Optimal Sequential Decisions Under Uncertainty Part II: Subjective probability and utility

Christos Dimitrakakis

Frankfurt Institute for Advanced Studies, Goethe University, Germany

April 8, 2010

590

1 Subjective probability

- Relative likelihood
- Constructing the probability distribution
- Conditional likelihoods

5900

- We can use probability to represent a subjective belief.
- One problem is how to *elicit* a quantitative representation of our belifs.
- The concept of relative likelihood can be used to construct a *probability distribution*.

The relative likelihood of two events A and B

- Do you think A is more likely than B? Write $A \succ B$.
- Do you think A is less likely than B? Write $A \prec B$.
- Do you think A is as likely as B? Write $A \simeq B$.

We also use \succeq and \preceq for at least as likely as and for no more likely than.

Relation to probability measures

A probability measure P is said to agree with a relation $A \leq B$, if it has the property that: $P(A) \leq P(B)$ if and only if $A \leq B$.

The unique probability distribution P

There is a unique P such that for all events A, B such that $A \leq B$, $P(A) \leq P(B)$.

But how can we find it?

Christos Dimitrakakis (FIAS)

Subjective probability assumptions I

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Sac

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption (SP1)

For any events A, B, one of the following must hold: $A \succ B$, $A \prec B$, $A \simeq B$.

It is always possible to say whether one event is more likely than the other.

Subjective probability assumptions I

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption (SP1)

For any events A, B, one of the following must hold: $A \succ B$, $A \prec B$, $A \simeq B$.

Assumption (SP2)

Let $A = A_1 \cup A_2$, $B = B_1 \cup B_2$ with $A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$. If $A_i \leq B_i$ then $A \leq B$.

If we can split A, B in such a way that each part of A is less likely than its counterpart in B, then A is less likely than B.

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption (SP1)

For any events A, B, one of the following must hold: $A \succ B$, $A \prec B$, $A \simeq B$.

Assumption (SP2)

Let $A = A_1 \cup A_2$, $B = B_1 \cup B_2$ with $A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$. If $A_i \leq B_i$ then $A \leq B$.

Assumption (SP3)

If S is the certain event, then: $\emptyset \leq A$ and $\emptyset \prec S$.

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q @

Subjective probability assumptions II

Theorem (Transitivity)

If A, B, D such that $A \leq B$ and $B \leq D$, then $A \leq D$.

Theorem (Complement)

For any $A, B: A \leq B$ iff $A^{\complement} \succeq B^{\complement}$.

Theorem (Fundamental property of relative likelihoods)

If $A \subset B$ then $A \preceq B$. Furthermore, $0 \preceq A \preceq S$ for any event A.

・ロト ・回ト ・ヨト ・ヨト

Assigning probabilities

Assigning probabilities

- How can we assign probabilities to events in an unambiguous manner?
- Assume that we feel that $A \succ A^{\complement}$.
- How can we compare A and A^{\complement} with other events?

Imagine a family of events \mathcal{F} .

Requirements for events

- Each event $A \in \mathcal{F}$ must have a known probability.
- For any number $p \in [0, 1]$, there exists an event A with probability p.

To assign a probability to some specific event B, we just need to find $A \in \mathcal{F}$ such that $A \simeq B$, and set P(B) = P(A).

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let A be an interval on the real line. Denote the length¹ of A by $\lambda(A)$.

Definition

Let X be a random variable such that $0 \le X(s) \le 1$ for all $s \in S$. X has a uniform distribution on the interval [0,1] if: For any A, B subintervals of [0,1], $\mathbb{I}\{X \in A\} \le \mathbb{I}\{X \in B\}$ iff $\lambda(A) \le \lambda(B)$.

This means that any larger interval is more likely than any smaller interval.

Assumption (SP5)

There exists a random variable which has uniform distribution on [0, 1].

¹Recall that the length λ is equivalent to the Lebesgue measure $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Constructing the probability distribution

The likelihood of a uniform variable falling within an interval

Let X be a uniform random variable. Let $G(A) \triangleq \mathbb{I} \{ X \in A \}$, for any interval $A \subset [0, 1]$.

 $G(A) \preceq G(B)$ iff $\lambda(A) \leq \lambda(B)$

Theorem (Equivalent event)

For any event A, there exists some $\alpha \in [0, 1]$ such that $A \simeq G[0, \alpha]$.

Definition (The probability of A)

If A is any event, then P(A) is defined to be α . Hence,

 $A \simeq G([0, P(A)]).$

Theorem (Relative likelihood and probability)

For any two events A, B, $A \leq B$ iff $P(A) \leq P(B)$.

Define $(A \mid D) \preceq (B \mid D)$ to mean that B is at least as likely as A when it is known that D has occured.

Assumption (CP)

For any events A, B, D,

```
(A \mid D) \preceq (B \mid D) iff A \cap D \preceq B \cap D.
```

Theorem

If a relation \leq satisfies assumptions SP1 to SP6 and CP, then P is the unique probability distribution such that:

For any A, B, D such that P(D) > 0,

 $(A \mid D) \preceq (B \mid D)$ iff $P(A \mid D) \preceq P(B \mid D)$

E SQC

<ロ> <四> <四> <三> <三> <三> <三> <三>

The area of Germany

Form a subjective probability for the area a of Germany in km^2 .

```
\begin{array}{l} A_1 \ a < 10^5 \ \mathrm{km}^2 \\ A_2 \ a \in [10^5, 2.5 \cdot 10^5) \ \mathrm{km}^2 \\ A_3 \ a \in [2.5 \cdot 10^5, 5 \cdot 10^5) \ \mathrm{km}^2 \\ A_4 \ a \in [5 \cdot 10^5, 10^6) \ \mathrm{km}^2 \\ A_5 \ a \ge 10^6 \ \mathrm{km}^2. \end{array}
Choose P(A_i) for all i.
```

<ロト <回ト < 回ト

The area of Germany

Form a subjective probability for the area a of Germany in km^2 .

```
\begin{array}{l} A_1 \ a < 10^5 \ \mathrm{km}^2 \\ A_2 \ a \in [10^5, 2.5 \cdot 10^5) \ \mathrm{km}^2 \\ A_3 \ a \in [2.5 \cdot 10^5, 5 \cdot 10^5) \ \mathrm{km}^2 \\ A_4 \ a \in [5 \cdot 10^5, 10^6) \ \mathrm{km}^2 \\ A_5 \ a \ge 10^6 \ \mathrm{km}^2. \end{array}
Choose P(A_i) for all i.
```

Additional information

The EU's largest country is France $(6.7 \cdot 10^5 \rm{km}^2)$ and the smallest is Malta with $316 \rm{km}^2$.

The area of Germany

Form a subjective probability for the area a of Germany in km^2 .

```
\begin{array}{l} A_1 \ a < 10^5 \ \mathrm{km}^2 \\ A_2 \ a \in [10^5, 2.5 \cdot 10^5) \ \mathrm{km}^2 \\ A_3 \ a \in [2.5 \cdot 10^5, 5 \cdot 10^5) \ \mathrm{km}^2 \\ A_4 \ a \in [5 \cdot 10^5, 10^6) \ \mathrm{km}^2 \\ A_5 \ a \ge 10^6 \ \mathrm{km}^2. \end{array}
Choose P(A_i) for all i.
```

Additional information

- The EU's largest country is France $(6.7 \cdot 10^5 \mathrm{km}^2)$ and the smallest is Malta with $316 \mathrm{km}^2$.
- Germany is the 4th largest of the 27 EU states

(日) (同) (三) (

The area of Germany

Form a subjective probability for the area a of Germany in km^2 .

```
\begin{array}{l} A_1 \ a < 10^5 \ \mathrm{km}^2 \\ A_2 \ a \in [10^5, 2.5 \cdot 10^5) \ \mathrm{km}^2 \\ A_3 \ a \in [2.5 \cdot 10^5, 5 \cdot 10^5) \ \mathrm{km}^2 \\ A_4 \ a \in [5 \cdot 10^5, 10^6) \ \mathrm{km}^2 \\ A_5 \ a \ge 10^6 \ \mathrm{km}^2. \end{array}
Choose P(A_i) for all i.
```

Additional information

- The EU's largest country is France $(6.7 \cdot 10^5 \mathrm{km}^2)$ and the smallest is Malta with $316 \mathrm{km}^2$.
- Germany is the 4th largest of the 27 EU states
- UK $(2.4 \cdot 10^5 \text{km}^2)$ is the 8th largest EU state

(日) (同) (三) (

The area of Germany

Form a subjective probability for the area a of Germany in km^2 .

```
\begin{array}{l} A_1 \ a < 10^5 \ \mathrm{km}^2 \\ A_2 \ a \in [10^5, 2.5 \cdot 10^5) \ \mathrm{km}^2 \\ A_3 \ a \in [2.5 \cdot 10^5, 5 \cdot 10^5) \ \mathrm{km}^2 \\ A_4 \ a \in [5 \cdot 10^5, 10^6) \ \mathrm{km}^2 \\ A_5 \ a \ge 10^6 \ \mathrm{km}^2. \end{array}
Choose P(A_i) for all i.
```

Additional information

- The EU's largest country is France $(6.7 \cdot 10^5 \mathrm{km}^2)$ and the smallest is Malta with $316 \mathrm{km}^2$.
- Germany is the 4th largest of the 27 EU states
- \blacksquare UK (2.4 $\cdot\,10^5 \rm km^2)$ is the 8th largest EU state

The correct answer is A_3 , since $a = 3.57 \cdot 10^5$

Sac

イロト イポト イヨト イ

A simple exercise in probability elicitation

Temperature prediction

Let τ be the temperature tomorrow at noon in Frankfurt.

Eliciting the prior / forming the subjective probability measure P

• Select a temperature x_0 such that $\mathbb{I} \{ \tau \le x_0 \} \simeq \mathbb{I} \{ \tau > x_0 \}$.

990

<ロ> <四> <四> <三> <三> <三> <三> <三>

A simple exercise in probability elicitation

Temperature prediction

Let τ be the temperature tomorrow at noon in Frankfurt.

Eliciting the prior / forming the subjective probability measure P

- Select a temperature x_0 such that $\mathbb{I}\{\tau \le x_0\} \simeq \mathbb{I}\{\tau > x_0\}$.
- Select two temperatures x_1, x_2 such that $P(\tau \in [x_1, x_2]) = 0.9$.

Sac