Robust and private Bayesian inference¹

Christos Dimitrakakis¹ Blaine Nelson^{2,3} Aikaterini Mitrokotsa¹ Benjamin Rubinstein⁴

¹Chalmers university of Technology

²University of Potsdam

³Google

⁴University of Melbourne

23/10/2014

¹Appeared at ALT 2014

Overview

- We wish to estimate something from a dataset $x \in S$.
- We wish to communicate what we learn to a third party.
- How much can they learn about x?

Bayesian estimation

- What are its robustness and privacy properties?
- How important is the selection of the prior?

Limiting the communication channel

- How should we communicate information about our posterior?
- How much can an adversary learn from our posterior?

Example (Health insurance)

- We collect data about treatment and patients.
- Disclose treatment effectiveness, but not patient information.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Setting

Dramatis personae

- ► x data.
- ▶ ℬ a (Bayesian) statistician.
- ξ the statistician's prior.
- ▶ θ a parameter
- \mathscr{A} an adversary. He knows ξ , should not learn x.

・ロト・日本・モート・モー うへぐ

Setting

Dramatis personae

- ► x data.
- *B* a (Bayesian) statistician.
- ξ the statistician's prior.
- ▶ θ a parameter
- \mathscr{A} an adversary. He knows ξ , should not learn x.

The game

- 1. \mathscr{B} selects a model family (\mathcal{F}) and a prior (ξ) .
- 2. \mathscr{B} observes data x and calculates the posterior $\xi(\theta|x)$.

- 3. \mathscr{A} queries \mathscr{B} .
- 4. \mathscr{B} responds with a function of the posterior $\xi(\theta|x)$.
- 5. Goto 3.

Two related problem viewpoints

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Privacy properties of Bayesian inference

Bayesian inference Robustness of the posterior distribution A query model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bayesian inference

Setting

- ► Dataset space S.
- Distribution family $\mathcal{F} \triangleq \{ P_{\theta} \mid \theta \in \Theta \}.$
- Each P_{θ} is a distribution on S.
- Prior distribution ξ on Θ .
- Posterior given data $x \in \mathcal{S}$:

$$\begin{split} \xi(\theta \mid x) &= \frac{P_{\theta}(x)\xi(\theta)}{\phi(x)} & \text{(posterior)} \\ \phi(x) &\triangleq \sum_{\theta \in \Theta} P_{\theta}(x)\xi(\theta). & \text{(marginal)} \end{split}$$

- If we assume the family $\mathcal F$ is well-behaved
- \blacktriangleright . . . or that the prior ξ is focused on the "nice" parts of ${\cal F}$

What we want to show

- If we assume the family *F* is well-behaved ...
- ▶ ... or that the prior ξ is focused on the "nice" parts of $\mathcal F$
- Inference is robust.
- Our knowledge is private.
- There are also well-known \mathcal{F} satisfying our assumptions.

What we want to show

- If we assume the family *F* is well-behaved ...
- . . . or that the prior ξ is focused on the "nice" parts of ${\cal F}$
- Inference is robust.
- Our knowledge is private.
- There are also well-known \mathcal{F} satisfying our assumptions.

First, we must generalise differential privacy...

Differential privacy of conditional distribution $\xi(\cdot \mid x)$

Definition ((ϵ , δ)-differential privacy) $\xi(\cdot \mid x)$ is (ϵ , δ)-differentially private if, $\forall x \in S = \mathcal{X}^n$, $B \subset \Theta$

$$\xi(B \mid x) \le e^{\epsilon} \xi(B \mid y) + \delta,$$

for all y in the hamming-1 neighbourhood of x.

Differential privacy of conditional distribution $\xi(\cdot \mid x)$

Definition ((ϵ , δ)-differential privacy) $\xi(\cdot \mid x)$ is (ϵ , δ)-differentially private if, $\forall x \in S = \mathcal{X}^n$, $B \subset \Theta$

$$\xi(B \mid x) \le e^{\epsilon} \xi(B \mid y) + \delta,$$

for all y in the hamming-1 neighbourhood of x.

Definition ((ϵ , δ)-differential privacy under ρ .) $\xi(\cdot \mid x)$ is (ϵ , δ)-differentially private under a pseudo-metric $\rho: S \times S \to \mathbb{R}_+$ if, $\forall B \subset \Theta$ and $x \in S$,

$$\xi(B \mid x) \le e^{\epsilon \rho(x,y)} \xi(B \mid y) + \delta \rho(x,y), \qquad \forall y \in S$$

If two datasets x, y are close, then the distributions $\xi(\cdot \mid x)$ and $\xi(\cdot \mid y)$ are also close.

Sufficient conditions

Assumption (\mathcal{F} is well-behaved)

i.e. all members of ${\mathcal F}$ are L-Lipschitz.

Assumption (The prior is concentrated on nice parts of \mathcal{F})

Sufficient conditions

Assumption (\mathcal{F} is well-behaved) For a given ρ on \mathcal{S} , $\exists L > 0$ s.t. $\forall \theta \in \Theta$:

$$\left| \ln \frac{P_{\theta}(x)}{P_{\theta}(y)} \right| \le L \rho(x, y), \qquad \forall x, y \in \mathcal{S},$$
(1)

i.e. all members of \mathcal{F} are L-Lipschitz.

Assumption (The prior is concentrated on nice parts of \mathcal{F})

Sufficient conditions

Assumption (\mathcal{F} is well-behaved) For a given ρ on \mathcal{S} , $\exists L > 0$ s.t. $\forall \theta \in \Theta$:

$$\left| \ln \frac{P_{\theta}(x)}{P_{\theta}(y)} \right| \le L\rho(x, y), \qquad \forall x, y \in \mathcal{S},$$
(1)

i.e. all members of \mathcal{F} are L-Lipschitz.

Assumption (The prior is concentrated on nice parts of \mathcal{F}) Let the set of L-Lipschitz parameters be Θ_L . Then $\exists c > 0$ s.t. $\forall L \ge 0$:

$$\xi(\Theta_L) \ge 1 - \exp(-cL),\tag{2}$$

When do these assumptions hold?

Example (Exponential families) Family \mathcal{F} , with sufficient statistic T.

$$p_{\theta}(x) = h(x) \exp\left\{\eta_{\theta}^{\top} T(x) - A(\eta_{\theta})\right\}$$

For a given $\theta \in \Theta$, we want to test if:

$$\left|\ln(h(x)/h(y)) + \eta_{\theta}^{\top} \left(T(x) - T(y)\right)\right| \le L\rho(x, y), \qquad \forall x, y \in \mathcal{X}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example (Exponential distribution)

Exponential prior with parameter c > 0, satisfies Assumption 2.

Example (Discrete Bayesian networks)

$$\left|\ln \frac{P_{\theta}(x)}{P_{\theta}(y)}\right| \leq \ln \frac{1}{\epsilon} \cdot \rho(x, y),$$

where: $\rho(x, y)$ is the number of edges and nodes influenced by the differences in x, y and ϵ the smallest P_{θ} -mass placed to any event.

Robustness of the posterior distribution

Definition (KL divergence)

$$D(P \parallel Q) \triangleq \int \ln \frac{dP}{dQ} dP.$$
 (3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Robustness of the posterior distribution

Definition (KL divergence)

$$D(P \parallel Q) \triangleq \int \ln \frac{dP}{dQ} dP.$$
 (3)

Theorem

(i) Under Assumption 1,

$$D\left(\xi(\cdot \mid x) \parallel \xi(\cdot \mid y)\right) \le 2L\rho(x, y) \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Robustness of the posterior distribution

Definition (KL divergence)

$$D(P \parallel Q) \triangleq \int \ln \frac{dP}{dQ} dP.$$
(3)

Theorem

(i) Under Assumption 1,

$$D\left(\xi(\cdot \mid x) \parallel \xi(\cdot \mid y)\right) \le 2L\rho(x, y) \tag{4}$$

(ii) Under Assumption 2,

$$D\left(\xi(\cdot \mid x) \parallel \xi(\cdot \mid y)\right) \le \frac{\kappa}{c} \cdot \rho(x, y) \tag{5}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Differential privacy of the posterior

Theorem

1. Under Assumption 1, $B \in \mathfrak{S}_{\Theta}$:

$$\xi(B \mid x) \le e^{2L\rho(x,y)}\xi(B \mid y) \tag{6}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

i.e. the posterior is (2L, 0)-DP under ρ .

Differential privacy of the posterior

Theorem

1. Under Assumption 1, $B \in \mathfrak{S}_{\Theta}$:

$$\xi(B \mid x) \le e^{2L\rho(x,y)}\xi(B \mid y) \tag{6}$$

i.e. the posterior is (2L, 0)-DP under ρ .

2. Under Assumption 2, for all $x, y \in S$, $B \in \mathfrak{S}_{\Theta}$:

$$|\xi(B \mid x) - \xi(B \mid y)| \le \sqrt{\frac{\kappa}{2c}\rho(x,y)}$$

i.e. the posterior is $(0, \sqrt{\frac{\kappa}{2c}})$ -DP under $\sqrt{\rho}$.

A query model

- We select a prior ξ .
- We observe data x.
- We calculate a posterior $\xi(\cdot \mid x)$.
- > An adversary has limited access to the posterior.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A query model

- We select a prior ξ .
- We observe data x.
- We calculate a posterior $\xi(\cdot \mid x)$.
- An adversary has limited access to the posterior.

Access model

At time t, the adversary observes a sample from our posterior distribution.

 $\theta_t \sim \xi(\cdot \mid x)$,

A query model

- We select a prior ξ .
- We observe data x.
- We calculate a posterior $\xi(\cdot \mid x)$.
- An adversary has limited access to the posterior.

Access model

At time t, the adversary observes a sample from our posterior distribution.

$$heta_t \sim \xi(\cdot \mid x)$$
,

More generally, \mathscr{A} can select a question $q: \Theta \to \mathcal{R}$, where \mathcal{R} is a response space:

$$r_t = q(\theta_t)$$

Other mechanisms

Laplace mechanism

Add noise to responses to queries.

$$r = q(x) + \omega$$
, $\omega \sim Laplace(\lambda)$

Exponential mechanism

Define a utility function u(x, r)

$$p(r) \propto e^{\epsilon u(x,r)} \mu(r).$$

Subsampling

Perform inference on a random sample of the data.

Reduction of privacy to a testing problem

How fast can the adversary learn?

- ▶ Different datasets x, y give different $\xi(\cdot | x), \xi(\cdot | y)$.
- How many samples are needed to differentiate them?

Reduction of privacy to a testing problem

How fast can the adversary learn?

- ▶ Different datasets x, y give different $\xi(\cdot | x), \xi(\cdot | y)$.
- How many samples are needed to differentiate them?

Theorem

Under Assumption 1, the adversary can distinguish between data x, y with probability $1 - \delta$ if:

$$\rho(x, y) \ge \frac{3}{4Ln} \ln \frac{1}{\delta}.$$
(7)

Under Assumption 2, this becomes:

$$\rho(x,y) \ge \frac{3c}{2\kappa n} \ln \frac{1}{\delta}.$$
(8)

Idea: Use \mathcal{S} for the "parameter" space of an estimator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Idea: Use ${\mathcal S}$ for the "parameter" space of an estimator. The family of posterior measures

$$\Xi \triangleq \{ \, \xi(\cdot \mid x) \mid x \in \mathcal{S} \, \} \,, \tag{9}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea: Use ${\mathcal S}$ for the "parameter" space of an estimator. The family of posterior measures

$$\Xi \triangleq \{ \xi(\cdot \mid x) \mid x \in \mathcal{S} \}, \qquad (9)$$

Lemma (Le Cam's method)

Let $\psi(\theta)$ be an estimator of x. Let S_1, S_2 be 2δ -separated and say $x \in S_i \Rightarrow \xi(\cdot \mid x) \in \Xi_i \subset \Xi$. Then:

$$\sup_{x \in \mathcal{S}} \mathbb{E}_{\xi}(\rho(\psi, x) \mid x) \ge \frac{\delta}{\xi_i \in co(\Xi_i)} \sup \|\xi_1 \wedge \xi_2\|.$$
(10)

Idea: Use ${\mathcal S}$ for the "parameter" space of an estimator. The family of posterior measures

$$\Xi \triangleq \{ \, \xi(\cdot \mid x) \mid x \in \mathcal{S} \, \} \,, \tag{9}$$

Lemma (Le Cam's method)

Let $\psi(\theta)$ be an estimator of x. Let S_1, S_2 be 2δ -separated and say $x \in S_i \Rightarrow \xi(\cdot \mid x) \in \Xi_i \subset \Xi$. Then:

$$\sup_{x \in \mathcal{S}} \mathbb{E}_{\xi}(\rho(\psi, x) \mid x) \ge \frac{\delta}{\xi_i \in co(\Xi_i)} \sup \|\xi_1 \wedge \xi_2\|.$$
(10)

Expected distance between the real and guessed data:

$$\mathbb{E}_{\xi}(\rho(\psi, x) \mid x) = \int_{\Theta} \rho(\psi(\theta), x) \, \mathrm{d}\xi(\theta \mid x),$$

Conclusion

- Bayesian inference is inherently robust and private.
- It suffices to select the right prior. But how?
- In some cases, this is closed form.
- The general case is an open problem.
- Do we need to randomise at all?

Job ad

PhD student in differential privacy and distributed decision making.