Decision Problems
 Decision Making under Uncertainty, Part III

Christos Dimitrakakis

Chalmers
1/11/2013

1 Introduction

2 Rewards that depend on the outcome of an experiment
■ Formalisation of the problem

3 Bayes risk and Bayes decisions
■ Concavity of the Bayes risk

4 Methods for selecting a decision

- Alternative notions of optimality
- Minimax problems

■ Two-person games

5 Decision problems with observations

- Robust inference and minimax priors
- Decision problems with two points
- Calculating posteriors
- Cost of observations
- Decisions $d \in D$
- Experiments with outcomes in Ω.
- Reward $r \in R$ depending on experiment and outcome.
- Utility $U: \mathcal{R} \rightarrow \mathbb{R}$.

Example (Taking the umbrella)

- There is some probability of rain.
- We don't like carrying an umbrella.
- We really don't like getting wet.

Assumption (Outcomes)

There exists a probability measure P on $\left(\Omega, \mathcal{F}_{\Omega}\right)$ such that the probability of the random outcome ω being in $A \subset \Omega$ is:

$$
\begin{equation*}
\mathbb{P}(\omega \in A)=P(A), \quad \forall A \in \mathcal{F}_{\Omega} \tag{2.1}
\end{equation*}
$$

Assumption (Utilities)

Preferences about rewards in R are transitive, all rewards are comparable and there exists a utility function U, measurable with respect to \mathcal{F}_{R} such that $U\left(r^{\prime}\right) \geq U(r)$ iff $r \succ^{*} r^{\prime}$.

Definition (Reward function)

$$
\begin{equation*}
r=\rho(\omega, d) \tag{2.2}
\end{equation*}
$$

The probability measure induced by decisions
For every $d \in D$, the function $\rho: \Omega \times D \rightarrow R$ induces a probability P_{d} on R. In fact, for any $B \in \mathcal{F}_{R}$:

$$
\begin{equation*}
P_{d}(B) \triangleq \mathbb{P}(\rho(\omega, d) \in B)=P(\{\omega \mid \rho(\omega, d) \in B\}) . \tag{2.3}
\end{equation*}
$$

Assumption

The sets $\{\omega \mid \rho(\omega, d) \in B\}$ must belong to \mathcal{F}_{Ω}. In other words, ρ must be \mathcal{F}_{Ω}-measurable for any d.

(a) The combined decision problem

(b) The separated decision problem

Expected utility

$$
\begin{equation*}
\mathbb{E}_{P_{i}}(U)=\int_{R} U(r) \mathrm{d} P_{i}(r)=\int_{\Omega} U[\rho(\omega, i)] \mathrm{d} P(\omega)=\mathbb{E}_{P}(U \mid d=i) \tag{2.4}
\end{equation*}
$$

Example

You are going to work, and it might rain. The forecast said that the probability of rain $\left(\omega_{1}\right)$ was 20%. What do you do?

- d_{1} : Take the umbrella.
- d_{2} : Risk it!

$\rho(\omega, d)$	d_{1}	d_{2}
ω_{1}	dry, carrying umbrella	wet
ω_{2}	dry, carrying umbrella	dry
$U[\rho(\omega, d)]$	d_{1}	d_{2}
ω_{1}	0	-10
ω_{2}	0	1
$\mathbb{E}_{P}(U \mid d)$	0	-1.2

Table: Rewards, utilities, expected utility for 20% probability of rain.

Application to statistical estimation

- The unknown outcome of the experiment ω is called a parameter.

Application to statistical estimation

- The unknown outcome of the experiment ω is called a parameter.

■ The set of outcomes Ω is called the parameter space.

Application to statistical estimation

- The unknown outcome of the experiment ω is called a parameter.

■ The set of outcomes Ω is called the parameter space.

Definition (Loss)

$$
\begin{equation*}
\ell(\omega, d)=-U[\rho(\omega, d)] . \tag{2.5}
\end{equation*}
$$

Application to statistical estimation

- The unknown outcome of the experiment ω is called a parameter.
- The set of outcomes Ω is called the parameter space.

Definition (Loss)

$$
\begin{equation*}
\ell(\omega, d)=-U[\rho(\omega, d)] . \tag{2.5}
\end{equation*}
$$

Definition (Risk)

$$
\begin{equation*}
\sigma(P, d)=\int_{\Omega} \ell(\omega, d) \mathrm{d} P(\omega) \tag{2.6}
\end{equation*}
$$

Application to statistical estimation

- The unknown outcome of the experiment ω is called a parameter.
- The set of outcomes Ω is called the parameter space.

Definition (Loss)

$$
\begin{equation*}
\ell(\omega, d)=-U[\rho(\omega, d)] \tag{2.5}
\end{equation*}
$$

Definition (Risk)

$$
\begin{equation*}
\sigma(P, d)=\int_{\Omega} \ell(\omega, d) \mathrm{d} P(\omega) \tag{2.6}
\end{equation*}
$$

Of course, the optimal decision is d minimising σ.

Bayes risk

Consider parameter space Ω, decision space D, loss function ℓ.
Definition (Bayes risk)

$$
\begin{equation*}
\sigma^{*}(P)=\inf _{d \in D} \sigma(P, d) \tag{3.1}
\end{equation*}
$$

Remark

For any function $f: X \rightarrow Y$, where Y is equipped with a complete binary relation $<$, we define, for any $A \subset X$

$$
M=\inf _{x \in A} f(x)
$$

s.t. $M \leq f(x)$ for any $x \in A$. Furthermore, for any $M^{\prime}>M$, there exists some $x^{\prime} \in A$ s.t. $M^{\prime}>f\left(x^{\prime}\right)$.

Example

Let $\Omega=\{0,1\}$ and $D=[0,1]$. For an $\alpha \geq 1$, we define the loss $L: \Omega \times D \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\ell(\omega, d)=|\omega-d|^{\alpha} . \tag{3.2}
\end{equation*}
$$

Assume that the distribution of outcomes is

$$
\begin{equation*}
\mathbb{P}(\omega=0)=u \quad \mathbb{P}(\omega=1)=1-u . \tag{3.3}
\end{equation*}
$$

For $\alpha=1$ we have

$$
\begin{equation*}
\sigma(P, d)=\ell(0, d) u+\ell(1, d)(1-u)=d u+(1-d)(1-u) . \tag{3.4}
\end{equation*}
$$

Hence, if $u>1 / 2$ the risk is minimised for $d^{*}=0$, otherwise for $d^{*}=1$.

Figure: Risk for four different distributions with_absolute loss.

Example

Let $\Omega=\{0,1\}$ and $D=[0,1]$. For an $\alpha \geq 1$, we define the loss $L: \Omega \times D \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\ell(\omega, d)=|\omega-d|^{\alpha} . \tag{3.2}
\end{equation*}
$$

Assume that the distribution of outcomes is

$$
\begin{equation*}
\mathbb{P}(\omega=0)=u \quad \mathbb{P}(\omega=1)=1-u . \tag{3.3}
\end{equation*}
$$

For $\alpha>1$,

$$
\begin{equation*}
\sigma(P, d)=d^{\alpha} u+(1-d)^{\alpha}(1-u), \tag{3.4}
\end{equation*}
$$

and by differentiating we find that the optimal decision is

$$
d^{*}=\left[1+\left(\frac{1}{1 / u-1}\right)^{\frac{1}{\alpha-1}}\right]^{-1}
$$

alpha $=2$

Figure: Risk for four different distributions with quadratic loss,

Example (Quadratic loss)

Now consider $\Omega=\mathbb{R}$ with measure P and $\mathcal{D}=\mathbb{R}$. For any point $\omega \in \mathbb{R}$, the loss is

$$
\begin{equation*}
\ell(\omega, d)=|\omega-d|^{2} . \tag{3.4}
\end{equation*}
$$

The optimal decision minimises

$$
\mathbb{E}(\ell \mid d)=\int_{\mathbb{R}}|\omega-d|^{2} \mathrm{~d} P(\omega) .
$$

Then, as long as $\partial / \partial d|\omega-d|^{2}$ is measurable with respect to $\mathcal{F}_{\mathbb{R}}$

$$
\begin{align*}
\frac{\partial}{\partial d} \int_{\mathbb{R}}|\omega-d|^{2} \mathrm{~d} P(\omega) & =\int_{\mathbb{R}} \frac{\partial}{\partial d}|\omega-d|^{2} \mathrm{~d} P(\omega) \tag{3.5}\\
& =2 \int_{\mathbb{R}}(\omega-d) \mathrm{d} P(\omega) \tag{3.6}\\
& =2 \int_{\mathbb{R}} \omega \mathrm{d} P(\omega)-2 \int_{\mathbb{R}} d \mathrm{~d} P(\omega) \tag{3.7}\\
& =2 \mathbb{E}(\omega)-2 d \tag{3.8}
\end{align*}
$$

so the cost is minimised for $d=\mathbb{E}(\omega)$.

A mixture of distributions

Consider two probability measures P, Q on $\left(\Omega, \mathcal{F}_{\Omega}\right)$.

A mixture of distributions

Consider two probability measures P, Q on $\left(\Omega, \mathcal{F}_{\Omega}\right)$. These define two alternative distributions for ω. For any A

A mixture of distributions

Consider two probability measures P, Q on $\left(\Omega, \mathcal{F}_{\Omega}\right)$.
These define two alternative distributions for ω. For any A For any P, Q and $\alpha \in[0,1]$, we define

$$
Z_{\alpha}=\alpha P+(1-\alpha) Q
$$

to mean the probability measure such that

$$
Z_{\alpha}(A)=\alpha P(A)+(1-\alpha) Q(A)
$$

for any $A \in \mathcal{F}_{\Omega}$.

Concavity of the Bayes risk

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in[0,1]$

$$
\begin{equation*}
\sigma^{*}[\alpha P+(1-\alpha) Q] \geq \alpha \sigma^{*}(P)+(1-\alpha) \sigma^{*}(Q) . \tag{3.9}
\end{equation*}
$$

Proof.

From the definition of risk (2.6), for any decision $d \in D$,

$$
\sigma[\alpha P+(1-\alpha) Q, d]=\alpha \sigma(P, d)+(1-\alpha) \sigma(Q, d) .
$$

Hence, by definition (3.1) of the Bayes risk,

$$
\begin{aligned}
\sigma^{*}[\alpha P+(1-\alpha) Q] & =\inf _{d \in D} \sigma[\alpha P+(1-\alpha) Q, d] \\
& =\inf _{d \in D}[\alpha \sigma(P, d)+(1-\alpha) \sigma(Q, d)] .
\end{aligned}
$$

Concavity of the Bayes risk

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in[0,1]$

$$
\begin{equation*}
\sigma^{*}[\alpha P+(1-\alpha) Q] \geq \alpha \sigma^{*}(P)+(1-\alpha) \sigma^{*}(Q) . \tag{3.9}
\end{equation*}
$$

Proof.

$$
\sigma^{*}[\alpha P+(1-\alpha) Q]=\inf _{d \in D}[\alpha \sigma(P, d)+(1-\alpha) \sigma(Q, d)] .
$$

Concavity of the Bayes risk

Theorem

For probability measures P, Q on \mathcal{F}_{Ω} and any $\alpha \in[0,1]$

$$
\begin{equation*}
\sigma^{*}[\alpha P+(1-\alpha) Q] \geq \alpha \sigma^{*}(P)+(1-\alpha) \sigma^{*}(Q) . \tag{3.9}
\end{equation*}
$$

Proof.

$$
\sigma^{*}[\alpha P+(1-\alpha) Q]=\inf _{d \in D}[\alpha \sigma(P, d)+(1-\alpha) \sigma(Q, d)]
$$

Since $\inf _{x}[f(x)+g(x)] \geq \inf _{x} f(x)+\inf _{x} g(x)$,

$$
\begin{aligned}
\sigma^{*}[\alpha P+(1-\alpha) Q] & \geq \alpha \inf _{d \in D} \sigma(P, d)+(1-\alpha) \inf _{d \in D} \sigma(Q, d) \\
& =\alpha \sigma^{*}(P)+(1-\alpha) \sigma^{*}(Q) .
\end{aligned}
$$

The risk function for quadratic loss

Figure: Fixed distribution, varying decision. The decision risk under three different distributions.

Concavity of the Bayes risk

Figure: Fixed decision, varying distribution. The risk of a fixed decision is a linear function of P

Concavity of the Bayes risk

Figure: The risk of a few decisions as P varies. Each decision corresponds to one of these lines.

Concavity of the Bayes risk

Figure: For each P, there is at least one decision minimising the risk.

Concavity of the Bayes risk

Figure: The Bayes risk is concave and the minimising decision is tangent to it.

Concavity of the Bayes risk

Figure: If we are not very wrong about P, then we are not far from optimal.

Concavity of the Bayes risk

Figure: We can approximate the Bayes risk by taking the minimum of a finite number of decisions.

Mixed decisions

A distribution over decisions

- Consider a probability measure π on \mathcal{D}.
- We select decisions according to probability

$$
\pi(A) \triangleq \mathbb{P}(d \in A) .
$$

for any appropriate $A \subset \mathcal{D}$.

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and with utility function $U: \Omega \times \mathcal{D} \rightarrow \mathbb{R}$. Further let $d^{*} \in \mathcal{D}$ such that $\mathbb{E}\left(U \mid d^{*}\right) \geq \mathbb{E}(U \mid d)$ for all $d \in \mathcal{D}$. Then for any probability measure π on \mathcal{D},

$$
\mathbb{E}\left(U \mid d^{*}\right) \geq \mathbb{E}(U \mid \pi)
$$

Mixed decisions

Theorem

Consider any statistical decision problem with probability measure P on outcomes Ω and with utility function $U: \Omega \times \mathcal{D} \rightarrow \mathbb{R}$. Further let $d^{*} \in \mathcal{D}$ such that $\mathbb{E}\left(U \mid d^{*}\right) \geq \mathbb{E}(U \mid d)$ for all $d \in \mathcal{D}$. Then for any probability measure π on \mathcal{D},

$$
\mathbb{E}\left(U \mid d^{*}\right) \geq \mathbb{E}(U \mid \pi)
$$

Proof.

$$
\begin{aligned}
\mathbb{E}(U \mid \pi) & =\int_{D} \mathbb{E}(U \mid d) \mathrm{d} \pi(d) \\
& \leq \int_{D} \mathbb{E}\left(U \mid d^{*}\right) \mathrm{d} \pi(d) \\
& =\mathbb{E}\left(U \mid d^{*}\right) \int_{D} \mathrm{~d} \pi(d)=\mathbb{E}\left(U \mid d^{*}\right)
\end{aligned}
$$

Alternative decision rules

Maximin rule

Select d maximising $\min _{w \in W} U(w, d)$.

ϵ-optimal rule

For some $\epsilon>0$, select d maximising

$$
\begin{equation*}
P\left(\left\{\omega \mid U(\omega, d)>\inf _{d^{\prime} \in \mathcal{D}} U\left(\omega, d^{\prime}\right)+\epsilon\right\}\right) . \tag{4.1}
\end{equation*}
$$

Minimax/Maximin values

$$
\begin{aligned}
& U_{*}=\max _{d} \min _{\omega} U(\omega, d)=\min _{\omega} U\left(\omega, d^{*}\right) \\
& U^{*}=\min _{\omega} \max _{d} U(\omega, d)=\max _{d} U\left(\omega^{*}, d\right)
\end{aligned}
$$

Note that by definition

$$
\begin{equation*}
U^{*} \geq U\left(\omega^{*}, d^{*}\right) \geq U_{*} . \tag{4.2}
\end{equation*}
$$

Regret

Consider a problem with two possible outcomes ω_{1}, ω_{2}, two possible decisions, d_{1}, d_{2}, a utility function $U(\omega, d)$ and a prior distribution $P\left(\omega_{i}\right)=1 / 2$.

$U(\omega, d)$	d_{1}	d_{2}
ω_{1}	-1	0
ω_{2}	10	1
$\mathbb{E}(U \mid P, d)$	4.5	0.5
$\min _{\omega} U(\omega, d)$	-1	0

Table: Utility function, expected utility and maximin utility.

Regret

Consider a problem with two possible outcomes ω_{1}, ω_{2}, two possible decisions, d_{1}, d_{2}, a utility function $U(\omega, d)$ and a prior distribution $P\left(\omega_{i}\right)=1 / 2$.

$U(\omega, d)$	d_{1}	d_{2}
ω_{1}	-1	0
ω_{2}	10	1
$\mathbb{E}(U \mid P, d)$	4.5	0.5
$\min _{\omega} U(\omega, d)$	-1	0

Table: Utility function, expected utility and maximin utility.

Definition (Regret)

$$
\begin{equation*}
L(\omega, \pi) \triangleq \max _{\pi^{\prime}} U\left(\omega, \pi^{\prime}\right)-U(\omega, \pi) \tag{4.3}
\end{equation*}
$$

Regret

Consider a problem with two possible outcomes ω_{1}, ω_{2}, two possible decisions, d_{1}, d_{2}, a utility function $U(\omega, d)$ and a prior distribution $P\left(\omega_{i}\right)=1 / 2$.

$U(\omega, d)$	d_{1}	d_{2}
ω_{1}	-1	0
ω_{2}	10	1
$\mathbb{E}(U \mid P, d)$	4.5	0.5
$\min _{\omega} U(\omega, d)$	-1	0

Table: Utility function, expected utility and maximin utility.

$L(\omega, d)$	d_{1}	d_{2}
ω_{1}	1	0
ω_{2}	0	9
$\mathbb{E}(L \mid P, d)$	0.5	4.5
$\max _{\omega} L(\omega, d)$	1	9

Table: Regret, in expectation and minimax.

Minimax utility, regret and loss

Remark

For each ω, there is some d such that:

$$
\begin{equation*}
U(\omega, d) \in \max _{\pi} U(\omega, \pi) . \tag{4.3}
\end{equation*}
$$

Remark

$$
\begin{equation*}
L(\omega, \pi)=\sum_{d} \pi(d) L(w, d) \geq 0, \tag{4.4}
\end{equation*}
$$

with equality iff π is ω-optimal.

Remark

$$
\begin{equation*}
L(\omega, \pi)=\max _{d} U(\omega, d)-U(\omega, \pi) . \tag{4.5}
\end{equation*}
$$

Remark

$L(\omega, \pi)=-U(\omega, \pi)=L(\omega, \pi)$ iff $\max _{d} U(\omega, d)=0$.

Example

(An even-money bet)

U	ω_{1}	ω_{2}
d_{1}	1	-1
d_{2}	0	0

Table: Even-bet utility

For two distributions π, ξ on D and Ω, define our expected utility to be:

$$
\begin{equation*}
U(\xi, \pi) \triangleq \sum_{w \in \Omega} \sum_{d \in D} U(w, d) \xi(w) \pi(d) \tag{4.6}
\end{equation*}
$$

Then we define the maximin policy π^{*} such that:

$$
\begin{equation*}
\min _{\xi} U\left(\xi, \pi^{*}\right)=U_{*} \triangleq \max _{\pi} \min _{\xi} U(\xi, \pi) \tag{4.7}
\end{equation*}
$$

Then we define the minimax prior ξ^{*} such that

$$
\begin{equation*}
\max _{\pi} U\left(\xi^{*}, \pi\right)=U^{*} \triangleq \min _{\xi} \max _{\pi} U(\xi, \pi) \tag{4.8}
\end{equation*}
$$

Expected regret

$$
\begin{align*}
L(\xi, \pi) & =\max _{\pi^{\prime}} \sum_{w} \xi(w)\left\{U\left(w, \pi^{\prime}\right)-U(w, \pi)\right\} \\
& =\max _{\pi^{\prime}} U\left(\xi, \pi^{\prime}\right)-U(\xi, \pi) \tag{4.9}
\end{align*}
$$

Theorem

If there exist $\xi^{*}, \pi^{*} \in D$ and $C \in \mathbb{R}$ such that

$$
U\left(\xi^{*}, \pi\right) \leq C \leq U\left(\xi, \pi^{*}\right)
$$

then

$$
U^{*}=U_{*}=U\left(\xi^{*}, \pi^{*}\right)=C
$$

Definition

A bilinear game is a tuple (U, Ξ, Π, Ω, D) with $U: \Xi \times \Pi \rightarrow \mathbb{R}$ such that all $\xi \in \Xi$ are arbitrary distributions on Ω and all $\pi \in \Pi$ are arbitrary distributions on D :

$$
U(\xi, \pi) \triangleq \mathbb{E}(U \mid \xi, \pi)=\sum_{w, d} U(w, d) \pi(d) \xi(w)
$$

Theorem

For a bilinear game, $U^{*}=U_{*}$. In addition, the following three conditions are equivalent:
$1 \pi^{*}$ is maximin, ξ^{*} is minimax and $U^{*}=C$.
2 $U\left(\xi, \pi^{*}\right) \geq C \geq U\left(\xi^{*}, \pi\right)$ for all ξ, π.
3 $U\left(w, \pi^{*}\right) \geq C \geq U\left(\xi^{*}, d\right)$ for all w, d.

Linear programming formulation

The problem

$$
\max _{\pi} \min _{\xi} U(\xi, \pi)
$$

where ξ, π are distributions over finite domains, can be converted to finding π with the greatest lower bound. Using matrix notation,

$$
\max \left\{v_{\pi} \mid(\boldsymbol{U} \pi)_{j} \geq v_{\pi} \forall j, \quad \sum_{i} \pi_{i}=1, \pi_{i} \geq 0 \forall i\right\}
$$

where everything has been written in matrix form. Equivalently, we can find ξ with the least upper bound:

$$
\min \left\{v_{\xi} \mid\left(\boldsymbol{\xi}^{\top} \boldsymbol{U}\right)_{i} \leq v_{\xi} \forall i, \sum_{j} \xi_{j}=1, \xi_{j} \geq 0 \forall j\right\}
$$

where everything has been written in matrix form. In fact, one can show that $v_{\xi}=v_{\pi}$, thus obtaining Theorem 2.

Obtaining information

■ We must choose a decision from D.

Obtaining information

1 We must choose a decision from D.

- There is an unknown parameter $\omega \in \Omega$ with measure ξ.

Obtaining information

1 We must choose a decision from D.

- There is an unknown parameter $\omega \in \Omega$ with measure ξ.

B Our loss is $\ell: \Omega \times D \rightarrow \mathbb{R}$.

Obtaining information

1 We must choose a decision from D.
2 There is an unknown parameter $\omega \in \Omega$ with measure ξ.
3 Our loss is $\ell: \Omega \times D \rightarrow \mathbb{R}$.
4 Now consider a family of probability measures on the observation set \mathcal{S} :

$$
\left\{\psi_{\omega} \mid \omega \in \Omega\right\} .
$$

Obtaining information

1 We must choose a decision from D.

- There is an unknown parameter $\omega \in \Omega$ with measure ξ.

B Our loss is $\ell: \Omega \times D \rightarrow \mathbb{R}$.
4 Now consider a family of probability measures on the observation set \mathcal{S} :

$$
\left\{\psi_{\omega} \mid \omega \in \Omega\right\} .
$$

5 Let $x \in \mathcal{S}$ be a random variable with distribution ψ_{ω}.

Obtaining information

1 We must choose a decision from D.

- There is an unknown parameter $\omega \in \Omega$ with measure ξ.

B Our loss is $\ell: \Omega \times D \rightarrow \mathbb{R}$.
4 Now consider a family of probability measures on the observation set \mathcal{S} :

$$
\left\{\psi_{\omega} \mid \omega \in \Omega\right\} .
$$

5 Let $x \in \mathcal{S}$ be a random variable with distribution ψ_{ω}.
■ We want to choose $d \in D$, taking into account both ξ and the evidence x.

Obtaining information

$\boxed{1}$ We must choose a decision from D.
2 There is an unknown parameter $\omega \in \Omega$ with measure ξ.
B Our loss is $\ell: \Omega \times D \rightarrow \mathbb{R}$.
4 Now consider a family of probability measures on the observation set \mathcal{S} :

$$
\left\{\psi_{\omega} \mid \omega \in \Omega\right\} .
$$

5 Let $x \in \mathcal{S}$ be a random variable with distribution ψ_{ω}.
■ We want to choose $d \in D$, taking into account both ξ and the evidence x.
\square We want to find a decision function $\delta: S \rightarrow D$ that minimises the risk

$$
\sigma(\xi, \delta)=\mathbb{E}\{\ell[\omega, \delta(X)]\}=\int_{\Omega}\left(\int_{S} \ell[\omega, \delta(x)] \mathrm{d} \psi_{\omega}(x)\right) \mathrm{d} \xi(\omega) .
$$

Minimising the risk
Expected loss of a fixed decision d with $\omega \sim \xi$

$$
\begin{equation*}
\sigma(\xi, d)=\int_{\Omega} L(\omega, d) \mathrm{d} \xi(\omega) . \tag{5.1}
\end{equation*}
$$

Expected loss of a decision function δ with fixed $\omega \in \Omega$

$$
\begin{equation*}
\sigma(\omega, \delta)=\int_{S} L(\omega, \delta(x)) \mathrm{d} \psi_{\omega}(x) . \tag{5.2}
\end{equation*}
$$

Expected loss of a decision function δ with $W \sim \xi$

$$
\begin{equation*}
\sigma(\xi, \delta)=\int_{\Omega} \rho(\omega, \delta) \mathrm{d} \xi(\omega), \quad \quad \sigma^{*}(\xi) \triangleq \inf _{\delta} \sigma(\xi, \delta)=\rho\left(\xi, \delta^{*}\right) . \tag{5.3}
\end{equation*}
$$

Bayes decision functions

Extensive form

$$
\begin{align*}
\sigma(\xi, \delta) & =\int_{\Omega} \int_{S} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega) \mathrm{d} \psi_{\omega}(x) \tag{5.4}\\
& =\int_{S} \int_{\Omega} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega \mid x) \mathrm{d} f(x) \tag{5.5}
\end{align*}
$$

where $f(x)=\int_{\Omega} \psi_{\omega}(x) \mathrm{d} \xi(\omega)$.

$$
\delta^{*}(x) \triangleq \underset{d \in D}{\arg \max } \mathbb{E}_{\xi}(\ell \mid x, d)=\underset{d \in D}{\arg \max } \int_{\Omega} \ell(w, d) \mathrm{d} \xi(w \mid x) .
$$

Bayes decision functions

Extensive form

$$
\begin{align*}
\sigma(\xi, \delta) & =\int_{\Omega} \int_{S} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega) \mathrm{d} \psi_{\omega}(x) \tag{5.4}\\
& =\int_{S} \int_{\Omega} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega \mid x) \mathrm{d} f(x), \tag{5.5}
\end{align*}
$$

where $f(x)=\int_{\Omega} \psi_{\omega}(x) \mathrm{d} \xi(\omega)$.

$$
\begin{gathered}
\delta^{*}(x) \triangleq \underset{d \in D}{\arg \max } \mathbb{E}_{\xi}(\ell \mid x, d)=\underset{d \in D}{\arg \max } \int_{\Omega} \ell(w, d) \mathrm{d} \xi(w \mid x) . \\
\int_{S} \int_{\Omega} \ell\left[w, \delta^{*}(x)\right] \mathrm{d} \xi(w \mid x) \mathrm{d} f(x)=\int_{S}\left\{\min _{d} \int_{\Omega} \ell[w, d] \mathrm{d} \xi(w \mid x)\right\} \mathrm{d} f(x) .
\end{gathered}
$$

Bayes decision functions

Extensive form

$$
\begin{align*}
\sigma(\xi, \delta) & =\int_{\Omega} \int_{S} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega) \mathrm{d} \psi_{\omega}(x) \tag{5.4}\\
& =\int_{S} \int_{\Omega} \ell[\omega, \delta(x)] \mathrm{d} \xi(\omega \mid x) \mathrm{d} f(x) \tag{5.5}
\end{align*}
$$

where $f(x)=\int_{\Omega} \psi_{\omega}(x) \mathrm{d} \xi(\omega)$.

Definition (Prior distribution)

The distribution ξ is called the prior distribution of ω.

Definition (Marginal distribution)

The distribution f is called the (prior) marginal distribution of x.

Definition (Posterior distribution)

The conditional distribution $\xi(\cdot \mid x)$ is called the posterior distribution of ω.

Minimax worlds with observations

Consider a utility function $U: \Omega \times D \rightarrow \mathbb{R}$. There are two players, the statistician and nature, each selecting $d \in D$ and $\omega \in \Omega$ respectively. The statistician's maximin decision without observations is:

$$
\max _{d \in D} \min _{\omega \in \Omega} \mathbb{E}(U \mid \omega, d)=\max _{d \in D} \min _{\omega \in \Omega} U(\omega, d)
$$

Now consider an observation $x \in S$, with $x \sim \psi(\cdot \mid \omega)$. The statistician now selects a decision function $\delta \in \Delta$. For any δ, the worst-case expected utility is:

$$
\begin{align*}
\min _{\omega \in \Omega} \mathbb{E}(U \mid \omega, \delta) & =\min _{\omega \in \Omega} \int_{S} U[\omega, \delta(x)] \mathrm{d} \phi_{\omega}(x) \tag{5.6}\\
& =\min _{\omega \in \Omega} \sum_{d \in D} U(\omega, d) \phi_{\omega}(\{x \in S \mid \delta(x)=d\}) \tag{5.7}
\end{align*}
$$

Minimax priors with observations

The maximin problem

$$
\begin{equation*}
\max _{\delta \in \Delta} \min _{\xi \in \Xi} \mathbb{E}(U \mid \xi, \delta)=\max _{\delta \in \Delta} \min _{\xi \in \Xi} \int_{S} \int_{\Omega} U[\omega, \delta(x)] \mathrm{d} \xi(\omega \mid x) \mathrm{d} p_{\xi}(x) . \tag{5.8}
\end{equation*}
$$

The minimax problem

$$
\begin{equation*}
\min _{\xi \in \Xi} \max _{\delta \in \Delta} \mathbb{E}(U \mid \xi, \delta)=\min _{\xi \in \Xi} \int_{S} \max _{d \in D} \int_{\Omega} U[\omega, d] \mathrm{d} \xi(\omega \mid x) \mathrm{d} p_{\xi}(x) . \tag{5.9}
\end{equation*}
$$

Lemma

If Ξ contains all priors, then

$$
\begin{equation*}
\inf _{\xi \in \Xi} U(\xi, \delta)=\inf _{\omega \in \Omega} U(\omega, \delta) \tag{5.10}
\end{equation*}
$$

Decision problems with two points and hypothesis testing

	d_{1}	d_{2}
ω_{1}	0	c_{1}
ω_{2}	c_{2}	0

Table: Cost function of a simple hypothesis testing problem

- We observe the value of some random variable X and then choose decision $\delta(X)$.
- Let $\alpha(\delta)$ be the conditional probability that we choose d_{2} when $\omega=\omega_{1}$.

■ Let $\beta(\delta)$ be the conditional probability that we choose d_{1} when $\omega=\omega_{2}$.

- Let $a \triangleq c_{1} \mathbb{P}\left(\omega=\omega_{1}\right)$ and $b \triangleq c_{2} \mathbb{P}\left(\omega=\omega_{2}\right)$.

The risk of δ is:

$$
\begin{equation*}
a \alpha(\delta)+b \beta(\delta) \tag{5.11}
\end{equation*}
$$

Decision problems with two points and hypothesis testing

	d_{1}	d_{2}
ω_{1}	0	c_{1}
ω_{2}	c_{2}	0

Table: Cost function of a simple hypothesis testing problem

The risk of δ is:

$$
\begin{equation*}
a \alpha(\delta)+b \beta(\delta) \tag{5.11}
\end{equation*}
$$

Theorem (Neymann-Pearson lemma)
Let where ψ_{w} be densities or probabilities on \mathcal{S}. For any $a>0, b>0$, let δ^{*} be a decision function such that,

$$
\begin{array}{ll}
\delta^{*}(x)=d_{1}, & \text { if } a \psi_{\omega_{1}}(x)>b \psi_{\omega_{2}}(x) \\
\delta^{*}(x)=d_{2}, & \text { if } a \psi_{\omega_{2}}(x)<b \psi_{\omega_{2}}(x) \tag{5.13}
\end{array}
$$

and either d_{1}, d_{2} otherwise. Then, for any other δ :

$$
a \alpha\left(\delta^{*}\right)+b \beta\left(\delta^{*}\right) \leq a \alpha(\delta)+b \beta(\delta)
$$

Posterior distributions for multiple observations

Assume that we observe a value $x^{n} \triangleq x_{1}, \ldots, x_{n}$ of a random variable $X^{n} \triangleq X_{1}, \ldots, X_{n}$. We have a prior ξ on Ω. For the observations, we write:

Observation probability given history x^{n-1} and parameter ω

$$
\psi\left(x_{n} \mid x^{n-1}, \omega\right)=\frac{\psi_{\omega}\left(x^{n}\right)}{\psi_{\omega}\left(x^{n-1}\right)}
$$

Posterior recursion

$$
\begin{equation*}
\xi\left(\omega \mid x^{n}\right)=\frac{\psi_{\omega}\left(x^{n}\right) \xi(\omega)}{f\left(x^{n}\right)}=\frac{\xi\left(x_{n} \mid x^{n-1}, \omega\right) \xi\left(\omega \mid x^{n-1}\right)}{f\left(x_{n} \mid x^{n-1}\right)} \tag{5.14}
\end{equation*}
$$

Posterior distributions for multiple independent observations

If $\psi\left(x_{n} \mid \omega, x^{n-1}\right)=\psi_{\omega}\left(x_{n}\right)$ then $\psi_{\omega}\left(x^{n}\right)=\prod_{k=1}^{n} \psi_{\omega}\left(x_{k}\right)$. Then:

Posterior recursion with conditional independence

$$
\begin{align*}
\xi_{n}(w) & \triangleq \xi_{0}\left(\omega \mid x^{n}\right)=\frac{\psi_{\omega}\left(x^{n}\right) \xi_{0}(w)}{f_{0}\left(x_{n}\right)} \tag{5.15}\\
& =\xi_{n-1}\left(\omega \mid x_{n}\right)=\frac{\psi_{\omega}\left(x_{n}\right) \xi_{n-1}(w)}{f_{n-1}\left(x_{n}\right)} \tag{5.16}
\end{align*}
$$

where we define ξ_{t} to be the belief at time t.
Conditional independence allows us to write the posterior update as an identical recursion at each time t.

Observation cost

Expected cost of observation

Let $c: \mathcal{S} \times \Omega \rightarrow \mathbb{R}$ be an observation cost function. Then the expected cost is

$$
\begin{equation*}
\mathbb{E}_{\xi}[c(x, \omega)]=\int_{\Omega} \int_{S} c(\omega, x) \mathrm{d} \psi_{\omega}(x) \mathrm{d} \xi(\omega) \tag{5.17}
\end{equation*}
$$

The total risk of observing x and using a decision function δ is then given by

$$
\sigma(\xi, \delta)+\mathbb{E}_{\xi}[c(\omega, x)]
$$

Fixed cost per observation

- Consider that we can choose the size n of a sample x_{1}, \ldots, x_{n}.
- The cost of the sample of size n is γn.
- Let δ_{n} be the (random) Bayes decision function after observing x_{1}, \ldots, x_{n} :

$$
\begin{equation*}
\delta_{n} \triangleq \underset{d \in D}{\arg \min } \sigma\left[\xi\left(\cdot \mid x_{1}, \ldots, x_{n}\right), d\right] \tag{5.18}
\end{equation*}
$$

- Thus, the Bayes risk of n observations is

$$
\begin{equation*}
\sigma_{t}\left(\xi, \delta_{n}\right)=\sigma\left(\xi, \delta_{n}\right)+\gamma n . \tag{5.19}
\end{equation*}
$$

- Now we have another decision problem: How many observations to take?

Exercise

Prove that if the risk is bounded, then there exists an optimal number n of observations.

Quick summary

- We want to make a decision against an unknown parameter W.
- The risk is the negative expected utility.
- The Bayes risk is the minimum risk, and it is concave with respect to the distribution of W.
- Our decisions can depend on observations, via a decision function.
- We can construct a complete decision function by computing $\sigma(\xi, \delta)$ for all decision functions (normal form).
- We can instead wait until we observe x and compute $\sigma[\xi(\cdot \mid x), d]$ for all decisions (extensive form).
■ In minimax settings, we can consider a fixed but unknown parameter w or a fixed but unknown prior ξ. This links decision theory to game theory.
- When each observation has cost γ, there is an optimal value n of minimising $\sigma\left[\xi\left(\cdot \mid X_{n}\right), \delta_{n}\right]+\gamma n$, where δ_{n} is the Bayes decision function after n observations.
- The posterior given multiple observations can be computed recursively using independence.
- Our decision at a certain time, affects the future information available.
- Problems where future decisions must be considered, require planning ahead and are called sequential decision problems.

