Decision Problems Decision Making under Uncertainty, Part III

Christos Dimitrakakis

Chalmers

1/11/2013

Christos Dimitrakakis (Chalmers)

996

1 Introduction

2 Rewards that depend on the outcome of an experiment

Formalisation of the problem

3 Bayes risk and Bayes decisions

Concavity of the Bayes risk

4 Methods for selecting a decision

- Alternative notions of optimality
- Minimax problems
- Two-person games

5 Decision problems with observations

- Robust inference and minimax priors
- Decision problems with two points
- Calculating posteriors
- Cost of observations

<ロト <回ト < 回ト < 回ト</td>

- Decisions $d \in D$
- Experiments with outcomes in Ω .
- Reward $r \in R$ depending on experiment and outcome.
- Utility $U : \mathcal{R} \to \mathbb{R}$.

Example (Taking the umbrella)

- There is some probability of rain.
- We don't like carrying an umbrella.
- We really don't like getting wet.

Assumption (Outcomes)

There exists a probability measure P on $(\Omega, \mathcal{F}_{\Omega})$ such that the probability of the random outcome ω being in $A \subset \Omega$ is:

$$\mathbb{P}(\omega \in A) = P(A), \qquad \forall A \in \mathcal{F}_{\Omega}.$$
(2.1)

Assumption (Utilities)

Ch

Preferences about rewards in R are transitive, all rewards are comparable and there exists a utility function U, measurable with respect to \mathcal{F}_R such that $U(r') \ge U(r)$ iff $r \succ^* r'$.

Definition (Reward function)

$$r = \rho(\omega, d). \tag{2.2}$$

	. ▼	< 🗗 >	₹Ē	Þ	(≣)		2	୬ବଙ
hristos Dimitrakakis (Chalmers)	Decision Problems				1/	11/20	13	4 / 35

The probability measure induced by decisions

For every $d \in D$, the function $\rho : \Omega \times D \to R$ induces a probability P_d on R. In fact, for any $B \in \mathcal{F}_R$:

$$P_d(B) \triangleq \mathbb{P}(\rho(\omega, d) \in B) = P(\{\omega \mid \rho(\omega, d) \in B\}).$$
(2.3)

Assumption

The sets $\{\omega \mid \rho(\omega, d) \in B\}$ must belong to \mathcal{F}_{Ω} . In other words, ρ must be \mathcal{F}_{Ω} -measurable for any d.

イロト イロト イヨト イヨト

d P_d U

(a) The combined decision problem

Expected utility

$$\mathbb{E}_{P_i}(U) = \int_R U(r) \, \mathrm{d}P_i(r) = \int_{\Omega} U[\rho(\omega, i)] \, \mathrm{d}P(\omega) = \mathbb{E}_P(U \mid d = i) \tag{2.4}$$

DQC

Example

You are going to work, and it might rain. The forecast said that the probability of rain (ω_1) was 20%. What do you do?

- d_1 : Take the umbrella.
- d₂: Risk it!

$ ho(\omega, d)$	d_1	<i>d</i> ₂
ω_1	dry, carrying umbrella	wet
ω_2	dry, carrying umbrella	dry
$U[ho(\omega, d)]$	d_1	<i>d</i> ₂
ω_1	0	-10
ω_2	0	1
$\mathbb{E}_{P}(U \mid d)$	0	-1.2

Table: Rewards, utilities, expected utility for 20% probability of rain.

• The unknown outcome of the experiment ω is called a parameter.

DQC

- \blacksquare The unknown outcome of the experiment ω is called a parameter.
- \blacksquare The set of outcomes \varOmega is called the parameter space.

- \blacksquare The unknown outcome of the experiment ω is called a parameter.
- \blacksquare The set of outcomes \varOmega is called the parameter space.

Definition (Loss)

$$\ell(\omega, d) = -U[\rho(\omega, d)].$$
(2.5)

- The unknown outcome of the experiment ω is called a parameter.
- The set of outcomes Ω is called the parameter space.

Definition (Loss)

$$\ell(\omega, d) = -U[\rho(\omega, d)].$$
(2.5)

Definition (Risk)

$$\sigma(P,d) = \int_{\Omega} \ell(\omega,d) \, \mathrm{d}P(\omega). \tag{2.6}$$

イロト イヨト イヨト イヨト

nac

- The unknown outcome of the experiment ω is called a parameter.
- \blacksquare The set of outcomes \varOmega is called the parameter space.

Definition (Loss)

$$\ell(\omega, d) = -U[\rho(\omega, d)].$$
(2.5)

Definition (Risk)

$$\sigma(P,d) = \int_{\Omega} \ell(\omega,d) \, \mathrm{d}P(\omega). \tag{2.6}$$

イロト イヨト イヨト イヨト

Of course, the optimal decision is d minimising σ .

Christos Dimitrakakis	(Chalmers)
-----------------------	------------

Bayes risk

Consider parameter space Ω , decision space D, loss function ℓ .

Definition (Bayes risk)

$$\sigma^*(P) = \inf_{d \in D} \sigma(P, d) \tag{3.1}$$

Remark

For any function $f:X\to Y,$ where Y is equipped with a complete binary relation <, we define, for any $A\subset X$

$$M = \inf_{x \in A} f(x)$$

s.t. $M \le f(x)$ for any $x \in A$. Furthermore, for any M' > M, there exists some $x' \in A$ s.t. M' > f(x').

(日) (四) (三) (三) (三)

Example

Let $\Omega = \{0,1\}$ and D = [0,1]. For an $\alpha \ge 1$, we define the loss $L : \Omega \times D \to \mathbb{R}$ as

$$\ell(\omega, d) = |\omega - d|^{\alpha}. \tag{3.2}$$

Assume that the distribution of outcomes is

$$\mathbb{P}(\omega = 0) = u \qquad \qquad \mathbb{P}(\omega = 1) = 1 - u. \tag{3.3}$$

For $\alpha = 1$ we have

$$\sigma(P,d) = \ell(0,d)u + \ell(1,d)(1-u) = du + (1-d)(1-u).$$
(3.4)

Hence, if u > 1/2 the risk is minimised for $d^* = 0$, otherwise for $d^* = 1$.

996

<ロト <回ト < 三ト < 三ト : 三</p>

Figure: Risk for four different distributions with absolute loss.

	Dimitra		

Decision Problems

Sac

Example

Let $\Omega = \{0,1\}$ and D = [0,1]. For an $\alpha \ge 1$, we define the loss $L : \Omega \times D \to \mathbb{R}$ as

$$\ell(\omega, d) = |\omega - d|^{\alpha}. \tag{3.2}$$

Assume that the distribution of outcomes is

$$\mathbb{P}(\omega = 0) = u \qquad \qquad \mathbb{P}(\omega = 1) = 1 - u. \tag{3.3}$$

For $\alpha > 1$,

$$\sigma(P,d) = d^{\alpha}u + (1-d)^{\alpha}(1-u), \qquad (3.4)$$

and by differentiating we find that the optimal decision is

$$d^* = \left[1 + \left(\frac{1}{1/u - 1}\right)^{\frac{1}{\alpha - 1}}\right]^{-1}$$

Christos Dimitrakakis (Chalmers)

1/11/2013 10 / 35

(日) (四) (三) (三) (三)

alpha = 2

Figure: Risk for four different distributions with quadratic loss,

	Dimitra		

Decision Problems

Sac

Example (Quadratic loss)

Now consider $\Omega = \mathbb{R}$ with measure P and $\mathcal{D} = \mathbb{R}$. For any point $\omega \in \mathbb{R}$, the loss is

$$\ell(\omega, d) = |\omega - d|^2. \tag{3.4}$$

The optimal decision minimises

$$\mathbb{E}(\ell \mid d) = \int_{\mathbb{R}} |\omega - d|^2 \,\mathrm{d}P(\omega).$$

Then, as long as $\partial/\partial d|\omega-d|^2$ is measurable with respect to $\mathcal{F}_{\mathbb{R}}$

$$\frac{\partial}{\partial d} \int_{\mathbb{R}} |\omega - d|^2 \, \mathrm{d}P(\omega) = \int_{\mathbb{R}} \frac{\partial}{\partial d} |\omega - d|^2 \, \mathrm{d}P(\omega) \tag{3.5}$$

$$=2\int_{\mathbb{R}}(\omega-d)\,\mathrm{d}P(\omega) \tag{3.6}$$

$$= 2 \int_{\mathbb{R}} \omega \, \mathrm{d}P(\omega) - 2 \int_{\mathbb{R}} d \, \mathrm{d}P(\omega)$$
 (3.7)

$$= 2 \mathbb{E}(\omega) - 2d, \tag{3.8}$$

イロト イロト イヨト イヨト

so the cost is minimised for $d = \mathbb{E}(\omega)$.

A mixture of distributions

Consider two probability measures P, Q on $(\Omega, \mathcal{F}_{\Omega})$.

999

A mixture of distributions

Consider two probability measures P, Q on $(\Omega, \mathcal{F}_{\Omega})$. These define two alternative distributions for ω . For any A

nac

A mixture of distributions

Consider two probability measures P, Q on $(\Omega, \mathcal{F}_{\Omega})$.

These define two alternative distributions for ω . For any A For any P, Q and $\alpha \in [0, 1]$, we define

$$Z_{\alpha} = \alpha P + (1 - \alpha)Q$$

to mean the probability measure such that

$$Z_{\alpha}(A) = \alpha P(A) + (1 - \alpha)Q(A)$$

for any $A \in \mathcal{F}_{\Omega}$.

DQC

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in [0, 1]$

$$\sigma^*[\alpha P + (1 - \alpha)Q] \ge \alpha \sigma^*(P) + (1 - \alpha)\sigma^*(Q).$$
(3.9)

Proof.

From the definition of risk (2.6), for any decision $d \in D$,

$$\sigma[\alpha P + (1 - \alpha)Q, d] = \alpha \sigma(P, d) + (1 - \alpha)\sigma(Q, d).$$

Hence, by definition (3.1) of the Bayes risk,

$$\sigma^*[\alpha P + (1 - \alpha)Q] = \inf_{d \in D} \sigma[\alpha P + (1 - \alpha)Q, d]$$
$$= \inf_{d \in D} [\alpha \sigma(P, d) + (1 - \alpha)\sigma(Q, d)]$$

DQC

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in [0, 1]$

$$\sigma^*[\alpha P + (1-\alpha)Q] \ge \alpha \sigma^*(P) + (1-\alpha)\sigma^*(Q).$$
(3.9)

Proof.

$$\sigma^*[\alpha P + (1-\alpha)Q] = \inf_{d \in D} [\alpha \sigma(P, d) + (1-\alpha)\sigma(Q, d)].$$

Christos Dimitrakakis (Chalmers)

(E) E ∽ Q (~ 1/11/2013 13 / 35

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in [0, 1]$

$$\sigma^*[\alpha P + (1 - \alpha)Q] \ge \alpha \sigma^*(P) + (1 - \alpha)\sigma^*(Q).$$
(3.9)

Proof.

$$\sigma^*[\alpha P + (1 - \alpha)Q] = \inf_{d \in D} [\alpha \sigma(P, d) + (1 - \alpha)\sigma(Q, d)].$$

Since $\inf_x[f(x) + g(x)] \ge \inf_x f(x) + \inf_x g(x),$
$$\sigma^*[\alpha P + (1 - \alpha)Q] \ge \alpha \inf_{d \in D} \sigma(P, d) + (1 - \alpha) \inf_{d \in D} \sigma(Q, d)$$
$$= \alpha \sigma^*(P) + (1 - \alpha)\sigma^*(Q).$$

DQC

The risk function for quadratic loss

Figure: Fixed distribution, varying decision. The decision risk under three different distributions.

DQC

・ロト ・回ト ・ヨト ・ヨ

Figure: Fixed decision, varying distribution. The risk of a fixed decision is a linear function of P

Sac

イロト イポト イヨト イ

Figure: The risk of a few decisions as P varies. Each decision corresponds to one of these lines.

1/11/2013 15 / 35

DQC

Figure: For each P, there is at least one decision minimising the risk.

E 1/11/2013 15 / 35

DQC

Figure: The Bayes risk is concave and the minimising decision is tangent to it.

DQC

Figure: If we are not very wrong about P, then we are not far from optimal.

DQC

Figure: We can approximate the Bayes risk by taking the minimum of a finite number of decisions.

DQC

Mixed decisions

A distribution over decisions

- Consider a probability measure π on \mathcal{D} .
- We select decisions according to probability

$$\pi(A) \triangleq \mathbb{P}(d \in A).$$

for any appropriate $A \subset \mathcal{D}$.

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and with utility function $U : \Omega \times \mathcal{D} \to \mathbb{R}$. Further let $d^* \in \mathcal{D}$ such that $\mathbb{E}(U \mid d^*) \ge \mathbb{E}(U \mid d)$ for all $d \in \mathcal{D}$. Then for any probability measure π on \mathcal{D} ,

 $\mathbb{E}(U \mid d^*) \geq \mathbb{E}(U \mid \pi).$

Mixed decisions

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and with utility function $U : \Omega \times \mathcal{D} \to \mathbb{R}$. Further let $d^* \in \mathcal{D}$ such that $\mathbb{E}(U \mid d^*) \ge \mathbb{E}(U \mid d)$ for all $d \in \mathcal{D}$. Then for any probability measure π on \mathcal{D} ,

 $\mathbb{E}(U \mid d^*) \geq \mathbb{E}(U \mid \pi).$

Proof.

$$egin{aligned} \mathbb{E}(U \mid \pi) &= \int_D \mathbb{E}(U \mid d) \, \mathrm{d}\pi(d) \ &\leq \int_D \mathbb{E}(U \mid d^*) \, \mathrm{d}\pi(d) \ &= \mathbb{E}(U \mid d^*) \int_D \, \mathrm{d}\pi(d) = \mathbb{E}(U \mid d^*) \end{aligned}$$

Alternative decision rules

Maximin rule

Select d maximising $\min_{w \in W} U(w, d)$.

ϵ -optimal rule

For some $\epsilon > 0$, select *d* maximising

$$P\left(\left\{\omega \mid U(\omega,d) > \inf_{d' \in \mathcal{D}} U(\omega,d') + \epsilon\right\}\right).$$
(4.1)

999

Minimax/Maximin values

$$U_* = \max_d \min_\omega U(\omega, d) = \min_\omega U(\omega, d^*)$$
 (maximin)

$$U^* = \min_{\omega} \max_{d} U(\omega, d) = \max_{d} U(\omega^*, d), \qquad (\text{minimax})$$

Note that by definition

$$U^* \ge U(\omega^*, d^*) \ge U_*. \tag{4.2}$$

イロト イヨト イヨト イヨト

DQC

Consider a problem with two possible outcomes ω_1, ω_2 , two possible decisions, d_1, d_2 , a utility function $U(\omega, d)$ and a prior distribution $P(\omega_i) = 1/2$.

$U(\omega, d)$	d_1	d_2
ω_1	-1	0
ω_2	10	1
$\mathbb{E}(U \mid P, d)$	4.5	0.5
$\min_{\omega} U(\omega, d)$	-1	0

Table: Utility function, expected utility and maximin utility.

996

Regret

Consider a problem with two possible outcomes ω_1, ω_2 , two possible decisions, d_1, d_2 , a utility function $U(\omega, d)$ and a prior distribution $P(\omega_i) = 1/2$.

$U(\omega, d)$	d_1	d_2
ω_1	-1	0
ω_2	10	1
$\mathbb{E}(U \mid P, d)$	4.5	0.5
$\min_{\omega} U(\omega, d)$	-1	0

Table: Utility function, expected utility and maximin utility.

Definition (Regret)

$$L(\omega,\pi) \triangleq \max_{\pi'} U(\omega,\pi') - U(\omega,\pi).$$
(4.3)

Christos Dimitrakakis	(Chalmers)
-----------------------	------------

590

<ロト <回ト < 三ト < 三ト : 三</p>

Regret

Consider a problem with two possible outcomes ω_1, ω_2 , two possible decisions, d_1, d_2 , a utility function $U(\omega, d)$ and a prior distribution $P(\omega_i) = 1/2$.

$U(\omega, d)$	d_1	d_2	
ω_1	-1	0	
ω_2	10	1	
$\mathbb{E}(U \mid P, d)$	4.5	0.5	
$\min_{\omega} U(\omega, d)$	-1	0	

Table: Utility function, expected utility and maximin utility.

$L(\omega, d)$	d_1	d_2
ω_1	1	0
ω_2	0	9
$\mathbb{E}(L \mid P, d)$	0.5	4.5
$\max_{\omega} L(\omega, d)$	1	9

Table: Regret, in expectation and minimax.

590

<□> <@> < □> < □> < □> < □> < □ > =

Minimax utility, regret and loss

Remark

For each ω , there is some d such that:

$$U(\omega, d) \in \max_{\pi} U(\omega, \pi).$$
 (4.3)

Remark

$$L(\omega,\pi) = \sum_{d} \pi(d) L(w,d) \ge 0, \qquad (4.4)$$

with equality iff π is ω -optimal.

Remark

$$L(\omega,\pi) = \max_{d} U(\omega,d) - U(\omega,\pi).$$
(4.5)

Remark

$$L(\omega,\pi) = -U(\omega,\pi) = L(\omega,\pi)$$
 iff max_d $U(\omega,d) = 0$.

Example

(An even-money bet)

U	ω_1	ω_2
d_1	1	-1
d_2	0	0

Table: Even-bet utility

590

For two distributions π, ξ on D and Ω , define our expected utility to be:

$$U(\xi,\pi) \triangleq \sum_{w \in \Omega} \sum_{d \in D} U(w,d)\xi(w)\pi(d).$$
(4.6)

Then we define the maximin policy π^* such that:

$$\min_{\xi} U(\xi, \pi^*) = U_* \triangleq \max_{\pi} \min_{\xi} U(\xi, \pi)$$
(4.7)

Then we define the minimax prior ξ^* such that

$$\max_{\pi} U(\xi^*, \pi) = U^* \triangleq \min_{\xi} \max_{\pi} U(\xi, \pi)$$
(4.8)

Expected regret

$$L(\xi, \pi) = \max_{\pi'} \sum_{w} \xi(w) \{ U(w, \pi') - U(w, \pi) \}$$

= $\max_{\pi'} U(\xi, \pi') - U(\xi, \pi).$ (4.9)

nac

Theorem

If there exist $\xi^*, \pi^* \in D$ and $C \in \mathbb{R}$ such that

$$U(\xi^*,\pi) \leq C \leq U(\xi,\pi^*)$$

then

$$U^* = U_* = U(\xi^*, \pi^*) = C.$$

Definition

A bilinear game is a tuple (U, Ξ, Π, Ω, D) with $U : \Xi \times \Pi \to \mathbb{R}$ such that all $\xi \in \Xi$ are arbitrary distributions on Ω and all $\pi \in \Pi$ are arbitrary distributions on D:

$$U(\xi,\pi) \triangleq \mathbb{E}(U \mid \xi,\pi) = \sum_{w,d} U(w,d)\pi(d)\xi(w).$$

Theorem

For a bilinear game, $U^* = U_*$. In addition, the following three conditions are equivalent:

1
$$\pi^*$$
 is maximin, ξ^* is minimax and $U^* = C$.
2 $U(\xi, \pi^*) \ge C \ge U(\xi^*, \pi)$ for all ξ, π .
3 $U(w, \pi^*) \ge C \ge U(\xi^*, d)$ for all w, d .

Linear programming formulation

The problem

$$\max_{\pi} \min_{\xi} U(\xi,\pi),$$

where ξ, π are distributions over finite domains, can be converted to finding π with the greatest lower bound. Using matrix notation,

$$\max\left\{ oldsymbol{v}_{\pi} ~ \Bigg|~ (oldsymbol{U}oldsymbol{\pi})_j \geq oldsymbol{v}_{\pi} orall j, ~ \sum_i \pi_i = 1, ~ \pi_i \geq 0 orall i
ight\},$$

where everything has been written in matrix form. Equivalently, we can find ξ with the least upper bound:

$$\min\left\{ \mathsf{v}_{\xi} \ \left| \ (\boldsymbol{\xi}^{\top} \boldsymbol{U})_i \leq \mathsf{v}_{\xi} \forall i, \ \sum_j \xi_j = 1, \ \xi_j \geq 0 \forall j \right\},\right.$$

where everything has been written in matrix form. In fact, one can show that $v_{\xi} = v_{\pi}$, thus obtaining Theorem 2.

<ロト <回ト < 三ト < 三ト : 三</p>

1 We must choose a decision from D.

590

- **1** We must choose a decision from D.
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .

DQC

- **1** We must choose a decision from D.
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .
- **3** Our loss is $\ell : \Omega \times D \to \mathbb{R}$.

DQC

- **1** We must choose a decision from *D*.
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .
- **3** Our loss is $\ell : \Omega \times D \to \mathbb{R}$.
- **4** Now consider a family of probability measures on the observation set S:

 $\{\psi_{\omega} \mid \omega \in \Omega\}.$

Sac

- $\blacksquare We must choose a decision from D.$
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .
- **3** Our loss is $\ell : \Omega \times D \to \mathbb{R}$.
- **4** Now consider a family of probability measures on the observation set S:

 $\left\{\psi_{\omega} \mid \omega \in \Omega\right\}.$

5 Let $x \in S$ be a random variable with distribution ψ_{ω} .

- $\blacksquare We must choose a decision from D.$
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .
- **3** Our loss is $\ell : \Omega \times D \to \mathbb{R}$.
- **4** Now consider a family of probability measures on the observation set S:

 $\left\{\psi_{\omega} \mid \omega \in \Omega\right\}.$

- **5** Let $x \in S$ be a random variable with distribution ψ_{ω} .
- **6** We want to choose $d \in D$, taking into account both ξ and the evidence x.

- **1** We must choose a decision from *D*.
- **2** There is an unknown parameter $\omega \in \Omega$ with measure ξ .
- **3** Our loss is $\ell : \Omega \times D \to \mathbb{R}$.
- **4** Now consider a family of probability measures on the observation set S:

$$\left\{\psi_{\omega} \mid \omega \in \Omega\right\}.$$

- **5** Let $x \in S$ be a random variable with distribution ψ_{ω} .
- **6** We want to choose $d \in D$, taking into account both ξ and the evidence x.
- **Z** We want to find a decision function $\delta : S \to D$ that minimises the risk

$$\sigma(\xi,\delta) = \mathbb{E}\left\{\ell[\omega,\delta(X)]\right\} = \int_{\Omega} \left(\int_{S} \ell[\omega,\delta(x)] \,\mathrm{d}\psi_{\omega}(x)\right) \,\mathrm{d}\xi(\omega).$$

Minimising the risk

Expected loss of a fixed decision d with $\omega \sim \xi$

$$\sigma(\xi, d) = \int_{\Omega} L(\omega, d) \,\mathrm{d}\xi(\omega). \tag{5.1}$$

Expected loss of a decision function δ with fixed $\omega\in \varOmega$

$$\sigma(\omega,\delta) = \int_{S} L(\omega,\delta(x)) \,\mathrm{d}\psi_{\omega}(x). \tag{5.2}$$

Expected loss of a decision function δ with $W \sim \xi$

$$\sigma(\xi,\delta) = \int_{\Omega} \rho(\omega,\delta) \,\mathrm{d}\xi(\omega), \qquad \qquad \sigma^*(\xi) \triangleq \inf_{\delta} \sigma(\xi,\delta) = \rho(\xi,\delta^*). \tag{5.3}$$

Christos Dimitrakakis (Chalmers)

ヘロト ヘロト ヘビト ヘビト・

Bayes decision functions

Extensive form

$$\sigma(\xi,\delta) = \int_{\Omega} \int_{S} \ell[\omega,\delta(x)] \,\mathrm{d}\xi(\omega) \,\mathrm{d}\psi_{\omega}(x) \tag{5.4}$$

$$= \int_{S} \int_{\Omega} \ell[\omega, \delta(x)] \,\mathrm{d}\xi(\omega \mid x) \,\mathrm{d}f(x), \tag{5.5}$$

where $f(x) = \int_{\Omega} \psi_{\omega}(x) d\xi(\omega)$.

$$\delta^*(x) \triangleq \operatorname*{arg\,max}_{d \in D} \mathbb{E}_{\xi}(\ell \mid x, d) = \operatorname*{arg\,max}_{d \in D} \int_{\Omega} \ell(w, d) \, \mathrm{d}\xi(w \mid x).$$

DQC

Bayes decision functions

Extensive form

$$\sigma(\xi,\delta) = \int_{\Omega} \int_{S} \ell[\omega,\delta(x)] \,\mathrm{d}\xi(\omega) \,\mathrm{d}\psi_{\omega}(x) \tag{5.4}$$

$$= \int_{\mathcal{S}} \int_{\Omega} \ell[\omega, \delta(x)] \, \mathrm{d}\xi(\omega \mid x) \, \mathrm{d}f(x), \tag{5.5}$$

where $f(x) = \int_{\Omega} \psi_{\omega}(x) d\xi(\omega)$.

$$\delta^*(x) \triangleq \operatorname*{arg\,max}_{d \in D} \mathbb{E}_{\xi}(\ell \mid x, d) = \operatorname*{arg\,max}_{d \in D} \int_{\Omega} \ell(w, d) \, \mathrm{d}\xi(w \mid x).$$
$$\int_{S} \int_{\Omega} \ell[w, \delta^*(x)] \, \mathrm{d}\xi(w \mid x) \, \mathrm{d}f(x) = \int_{S} \left\{ \min_{d} \int_{\Omega} \ell[w, d] \, \mathrm{d}\xi(w \mid x) \right\} \, \mathrm{d}f(x).$$

Christos Dimitrakakis (Chalmers)

DQC

Bayes decision functions

Extensive form

$$\sigma(\xi,\delta) = \int_{\Omega} \int_{S} \ell[\omega,\delta(x)] \,\mathrm{d}\xi(\omega) \,\mathrm{d}\psi_{\omega}(x) \tag{5.4}$$

$$= \int_{S} \int_{\Omega} \ell[\omega, \delta(x)] \, \mathrm{d}\xi(\omega \mid x) \, \mathrm{d}f(x), \tag{5.5}$$

.

where $f(x) = \int_{\Omega} \psi_{\omega}(x) d\xi(\omega)$.

Definition (Prior distribution)

The distribution ξ is called the prior distribution of ω .

Definition (Marginal distribution)

The distribution f is called the (prior) marginal distribution of x.

Definition (Posterior distribution)

The conditional distribution $\xi(\cdot \mid x)$ is called the posterior distribution of ω .

Minimax worlds with observations

Consider a utility function $U: \Omega \times D \to \mathbb{R}$. There are two players, the statistician and nature, each selecting $d \in D$ and $\omega \in \Omega$ respectively. The statistician's maximin decision without observations is:

$$\max_{d\in D}\min_{\omega\in \Omega}\mathbb{E}(U\mid \omega, d) = \max_{d\in D}\min_{\omega\in \Omega}U(\omega, d).$$

Now consider an observation $x \in S$, with $x \sim \psi(\cdot \mid \omega)$. The statistician now selects a decision function $\delta \in \Delta$. For any δ , the worst-case expected utility is:

$$\min_{\omega \in \Omega} \mathbb{E}(U \mid \omega, \delta) = \min_{\omega \in \Omega} \int_{S} U[\omega, \delta(x)] \, \mathrm{d}\phi_{\omega}(x)$$
(5.6)

$$= \min_{\omega \in \Omega} \sum_{d \in D} U(\omega, d) \phi_{\omega} \left(\{ x \in S \mid \delta(x) = d \} \right).$$
(5.7)

<ロ> (日) (日) (日) (日) (日)

Minimax priors with observations

The maximin problem

$$\max_{\delta \in \Delta} \min_{\xi \in \Xi} \mathbb{E}(U \mid \xi, \delta) = \max_{\delta \in \Delta} \min_{\xi \in \Xi} \int_{S} \int_{\Omega} U[\omega, \delta(x)] \, \mathrm{d}\xi(\omega \mid x) \, \mathrm{d}p_{\xi}(x).$$
(5.8)

The minimax problem

$$\min_{\xi \in \Xi} \max_{\delta \in \Delta} \mathbb{E}(U \mid \xi, \delta) = \min_{\xi \in \Xi} \int_{S} \max_{d \in D} \int_{\Omega} U[\omega, d] \, \mathrm{d}\xi(\omega \mid x) \, \mathrm{d}p_{\xi}(x).$$
(5.9)

Lemma

If \varXi contains all priors, then

$$\inf_{\xi\in\Xi} U(\xi,\delta) = \inf_{\omega\in\Omega} U(\omega,\delta)$$
(5.10)

<ロ> (日) (日) (日) (日) (日)

Christos Dimitrakakis (Chalmers)

Decision problems with two points and hypothesis testing

	d_1	d_2
ω_1	0	<i>C</i> 1
ω_2	<i>c</i> ₂	0

Table: Cost function of a simple hypothesis testing problem

- We observe the value of some random variable X and then choose decision $\delta(X)$.
- Let $\alpha(\delta)$ be the conditional probability that we choose d_2 when $\omega = \omega_1$.
- Let $\beta(\delta)$ be the conditional probability that we choose d_1 when $\omega = \omega_2$.

• Let
$$a \triangleq c_1 \mathbb{P}(\omega = \omega_1)$$
 and $b \triangleq c_2 \mathbb{P}(\omega = \omega_2)$.

The risk of δ is:

$$a\alpha(\delta) + b\beta(\delta) \tag{5.11}$$

Decision problems with two points and hypothesis testing

	d_1	d_2
ω_1	0	<i>C</i> 1
ω_2	c ₂	0

Table: Cost function of a simple hypothesis testing problem

The risk of δ is:

$$a\alpha(\delta) + b\beta(\delta)$$
 (5.11)

Theorem (Neymann-Pearson lemma)

Let where ψ_w be densities or probabilities on S. For any a > 0, b > 0, let δ^* be a decision function such that,

 $\delta^*(x) = d_1, \qquad \qquad \text{if } a\psi_{\omega_1}(x) > b\psi_{\omega_2}(x) \qquad (5.12)$

$$\delta^*(x) = d_2,$$
 if $a\psi_{\omega_2}(x) < b\psi_{\omega_2}(x),$ (5.13)

and either d_1, d_2 otherwise. Then, for any other δ :

 $\mathsf{a}lpha(\delta^*) + \mathsf{b}eta(\delta^*) \leq \mathsf{a}lpha(\delta) + \mathsf{b}eta(\delta)$

Posterior distributions for multiple observations

Assume that we observe a value $x^n \triangleq x_1, \ldots, x_n$ of a random variable $X^n \triangleq X_1, \ldots, X_n$. We have a prior ξ on Ω . For the observations, we write:

Observation probability given history x^{n-1} and parameter ω

$$\psi(x_n \mid x^{n-1}, \omega) = \frac{\psi_{\omega}(x^n)}{\psi_{\omega}(x^{n-1})}$$

Posterior recursion

$$\xi(\omega \mid x^{n}) = \frac{\psi_{\omega}(x^{n})\xi(\omega)}{f(x^{n})} = \frac{\xi(x_{n} \mid x^{n-1}, \omega)\xi(\omega \mid x^{n-1})}{f(x_{n} \mid x^{n-1})}.$$
(5.14)

Posterior distributions for multiple independent observations

If
$$\psi(x_n \mid \omega, x^{n-1}) = \psi_{\omega}(x_n)$$
 then $\psi_{\omega}(x^n) = \prod_{k=1}^n \psi_{\omega}(x_k)$. Then:

Posterior recursion with conditional independence

$$\xi_n(w) \triangleq \xi_0(\omega \mid x^n) = \frac{\psi_\omega(x^n)\xi_0(w)}{f_0(x_n)}$$
(5.15)

$$=\xi_{n-1}(\omega \mid x_n) = \frac{\psi_{\omega}(x_n)\xi_{n-1}(w)}{f_{n-1}(x_n)}$$
(5.16)

イロト イヨト イヨト イヨト

where we define ξ_t to be the belief at time *t*.

Conditional independence allows us to write the posterior update as an identical recursion at each time t.

DQC

Observation cost

Expected cost of observation

Let $c:\mathcal{S}\timesarOmega
ightarrow\mathbb{R}$ be an observation cost function. Then the expected cost is

$$\mathbb{E}_{\xi}[c(x,\omega)] = \int_{\Omega} \int_{S} c(\omega, x) \, \mathrm{d}\psi_{\omega}(x) \, \mathrm{d}\xi(\omega).$$
(5.17)

The total risk of observing x and using a decision function $\boldsymbol{\delta}$

is then given by

$$\sigma(\xi, \delta) + \mathbb{E}_{\xi}[c(\omega, x)]$$

Fixed cost per observation

- Consider that we can choose the size *n* of a sample x_1, \ldots, x_n .
- The cost of the sample of size n is γn .
- Let δ_n be the (random) Bayes decision function after observing x_1, \ldots, x_n :

$$\delta_n \triangleq \underset{d \in D}{\arg\min} \sigma[\xi(\cdot \mid x_1, \dots, x_n), d]$$
(5.18)

• Thus, the Bayes risk of *n* observations is

$$\sigma_t(\xi, \delta_n) = \sigma(\xi, \delta_n) + \gamma n.$$
(5.19)

イロト イポト イヨト イヨト

Now we have another decision problem: How many observations to take?

Exercise

Prove that if the risk is bounded, then there exists an optimal number n of observations.

	s (Chalmers)

Quick summary

- We want to make a decision against an unknown parameter W.
- The risk is the negative expected utility.
- The Bayes risk is the minimum risk, and it is concave with respect to the distribution of *W*.
- Our decisions can depend on observations, via a decision function.
- We can construct a complete decision function by computing $\sigma(\xi, \delta)$ for all decision functions (normal form).
- We can instead wait until we observe x and compute σ[ξ(· | x), d] for all decisions (extensive form).
- In minimax settings, we can consider a fixed but unknown parameter w or a fixed but unknown prior ξ. This links decision theory to game theory.
- When each observation has cost γ , there is an optimal value *n* of minimising $\sigma[\xi(\cdot \mid X_n), \delta_n] + \gamma n$, where δ_n is the Bayes decision function after *n* observations.
- The posterior given multiple observations can be computed recursively using independence.
- Our decision at a certain time, affects the future information available.
- Problems where future decisions must be considered, require planning ahead and are called sequential decision problems.