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Overview
▶ We wish to estimate something from a dataset x ∈ S .
▶ We wish to communicate what we learn to a third party.
▶ How much can they learn about x?

Bayesian estimation

▶ What are its robustness and privacy properties?

▶ How important is the selection of the prior?

Limiting the communication channel

▶ How should we communicate information about our posterior?

▶ How much can an adversary learn from our posterior?

Example (Health insurance)

▶ We collect data about treatment and patients.

▶ Disclose treatment effectiveness, but not patient information.
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Setting

Dramatis personae

▶ x – data.

▶ B – a (Bayesian) statistician.

▶ ξ – the statistician’s prior.

▶ θ – a parameter

▶ A – an adversary. He knows ξ, should not learn x .

The game

1. B selects a model family (F) and a prior (ξ).

2. B observes data x and calculates the posterior ξ(θ|x).
3. A queries B.

4. B responds with a function of the posterior ξ(θ|x).
5. Goto 3.
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Two related problem viewpoints

Bayesian inference view

..Data.

Prior

. Posterior. Observer

Mechanism design view

..Data.

Mechanism

. Query. Observer
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Privacy properties of Bayesian inference
Bayesian inference
Robustness of the posterior distribution
A query model
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Bayesian inference

Setting

▶ Dataset space S .
▶ Distribution family F ≜ {Pθ | θ ∈ Θ }.
▶ Each Pθ is a distribution on S .
▶ Prior distribution ξ on Θ.

▶ Posterior given data x ∈ S :

ξ(θ | x) = Pθ(x)ξ(θ)

ϕ(x)
(posterior)

ϕ(x) ≜ ∑
θ∈Θ

Pθ(x)ξ(θ). (marginal)
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What we want to show

▶ If we assume the family F is well-behaved . . .

▶ . . . or that the prior ξ is focused on the “nice” parts of F

▶ Inference is robust.

▶ Our knowledge is private.

▶ There are also well-known F satisfying our assumptions.

First, we must generalise differential privacy...
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Differential privacy of conditional distribution ξ(· | x)

Definition ((ϵ, δ)-differential privacy)

ξ(· | x) is (ϵ, δ)-differentially private if, ∀x ∈ S = X n, B ⊂ Θ

ξ(B | x) ≤ eϵξ(B | y) + δ,

for all y in the hamming-1 neighbourhood of x .

Definition ((ϵ, δ)-differential privacy under ρ.)

ξ(· | x) is (ϵ, δ)-differentially private under a pseudo-metric
ρ : S × S → R+ if, ∀B ⊂ Θ and x ∈ S ,

ξ(B | x) ≤ eϵρ(x ,y)ξ(B | y) + δρ(x , y), ∀y ∈ S

If two datasets x , y are close, then the distributions ξ(· | x) and
ξ(· | y) are also close.
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Sufficient conditions

Assumption (F is well-behaved)

For a given ρ on S , ∃L > 0 s.t. ∀θ ∈ Θ:∣∣∣∣ln Pθ(x)

Pθ(y)

∣∣∣∣ ≤ Lρ(x , y), ∀x , y ∈ S , (1)

i.e. all members of F are L-Lipschitz.

Assumption (The prior is concentrated on nice parts of F )

Let the set of L-Lipschitz parameters be ΘL. Then ∃c > 0 s.t.
∀L ≥ 0:

ξ(ΘL) ≥ 1− exp(−cL), (2)
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When do these assumptions hold?

Example (Exponential families)

Family F , with sufficient statistic T .

pθ(x) = h(x) exp
{

η⊤
θ T (x)− A(ηθ)

}
For a given θ ∈ Θ, we want to test if:∣∣∣ln(h(x)/h(y)) + η⊤

θ (T (x)− T (y))
∣∣∣ ≤ Lρ(x , y), ∀x , y ∈ X .
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Example (Exponential distribution)

Exponential prior with parameter c > 0, satisfies Assumption 2.

Example (Discrete Bayesian networks)∣∣∣∣ln Pθ(x)

Pθ(y)

∣∣∣∣ ≤ ln
1

ϵ
· ρ(x , y),

where: ρ(x , y) is the number of edges and nodes influenced by the
differences in x , y and ϵ the smallest Pθ-mass placed to any event.
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Robustness of the posterior distribution

Definition (KL divergence)

D (P ∥ Q) ≜
∫

ln
dP
dQ

dP. (3)

Theorem

(i) Under Assumption 1,

D (ξ(· | x) ∥ ξ(· | y)) ≤ 2Lρ(x , y) (4)

(ii) Under Assumption 2,

D (ξ(· | x) ∥ ξ(· | y)) ≤ κ

c
· ρ(x , y) (5)
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Differential privacy of the posterior

Theorem

1. Under Assumption 1, B ∈ SΘ:

ξ(B | x) ≤ e2Lρ(x ,y )ξ(B | y) (6)

i.e. the posterior is (2L, 0)-DP under ρ.

2. Under Assumption 2, for all x , y ∈ S , B ∈ SΘ:

|ξ(B | x)− ξ(B | y)| ≤
√

κ

2c
ρ(x , y)

i.e. the posterior is
(
0,
√

κ
2c

)
-DP under

√
ρ.



. . . . . .

Differential privacy of the posterior

Theorem

1. Under Assumption 1, B ∈ SΘ:

ξ(B | x) ≤ e2Lρ(x ,y )ξ(B | y) (6)

i.e. the posterior is (2L, 0)-DP under ρ.

2. Under Assumption 2, for all x , y ∈ S , B ∈ SΘ:

|ξ(B | x)− ξ(B | y)| ≤
√

κ

2c
ρ(x , y)

i.e. the posterior is
(
0,
√

κ
2c

)
-DP under

√
ρ.



. . . . . .

A query model

▶ We select a prior ξ.

▶ We observe data x .

▶ We calculate a posterior ξ(· | x).
▶ An adversary has limited access to the posterior.

Access model
At time t, the adversary observes a sample from our posterior
distribution.

θt ∼ ξ(· | x),

More generally, A can select a question q : Θ → R, where R is a
response space:

rt = q(θt)
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Other mechanisms

Laplace mechanism

Add noise to responses to queries.

r = q(x) + ω, ω ∼ Laplace(λ)

Exponential mechanism

Define a utility function u(x , r)

p(r) ∝ eϵu(x ,r)µ(r).

Subsampling

Perform inference on a random sample of the data.
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Reduction of privacy to a testing problem

How fast can the adversary learn?

▶ Different datasets x , y give different ξ(· | x), ξ(· | y).
▶ How many samples are needed to differentiate them?

Theorem
Under Assumption 1, the adversary can distinguish between data
x , y with probability 1− δ if:

ρ(x , y) ≥ 3

4Ln
ln

1

δ
. (7)

Under Assumption 2, this becomes:

ρ(x , y) ≥ 3c

2κn
ln

1

δ
. (8)
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The Le Cam method for lower bounds
Idea: Use S for the “parameter” space of an estimator.

The family of posterior measures

Ξ ≜ { ξ(· | x) | x ∈ S } , (9)

Lemma (Le Cam’s method)

Let ψ(θ) be an estimator of x. Let S1,S2 be 2δ-separated and say
x ∈ Si ⇒ ξ(· | x) ∈ Ξi ⊂ Ξ. Then:

sup
x∈S

Eξ(ρ(ψ, x) | x) ≥ δ sup
ξi∈co(Ξi )

∥ξ1 ∧ ξ2∥. (10)

Expected distance between the real and guessed data:

Eξ(ρ(ψ, x) | x) =
∫

Θ
ρ(ψ(θ), x)dξ(θ | x),
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Conclusion

▶ Bayesian inference is inherently robust and private.

▶ It suffices to select the right prior. But how?

▶ In some cases, this is closed form.

▶ The general case is an open problem.

▶ Do we need to randomise at all?

Job ad
PhD student in differential privacy and distributed decision making.
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