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Overview

» We wish to estimate something from a dataset x € S.
» We wish to communicate what we learn to a third party.
» How much can they learn about x?

Bayesian estimation
» What are its robustness and privacy properties?
» How important is the selection of the prior?
Limiting the communication channel
» How should we communicate information about our posterior?
» How much can an adversary learn from our posterior?
Example (Health insurance)

» We collect data about treatment and patients.

» Disclose treatment effectiveness, but not patient information.



Setting

Dramatis personae

> x — data.
» 2% — a (Bayesian) statistician.
> ( — the statistician’s prior.

» 0 — a parameter

> of — an adversary. He knows ¢, should not learn x.
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» 0 — a parameter

> of — an adversary. He knows ¢, should not learn x.

The game

1. 2 selects a model family (F) and a prior (§).

2. 9 observes data x and calculates the posterior &(60|x).
3. & queries 4.

4. A responds with a function of the posterior ¢(6]x).

5. Goto 3.



Two related problem viewpoints

Bayesian inference view
Prior

Data Posterior Observer

Mechanism design view
Mechanism

Data Query Observer
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Bayesian inference

Setting

» Dataset space S.

» Distribution family F £ { Py |0 € O }.
» Each Py is a distribution on S.

» Prior distribution ¢ on ©.

>

Posterior given data x € S:

E(0 | x) = Pe(X)XC)(‘g)

(
¢(x) = ) Po(x)E(0). (marginal)
0cO

(posterior)
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Our knowledge is private.
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There are also well-known F satisfying our assumptions.

First, we must generalise differential privacy...



Differential privacy of conditional distribution &(- | x)
Definition ((e, 6)-differential privacy)
&(- | x) is (€, 8)-differentially private if, Vx € S = X", BC ©®
¢(B|x) <e¢(By)+d,

for all y in the hamming-1 neighbourhood of x.



Differential privacy of conditional distribution &(- | x)

Definition ((e, 6)-differential privacy)
&(- | x) is (€, 8)-differentially private if, Vx € S = X", BC ©®

¢(B|x) <eC(Bly)+9,
for all y in the hamming-1 neighbourhood of x.

Definition ((e, ¢)-differential privacy under p.)

&(- | x) is (€, 8)-differentially private under a pseudo-metric
p:SxS =+Ryif, VBCBOand xe S,

(B |x) < eP™E(B|y)+op(xy), VyeS

If two datasets x, y are close, then the distributions &(- | x) and
&(- | y) are also close.
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Sufficient conditions

Assumption (F is well-behaved)
For a given p on S, 3L > 0 s.t. V8 € O:

Po(x)
Po(y)

i.e. all members of F are L-Lipschitz.

In

\ <lp(xy),  Vxyes, 1)

Assumption (The prior is concentrated on nice parts of F)

Let the set of L-Lipschitz parameters be ®;. Then dc > 0 s.t.
VL > 0:

£(01) > 1— exp(—cl), (2)



When do these assumptions hold?

Example (Exponential families)
Family F, with sufficient statistic T.

po(x) = h(x) exp {1g T(x) = Alo) |
For a given 8 € ®, we want to test if:

In(h(x)/h(y)) + 13 (T(x) = T(y)| < Lo(x.y),  Wxy€X .



Example (Exponential distribution)

Exponential prior with parameter ¢ > 0, satisfies Assumption 2.
Example (Discrete Bayesian networks)

Py (x)
Po(y)

where: p(x,y) is the number of edges and nodes influenced by the
differences in x, y and € the smallest Pg-mass placed to any event.

‘In §Iné~p(X,y),
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Robustness of the posterior distribution

Definition (KL divergence)
P Q) 2 / In—dP

Theorem

(i) Under Assumption 1,

D(E(-[x) 1 ¢(-1y)) <2Lp(x,y)

(i) Under Assumption 2,

DEC1x)[1EC¢1y) <= plxy)

alx



Differential privacy of the posterior

Theorem

1. Under Assumption 1, B € Gg:
E(B|x) < 2Yg(B|y)

i.e. the posterior is (2L,0)-DP under p.

(6)



Differential privacy of the posterior

Theorem

1. Under Assumption 1, B € Gg:
E(B|x) < 2Yg(B|y)

i.e. the posterior is (2L,0)-DP under p.
2. Under Assumption 2, for all x,y € S, B € Gg:

E(B1x)—2(By)] < /5-p(x.¥)

i.e. the posterior is (0, \/%)—DP under /p.
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A query model

v

We select a prior ¢.

» We observe data x.

v

We calculate a posterior &(- | x).

> An adversary has limited access to the posterior.

Access model
At time t, the adversary observes a sample from our posterior
distribution.

0r ~ &(- | x),

More generally, o can select a question g : ® — R, where R is a
response space:

re = q(0:)



Other mechanisms

Laplace mechanism
Add noise to responses to queries.

r=q(x)+w, w ~ Laplace(\)

Exponential mechanism
Define a utility function u(x, r)

u(x,r)

p(r) o e u(r).

Subsampling
Perform inference on a random sample of the data.



Reduction of privacy to a testing problem

How fast can the adversary learn?

» Different datasets x, y give different &(- | x),Z(- | y).

» How many samples are needed to differentiate them?



Reduction of privacy to a testing problem

How fast can the adversary learn?

» Different datasets x, y give different &(- | x),Z(- | y).

» How many samples are needed to differentiate them?

Theorem
Under Assumption 1, the adversary can distinguish between data
X,y with probability 1 — 6 if:
3 1
> —1In=. 7
plxy) 2 g Ins (7)

Under Assumption 2, this becomes:
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The Le Cam method for lower bounds

Idea: Use S for the “parameter” space of an estimator.

The family of posterior measures
EL{(|x)|xeS}, (9)

Lemma (Le Cam’s method)

Let y(0) be an estimator of x. Let S1,S» be 25-separated and say
x€ S5 =¢(-|x)€ 8 CE. Then:

sup Eg(o(¢,x) [ x) 26 sup [[C1 A Gall (10)

x€S é‘,’ECU(E,’)

Expected distance between the real and guessed data:

Ee(p(y.x) | x) = [ p(9(0).x)d2(@ | ),



Conclusion

Bayesian inference is inherently robust and private.

>
> |t suffices to select the right prior. But how?
» |n some cases, this is closed form.

>

The general case is an open problem.

» Do we need to randomise at all?

Job ad
PhD student in differential privacy and distributed decision making.



	Privacy properties of Bayesian inference
	Bayesian inference
	Robustness of the posterior distribution
	A query model


