
Experiment design, Markov Decision Processes and Reinforcement
Learning

Optimal decisions, Part VII

Christos Dimitrakakis

Chalmers

November 10, 2013

Christos Dimitrakakis (Chalmers) Experiment design, Markov Decision Processes and Reinforcement LearningNovember 10, 2013 1 / 41



Introduction Experiment design: examples

1 Introduction
Experiment design: examples
Bandit problems
Bernoulli bandits

2 Markov decision processes (MDP)
Value functions

3 Finite horizon, undiscounted problems
Policy evaluation
Finite horizon backwards induction

4 Infinite-horizon examples
Shortest-path problems
Continuing problems

5 Infinite horizon, discounted case
Optimality equations
Algorithms

Value iteration
Policy iteration
Temporal-Difference Policy Iteration
Linear programming

Christos Dimitrakakis (Chalmers) Experiment design, Markov Decision Processes and Reinforcement LearningNovember 10, 2013 2 / 41



Introduction Experiment design: examples

Clinical trials

We have a number of treatments of unknown efficacy.

When a new patient arrives, we must choose one of them.

Some, slightly different, goals:
1 Maximise the number of cured patients.
2 Discover the best treatment.

The optimal design is better than randomly assigning patients to treatments.
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Introduction Experiment design: examples

Experimental design and Markov decision processes

The following problems

Shortest path problems.

Optimal stopping problems.

Reinforcement learning problems.

Experiment design problems.

Multi-armed bandit problems.

Advertising.

can be all formalised as Markov decision processes.
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Introduction Bandit problems

The stochastic n-armed bandit problem

Actions A = {1, . . . , n}.

Expected reward E(rt | at = i) = ωi .

Select actions to maximise
T
∑

t=0

γtrt ,

with discount factor γ ∈ [0, 1], horizon T ≥ 0.
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Introduction Bandit problems

The stochastic n-armed bandit problem

Actions A = {1, . . . , n}.

Expected reward E(rt | at = i) = ωi .

Select actions to maximise
T
∑

t=0

γtrt ,

with discount factor γ ∈ [0, 1], horizon T ≥ 0.

Decision-theoretic approach

Assume rt | at = i ∼ ψ(ωi ), with ωi ∈ Ωi , ω ∈ Ω ,
∏

i Ωi unknown parameters.

Define prior ξ(ω1, . . . , ωn).

Select actions to maximise Eξ Ut = Eξ

∑T−t

k=1 γ
k rt+k .
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Introduction Bernoulli bandits

Bernoulli example.

Consider n Bernoulli distributions with unknown parameters ωi , i = 1, . . . , n such that

rt | at = i ∼ Bern(ωi ), E(rt | at = i) = ωi . (1.1)

We model our belief for each bandit’s parameter ωi as a Beta distribution Beta(αi , βi ),
with density f (ω | αi , βi ) so that

ξ(ω1, . . . , ωn) =
n
∏

i=1

f (ωi | αi , βi ).

Nt.i ,

t
∑

k=1

I {ak = i}

r̂t.i ,
1

Nt,i

t
∑

k=1

rt I {ak = i}

Then, the posterior distribution for the parameter of arm i is

ξt = Beta(αi + Nt,i r̂t,i , βi + Nt,i (1− r̂t,i ))

Since rt ∈ {0, 1} the possible states of our belief given some prior are N
2n.
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Introduction Bernoulli bandits

Belief states

The state of the bandit problem is the state of our belief.

A sufficient statistic is the number of plays and total rewards.

Our state ξt is described by the priors α, β and the vectors

Nt = (Nt,1, . . . ,Nt,i ) (1.2)

r̂t = (r̂t,1, . . . , r̂t,i ). (1.3)

The next-state probabilities are defined as:

ξt(rt = 1 | at = i) =
αi + Nt,i r̂t,i
αi + βi + Nt,i

Thus decision-theoretic n-armed bandit problem can be formalised as a Markov
decision process.
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Introduction Bernoulli bandits

at

rt+1

Figure: The basic bandit process
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Introduction Bernoulli bandits

ξt

at

rt+1

ξt+1

at+1

rt+2

Figure: The decision-theoretic bandit process
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Introduction Bernoulli bandits

Reinforcement learning

The reinforcement learning problem.

Learning to act in an unknown environment, by interaction and reinforcement.

The environment has a changing state st .

The agent obtains observations xt .

The agent takes actions at based on our observations.

It receives rewards rt .

The goal (informally)

Maximise total reward
∑

t rt

Types of environments

Markov decision processes (MDPs).

Partially observable MDPs (POMDPs).

(Partially observable) Markov games.
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Markov decision processes (MDP)

Markov decision processes

Markov decision processes (MDP).

At each time step t:

We observe state st ∈ S.

We take action at ∈ A.

We receive a reward rt ∈ R.

µ

at

st st+1

rt+1

Markov property of the reward and state distribution

Pµ(st+1 ∈ S | st , at) = Pµ(st+1 ∈ S | s1, a1, . . . , st , at) (Transition distribution)

Pµ(rt+1 ∈ R | st , at) = Pµ(rt+1 ∈ R | s1, a1, . . . , st , at) (Reward distribution)
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Markov decision processes (MDP)

The agent

The agent’s policy π

P
π(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

P
π(at | st) (Markov policy)

Definition 1 (Utility)

Ut ,

T−t
∑

k=0

rt+k

We wish to find π maximising the expected total future reward

E
π
µ Ut = E

π
µ

T−t
∑

k=0

rt+k (expected utility)

to the horizon T .
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Markov decision processes (MDP)

The agent

The agent’s policy π

P
π(at | st , . . . , s1, at−1, . . . , a1) (history-dependent policy)

P
π(at | st) (Markov policy)

Definition 1 (Utility)

Ut ,

T−t
∑

k=0

γk rt+k

We wish to find π maximising the expected total future reward

E
π
µ Ut = E

π
µ

T−t
∑

k=0

γk rt+k (expected utility)

to the horizon T with discount factor γ ∈ (0, 1].
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Markov decision processes (MDP) Value functions

State value function

V π
µ,t(s) , E

π
µ(Ut | st = s) (2.1)

State-action value function

Qπ
µ,t(s, a) , E

π
µ(Ut | st = s, at = a) (2.2)

π∗(µ) : V
π∗(µ)
t,µ (s) ≥ V π

t,µ(s) ∀π, t, s (2.3)

The optimal policy π∗ dominates all other policies π everywhere in S.

V ∗
t,µ(s) , V

π∗(µ)
t,µ (s), Q∗

t,µ(s) , Q
π∗(µ)
t,µ (s, a). (2.4)

The optimal value function V ∗ is the value function of the optimal policy π∗.
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Markov decision processes (MDP) Value functions

Finding the optimal policy when µ is known

st

s1t+1

s2t+1

s3t+1

s4t+1

a1t , r
0
t+1

a1t , r
1
t+1

a2t , r
0
t+1

a2t , r
1
t+1

Iterative/offline methods

Estimate the optimal value function
V ∗ (i.e. with backwards induction on
all S).

Iteratively improve π (i.e. with policy
iteration) to obtain π∗.

Online methods

Forward search followed by backwards
induction (on subset of S).
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Finite horizon, undiscounted problems Policy evaluation

Policy evaluation

An optimal policy

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision. – Bellman.

V π
µ,t(s) , E

π
µ(Ut | st = s) (3.1)

(3.2)

This derivation directly gives a number of policy evaluation algorithms.
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Finite horizon, undiscounted problems Policy evaluation

Policy evaluation

V π
µ,t(s) , E

π
µ(Ut | st = s) (3.1)

=

T−t
∑

k=0

E
π
µ(rt+k | st = s) (3.2)

(3.3)

This derivation directly gives a number of policy evaluation algorithms.
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Finite horizon, undiscounted problems Policy evaluation

Policy evaluation

V π
µ,t(s) , E

π
µ(Ut | st = s) (3.1)

=

T−t
∑

k=0

E
π
µ(rt+k | st = s), Ut+1 =

T−t
∑

k=1

rt+k . (3.2)

= E
π
µ(rt | st = s) + E

π
µ(Ut+1 | st = s) (3.3)

(3.4)

This derivation directly gives a number of policy evaluation algorithms.
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Finite horizon, undiscounted problems Policy evaluation

Policy evaluation

V π
µ,t(s) , E

π
µ(Ut | st = s) (3.1)

=

T−t
∑

k=0

E
π
µ(rt+k | st = s) (3.2)

= E
π
µ(rt | st = s) + E

π
µ(Ut+1 | st = s) (3.3)

= E
π
µ(rt | st = s) +

∑

i∈S

V π
µ,t+1(i)P

π
µ(st+1 = i |st = s). (3.4)

(3.5)

This derivation directly gives a number of policy evaluation algorithms.
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Finite horizon, undiscounted problems Policy evaluation

Algorithm 1 Direct policy evaluation

1: for s ∈ S do

2: for t = 0, . . . ,T do

3:

V̂t(s) =
T
∑

k=t

∑

j∈S

P
π
µ(sk = j | sk = s)Eπ

µ(rk | sk = j).

4: end for

5: end for
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Finite horizon, undiscounted problems Policy evaluation

Algorithm 2 Monte-Carlo policy evaluation

for s ∈ S do

for k = 0, . . . ,K do

V̂k(s) =

T
∑

k=0

rt,k , V̂ (s) =
1

K

K
∑

k=1

V̂k(s).

end for

end for

Remark 1

The Monte Carlo evaluation algorithm has the property:

‖V − V̂ ‖∞ ≤

√

ln(2|S|/δ)

2K
, with probability 1− δ

Proof.

From Hoeffding’s inequality, applied to any s, we have that

P

(

|V̂ (s)− V (s)| ≥

√

ln(2|S|/δ)

2K

)

≤ δ/|S|.
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Finite horizon, undiscounted problems Policy evaluation

Algorithm 3 Backwards induction policy evaluation

For each state s ∈ S , for t = 1, . . . ,T − 1:

V̂t(s) = r(s) +
∑

j∈S

Pµ,π(st+1 = j | st = s)V̂t+1(j), (3.6)

with V̂T (s) = r(s).

Theorem 2

Algorithm 3 results in estimates with the property:

V̂t(s) = V π
µ,t(s) (3.7)
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Finite horizon, undiscounted problems Finite horizon backwards induction

Algorithm 4 Finite-horizon backwards induction

Input µ, ST .
Initialise VT (s), for all s ∈ ST .
for n = T − 1,T − 2, . . . , 1 do

for s ∈ Sn do

πn(s) = argmaxa Pµ(s
′|s, a)[Eµ(r |s

′, s) + V ∗
n+1(s

′)]
Vn(s) =

∑

s′∈Sn+1
Pµ(s

′|s, πn(s))[Eµ(r |s
′, s) + Vn+1(s

′)]
end for

end for

Return π = (πn)
T
n=1.

Notes

Pµ,π(s
′|s) =

∑

a Pµ(s
′|s, a)Pπ(a|s).

Finite horizon problems only, or approximations (e.g. lookahead in game trees).

For stochastic problems , we marginalize over states.

As we know the optimal choice at the last step, we can find the optimal policy!

Can be used with estimates of the value function.
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).

3 Assume that for n ≥ t + 1, (3.8) holds.
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).

3 Assume that for n ≥ t + 1, (3.8) holds.

4 Then it holds for n = t since:

Vt(s) = max
a

{

r(s) +
∑

j∈S

p(j |s, a)Vt+1(j)

}
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).

3 Assume that for n ≥ t + 1, (3.8) holds.

4 Then it holds for n = t since:

Vt(s) ≥ max
a

{

r(s) +
∑

j∈S

p(j |s, a)V ∗
µ,t+1(j)

}

(by step 3)
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).

3 Assume that for n ≥ t + 1, (3.8) holds.

4 Then it holds for n = t since:

Vt(s) ≥ max
a

{

r(s) +
∑

j∈S

p(j |s, a)V π′

µ,t+1(j)

}
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Finite horizon, undiscounted problems Finite horizon backwards induction

Theorem 3

For a T-horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (3.8)

Proof.

1 First we show that Vt ≥ V ∗
t .

2 For n = T , VT (s) = r(s) = V π
µ,T (s).

3 Assume that for n ≥ t + 1, (3.8) holds.

4 Then it holds for n = t since:

Vt(s) ≥ V π′

t (s)

5 The above holds for any policy π′, including π′ = π, the policy returned by
backwards induction. Then:

V ∗
µ,t(s) ≥ V π

µ,t(s) = Vt(s) ≥ V ∗
µ,t(s).
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Infinite-horizon examples Shortest-path problems

Deterministic shortest-path problems

X

Properties

γ = 1, T →∞.

rt = −1 unless st = X , in which case
rt = 0.

Pµ(st+1 = X |st = X ) = 1.

A = {North, South,East,West}

Transitions are deterministic and
walls block.

What is the shortest path to the destination from any point?
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Infinite-horizon examples Shortest-path problems

Shortest-path problem solution

14 13 12 11 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 23 24 25 26 27 28

Properties

γ = 1, T →∞.

rt = −1 unless st = X , in which case
rt = 0.

The length of the shortest path from
s equals the negative value of the
optimal policy.

Also called cost-to-go.

Remember Dijkstra’s algorithm?
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Infinite-horizon examples Shortest-path problems

Stochastic shortest path problem, with a pit

O X

Properties

γ = 1, T →∞.

rt = −1, but rt = 0 at X and −100
at O and episode ends.

Pµ(st+1 = X |st = X ) = 1.

A = {North, South,East,West}

Moves to a random direction with
probability ω. Walls block.

For what value of ω is it better to take the dangerous shortcut? (However, if we want to
take into account risk explicitly we must modify the agent’s utility function)
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Infinite-horizon examples Shortest-path problems

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(a) ω = 0.1

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(b) ω = 0.5

0.5
1

1.5
2

2.5

-120 -100 -80 -60 -40 -20 0

(c) value

Figure: Pit maze solutions for two values of ω.
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Infinite-horizon examples Continuing problems

Continuing stochastic MDPs

Inventory management

There are K storage locations.

Each place can store ni items.

At each time-step there is a probability φi that a client try to buy an item from
location i ,

∑

i φi ≤ 1. If there is an item available, you gain reward 1.

Action 1: ordering u units of stock, for paying c(u).

Action 2: move u units of stock from one location i to another, j , for a cost ψij(u).

An easy special case

K = 1.

There is one type of item only.

Orders are placed and received every n timesteps.
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Infinite-horizon examples Continuing problems

Inventory management

An easy special case

K = 1.

Deliveries happen once every m timesteps.

Each time-step a client arrives with probability φ.

Properties

The state set .

The action set .

The transition probabilities
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Infinite-horizon examples Continuing problems

Inventory management

An easy special case

K = 1.

Deliveries happen once every m timesteps.

Each time-step a client arrives with probability φ.

Properties

The state set is the number of items we have: S = {0, 1, . . . , n}.

The action set .

The transition probabilities
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Infinite-horizon examples Continuing problems

Inventory management

An easy special case

K = 1.

Deliveries happen once every m timesteps.

Each time-step a client arrives with probability φ.

Properties

The state set is the number of items we have: S = {0, 1, . . . , n}.

The action set A = {0, 1, . . . , n} since we can order from nothing up to n items.

The transition probabilities
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Infinite-horizon examples Continuing problems

Inventory management

An easy special case

K = 1.

Deliveries happen once every m timesteps.

Each time-step a client arrives with probability φ.

Properties

The state set is the number of items we have: S = {0, 1, . . . , n}.

The action set A = {0, 1, . . . , n} since we can order from nothing up to n items.

The transition probabilities P(s ′|s, a) =
(

m

d

)

φd(1− φ)m−d , where d = s + a − s ′, for
s + a ≤ n.
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Infinite horizon, discounted case

Discounted total reward

Ut = lim
T→∞

T
∑

k=t

γk rk , γ ∈ (0, 1)

Definition 4

A policy π is stationary if π(at | st) = π(an | sn) for all n, t.

Remark 2

We can use the Markov chain kernel P to write the expected reward vector as

v
π =

∞
∑

t=0

γt
P

t
µ,πr (5.1)
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Infinite horizon, discounted case

Theorem 5

For any stationary π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:
v
π = (I − γPµ,π)

−1
r. (5.3)

Proof.
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Infinite horizon, discounted case

Theorem 5

For any stationary π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:
v
π = (I − γPµ,π)

−1
r. (5.3)

Proof.

1 r = (I − γPµ,π)v
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Infinite horizon, discounted case

Theorem 5

For any stationary π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:
v
π = (I − γPµ,π)

−1
r. (5.3)

Proof.

1 r = (I − γPµ,π)v

2 Since ‖γPµ,π‖ < 1 · ‖Pµπ
‖ = 1, the following inverse exists:

(I − γPµ,π)
−1 = lim

n→∞

n
∑

t=0

(γPµ,π)
t
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Infinite horizon, discounted case

Theorem 5

For any stationary π, vπ is the unique solution of

v = r + γPµ,πv. ← fixed point (5.2)

In addition, the solution is:
v
π = (I − γPµ,π)

−1
r. (5.3)

Proof.

1 r = (I − γPµ,π)v

2 Since ‖γPµ,π‖ < 1 · ‖Pµπ
‖ = 1, the following inverse exists:

(I − γPµ,π)
−1 = lim

n→∞

n
∑

t=0

(γPµ,π)
t

3 Using step 1 and then 2,

v = (I − γPµ,π)
−1r =

∞
∑

t=0

γt
P

t
µ,πr = v

π,

where the last step is by Remark 2
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Infinite horizon, discounted case Optimality equations

Definition 6 (Bellman operator)

Lπv , r + γPπv

L v , sup
π

{r + γPπv} , v ∈ V

v = L v (Bellman optimality equation)

Theorem 7

For any bounded r, it holds that for v ∈ V:

If v ≥ L v, then v ≥ v∗

If v ≤ L v, then v ≤ v∗

If v = L v, then v is unique and v = v∗,

where v∗ = supπ vπ.
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Infinite horizon, discounted case Optimality equations

Theorem 8 (Banach Fixed-Point theorem)

Suppose S is a Banach space (i.e. a complete normed linear space) and T : S → S is a
contraction mapping (i.e. ∃γ ∈ [0, 1) s.t. ‖Tu −Tv‖ ≤ γ‖u − v‖ for all u, v ∈ S). Then

There is a unique u∗ ∈ U s.t. Tu∗ = u∗ and

For any u0 ∈ S the sequence {un}:

un+1 = Tun = T n+1u0

converges to u∗.

Proof.

For any m ≥ 1

‖un+m − un‖ ≤

m−1
∑

k=0

‖un+k+1 − un+k‖ =

m−1
∑

k=0

‖T n+ku1 − T n+ku0‖
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Infinite horizon, discounted case Optimality equations

Theorem 8 (Banach Fixed-Point theorem)

Suppose S is a Banach space (i.e. a complete normed linear space) and T : S → S is a
contraction mapping (i.e. ∃γ ∈ [0, 1) s.t. ‖Tu −Tv‖ ≤ γ‖u − v‖ for all u, v ∈ S). Then

There is a unique u∗ ∈ U s.t. Tu∗ = u∗ and

For any u0 ∈ S the sequence {un}:

un+1 = Tun = T n+1u0

converges to u∗.

Proof.

For any m ≥ 1

‖un+m − un‖ ≤

m−1
∑

k=0

‖un+k+1 − un+k‖ =

m−1
∑

k=0

‖T n+ku1 − T n+ku0‖

≤

m−1
∑

k=0

γn+k‖u1 − u0‖ =
γn(1− γm)

1− γ
‖u1 − u0‖.
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Infinite horizon, discounted case Optimality equations

Theorem 9

If γ ∈ [0, 1) then the Bellman operator L is a contraction mapping in V.

Proof.

Let v,v′ ∈ V. Consider s ∈ S s. t. L v(s) ≥ L v′(s), and let

a∗s ∈ argmax
a∈A

{

r(s) +
∑

j∈S

γpµ(j | s, a)v(j)

}

.

Then

0 ≤ L v(s)−L v
′(s) ≤ γ‖v − v

′‖.

Repeating the argument for s such that L v(s) ≤ L v′(s), we obtain

|L r(s)−L r
′(s)| ≤ γ‖r − r

′‖.

Taking the supremum, we obtain the required result.
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Infinite horizon, discounted case Optimality equations

Theorem 10

If γ ∈ [0, 1), S is discrete and r is bounded:

There is a unique v∗ ∈ V s.t. L v∗ = v∗ and such that v∗ = V ∗
µ .

For a stationary π, there is a unique v ∈ V such that Lπv = v and v = V π
µ .

Proof.

From the previous theorem, L is a contraction. So, we can apply the Fixed-Point
theorem. Thus there is a unique solution. This is the optimal value function due to
Theorem9

Use part 1 with Π = {π}.
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Infinite horizon, discounted case Algorithms

Algorithm 5 Value iteration

Input µ, S.
Initialise v0 ∈ V.
for n = 1, 2, . . . do

for s ∈ Sn do

πn(s) = argmaxa r(s)
∑

s′∈S Pµ(s
′|s, a)vn−1(s

′)
vn(s) = r(s) +

∑

s′∈S Pµ(s
′|s, πn(s))vn−1(s

′)
end for

break if termination-condition is met
end for

Return πn,Vn.
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Infinite horizon, discounted case Algorithms

Theorem 11

The value iteration algorithm satisfies

limn→∞ ‖vn − V ∗‖ = 0.

There exists N <∞ such that

‖vn+1 − vn‖ ≤ ǫ(1− γ)/2γ, ∀n ≥ N. (5.4)

The policy πǫ that takes action argmaxa r(s) + γ
∑

j p(j |s, a)vn(s
′) is ǫ-optimal.

‖vn+1 − V ∗
µ‖ < ǫ/2 for n > N.

Proof.

The first two statements follow from the fixed point theorem. Now note that

‖V πǫ

µ − V ∗
µ‖ ≤ ‖V

πǫ

µ − vn‖+ ‖vn − V ∗
µ‖

We can bound these two terms easily:

‖V πǫ − vn+1‖ ≤
γ

1− γ
‖vn+1 − vn‖, ‖vn+1 − V ∗

µ‖ ≤
γ

1− γ
‖vn+1 − vn‖
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Infinite horizon, discounted case Algorithms

Theorem 12

Value iteration converges linearly at rate γ and O(γn). In addition, for r ∈ [0, 1] and
r0 = 0

‖vn − V ∗
µ‖ ≤

γn

1− γ

‖V πn
µ − V ∗

µ‖ ≤
2γn

1− γ
,
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Infinite horizon, discounted case Algorithms

Algorithm 6 Policy iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do
πn+1 = argmaxπ r + γPπvn (policy improvement)
vn+1 = V

πn+1
µ (policy evaluation)

break if πn+1 = πn.
end for

Return πn,vn.

Christos Dimitrakakis (Chalmers) Experiment design, Markov Decision Processes and Reinforcement LearningNovember 10, 2013 35 / 41



Infinite horizon, discounted case Algorithms

Theorem 13

If vn,vn+1 are produced by policy iteration, then vn ≤ vn+1.

Proof.

From the policy improvement step

r + γPπn+1vn ≥ r + γPπnvn = vn

where the equality is due to the fact that (I − γPµ,πn )vn = r from the policy evaluation
step. Rearranging, we get that

r ≥ (I − γPπn+1)vn

(I − γPπn+1)
−1

r ≥ vn,

noting that the inverse is positive. Since the left side equals vn+1, we have proved the
theorem.

Corollary 14

If S,A are finite then policy iteration terminates in a finite number of iterations.
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Modified policy iteration

Algorithm 7 Modified policy iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do
πn = argmaxπ r + γPπvn−1 // policy improvement

vn = L
k
πn
vn−1 // partial policy evaluation

break if πn = πn=1.
end for

Return πn,vn.
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Geometric view

Definition 15

Difference operator

Bv , max
π
{r + (γPπ − I)v} = L v − v. (5.5)

Hence the optimality equation becomes

Bv = 0. (5.6)

.
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Infinite horizon, discounted case Algorithms

Algorithm 8 Temporal-Difference Policy Iteration

Input µ, S, λ.
Initialise v0.
for n = 1, 2, . . . do
πn = argmaxπ r + γPπvn−1 // policy improvement

vn = vn−1 + τk // temporal difference update.
break if πn = πn=1.

end for

Return πn,vn.

Lπn+1vn = L vn. (5.7)

dn(i , j) = vn(i)− [r(i) + γvn(j)]. (temporal difference error)

τn(i) =
∞
∑

t=0

Eπn,µ [(γλ)mdn(st , st+1) | s0 = i ] (5.8)

vn+1 = vn + τn (5.9)

Dnv , (1− λ)Lπn+1vn + λLπn+1v. (fixed point)
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Infinite horizon, discounted case Algorithms

Select y ∈ S
|S| (i.e. a state distribution). Then:

Primar linear program

min
v

y
⊤
v

such that
v(s)− γp⊤

s,av ≥ r(s, a), ∀a ∈ A, s ∈ S.

Dual linear program

max
x

∑

s∈S

∑

a∈A

r(s, a)x(s, a)

such that x ∈ R
|S×A|
+ and

∑

a∈A

x(j , a)−
∑

s∈S

∑

a∈A

γp(j |s, a)x(s, a) = y(j).

with y ∈ S
|S|.
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Infinite horizon, discounted case Algorithms

Summary

Markov decision processes

Can represent : Shortest path problems, Stopping problems, Experiment design problems,
Multi-armed bandit problems, Reinforcement learning problems.

Backwards induction (aka value iteration)

In the class of dynamic programming algorithms.

Tractable when either the state space S or the horizon T are small (finite).

Optimal decisions and Bayesian reinforcement learning

A known environment is represented as an MDP.

Bandit problems can be solved by representing them as infinite-state MDPs.

In general, an unknown environment can be represented as a distribution over MDPs.

The decision problem can again be formulated as an infinite-state MDP.
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