap-
ter 2, the linear model parameters are estimated by using the relevance vector ma-
chine sparse Bayesian methodology. So far, numerous regression schemes have been
used in order to e�ciently solve the policy evaluation reinforcement learning problem
[72, 94, 64]. In this context, di�erent sparse regression scheme, such as Lasso, SVM,
etc., could be used for the value function approximation of our scheme. Another re-
search extension could be the incorporation of the eligibility trace mechanism in the
proposed temporal di�erence learning scheme, obtaining a general method with a bet-
ter learning ability. Furthermore, di�erent exploration schemes may be considered.
In our scheme the kernel width is set a priori and is equal for each sample inserted
in the dictionary. Thus, in our future plans, we aim to examine the case where each
dictionary sample has its own kernel width. In this way, we expect to increase the
generalization capability of the proposed scheme.

In the model-based reinforcement learning scheme presented in Chapter 2, the value
function is represented with the functional form of a linear model. This is achieved by
using a number of basis function, which are constructed according to the structure
of the clusters. Consequently, a regularized least-squares scheme, such as Lasso or
even Bayesian sparse methodologies can be employed in order to eliminate the problem
of overfitting. In light of this, we intend to improve the generalization capability of
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the proposed learning scheme. During our empirical analysis, we have noticed the
tendency of the online EM algorithm to create a large number of clusters. Therefore,
another interesting direction for future work could be the adoption of a mechanism
that is be able to merge clusters with similar intrinsic structures on their. Another
interesting direction, could be the clustering based on the model topology as well as
the value function, as proposed in [81].

In the context of the linear Bayesian reinforcement learning approach presented in
Chapter 4, Thompson sampling could be used with other Bayesian models for continu-
ous state spaces. Thus, we could be to move to a non-parametric model, for example, to
replace the multivariate linear model with a multivariate Gaussian process. The major
hurdle would be the computational cost. Consequently, as future work, we would like
to use a recently proposed methods for e�cient Gaussian processes in the multivari-
ate case, such as [4], where convolution processes are used. Other Bayesian schemes
for multivariate regression analysis [83] may be applicable as well. Additionally, it
would be highly interesting to consider other exploration methods. One example is the
Monte-Carlo extension of Thompson sampling used in [40], which can also be used
for continuous state spaces. Other approaches, such as the optimistic transition MDP
used in [5] may not be so straightforward to adopt to the continuous case. Neverthe-
less, while these approaches may be costly computationally, we believe that they would
be beneficial in terms of performance.

In the cover tree Bayesian reinforcement learning scheme described in Chapter 5,
approximate dynamic programming is employed for the selection of a policy. While in
practice ADP can be performed in the background while inference is taking place, and
although we seed the ADP with the previous solution, a more incremental approach
could be used ideally, for this purpose. One interesting idea would be to employ a
gradient approach in a similar vein to [34]. An alternative approach would be to employ
an online method in order to avoid estimating a policy for the complete space.1 Such
promising approaches include running bandit-based tree search methods, such as
UCT [70], on the sampled models. Another interesting direction for future work is
to consider more sophisticated exploration policies, particularly for larger problems.
Due to the e�ciency of the model, it would be possible to compute near-Bayes-optimal
policies, by applying the tree search method used by [144]. It would be interesting to
examine continuous actions. These actions can be handled e�ciently by using both the
cover tree and the local linear models, making the next state directly dependent on the
action, through an augmented linear model. While optimising over a continuous action
space is challenging, recent e�cient tree search methods, such as metric bandits [25]
may alleviate this problem. An interesting theoretical direction would be to obtain
regret bounds for the problem. Perhaps, this could be done by building upon the
analysis of [74] for context tree prediction, and that of [91] for continuous MDPs. The
statistical e�ciency of the method could be improved by considering edge-based (rather

1A suggestion made by the anonymous reviewers.
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than node-based) distributions on trees, as suggested in [98]. Finally, as the cover tree
method only requires specifying an appropriate metric, the method could be applicable
to many other problems, including both large discrete problems and partially observable
problems. It would be interesting to see if this approach gives good results even in those
cases.

An interesting future direction for the reinforcement learning approach at the Ms.
PacMan presented in Chapter 6, could be the investigation of di�erent state space rep-
resentations. More specifically, a number of di�erent features could also be employed
for the state space representation, such as the number of remaining pills, the location
of power pills, the distance of Ms. PacMan from each ghost, etc. Another promising di-
rection could be the combination of a number of di�erently oriented policies (e.g., ghost
avoidance) that are trained simultaneously. Also, it could be useful to consider more
sophisticated reinforcement learning schemes in order to tackle the online decision
making problem, by handling continuous state features.

Regarding, the Bayesian ensemble regression framework proposed in the context of
the Angry Birds game (Chapter 7), it could be interesting to study its performance in
more challenging game levels and test its generalisation capabilities more systemati-
cally. Since the tree structure is very informative and general, another future research
direction could be the examination of the possibility to enrich the feature space of our
model, by incorporating alternative topological features extracted for the proposed lat-
tice structure, as suggested in [157]. A general issue in regression analysis is the way
we define the proper number of basis functions. Sparse Bayesian regression o�ers an
elegant solution to the model selection problem, by introducing sparse priors on the
model parameters [129], [112], [18]. During the training phase, the coe�cients that are
not significant are vanished from the model and thus, only a few of them are retained
as most significant. This approach constitutes a possible direction for our future study
that could improve the proposed methodology. Finally, alternative regression mecha-
nisms could be applied, e.g. Gaussian Processes [104].
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Appendix A

Mathematical Background

A.1 Bayes’ Rule

Let A and B be random variables, then according to the Bayes’ theorem:

P(A|B) =

P(B|A)P(A)
R

P(B|A0
)dP(A0

)

.

A.2 Matrix Identities

Matrix Inversion Lemma (Sherman-Morrison-Woodbury formula)

The matrix inversion lemma states that,

(A+BCD)

�1
= A�1 � A�1B(C�1

+DA�1B)

�1DA�1,

assuming that the relevant inverses exist. Here, A, B, C and D are respectively n⇥ n,
n⇥m, m⇥m and n⇥m matrices.

Matrix Blockwise Inversion

Let a matrix U be partitioned into a blockwise form as

U =

"

A B

C D

#

where A and D must be square matrices which are invertible. Then

U�1
=

"

A B

C D

#�1

=

"

M �MBD�1

�D�1CM D�1
+D�1CMBD�1

#

where we have defined, M = (A � BD�1C)

�1. The quantity M�1 is known as Schur

complement of D in matrix U .
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