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Abstract

We describe a simple method for exact on-
line inference and decision making for par-
tially observable and large Markov decision
processes. This is based on a closed form
Bayesian update procedure for certain classes
of models exhibiting a special conditional in-
dependence structure, which can be used for
prediction, and consequently for planning.

1. Introduction

We consider estimation of a class of context mod-
els that can approximate large or partially observable
Markov decision processes. This is closely related to
the context tree weighting algorithm for discrete se-
quence prediction (Willems et al., 1995). We present
a constructive definition of a context process, extend-
ing the one proposed in (Dimitrakakis, 2010a) for the
estimation of variable order Markov models, and apply
it to prediction, state representation and planning in
partially observable Markov decision processes.

We consider discrete-time decision problems in un-
known environments, with a known set of actions A
chosen by the decision maker, and a set of observa-
tions Z drawn from some unknown process µ, to be
made precise later. At each time step t ∈ N, the deci-
sion maker observes zt ∈ Z, selects an action at ∈ A
and receives a reward rt ∈ R.

The environment µ is a (partially observable) Markov
decision process ((PO)MDP) with state st ∈ S. The
process is defined by the following conditional distri-
butions: the set of transition and reward distribu-
tions Tµ , {Prµ(st+1 | st = i, at = j) : i ∈ S, j ∈ A}

and Rµ , csetPrµ(rt+1 | st = i, at = j)i ∈ S, j ∈ A.

For POMDPs, observations zt are sampled fromOi,j
µ ,

Pµ(zt+1 | st = i, at = j). For MDPs, Z = S and zt = i

iff st = i.
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The decision maker has a policy π for choosing ac-
tions, which indexes a set of probability measures on
actions. Jointly π and µ index a set of probability mea-
sures Pµ,π(zt+1, st+1, rt+1, at | st) on actions, states,
rewards and observations. The goal is to find a policy
π maximising the expected utility:

Ut ,

T−t
∑

k=1

γkrt+k. (utility)

The decision maker is usually uncertain about the true
MDP µ. We adopt a subjective decision-theoretic
viewpoint (DeGroot, 1970) and assume a set M of
MDPs contains µ, then define a prior probability mea-
sure ξ0 on (M,BM), such that for any M ∈ BM:

ξt+1(M) , ξt(M | zt+1, rt+1, at, zt) (1)

is defined for all t and sequences of st, at, rt. We now
must find a policy π maximising:

Eξt,π Ut =

∫

M

Eµ,π(Ut)ξt(µ) dµ, (2)

the expected utility under our current belief ξt. The
decision problem can be seen as an MDP whose state
space is the product of S and the set of probability
measures on (M,BM). However, since there is an in-
finite number of beliefs, approximations are required
even under full observability (Duff, 2002; Wang et al.,
2005; Dimitrakakis, 2009). Nevertheless, such methods
are also extensible to the partially observable case (Ve-
ness et al., 2009; Ross et al., 2008).

When dealing with large or partially observable MDPs,
even (1) is not closed-form. In this paper, we extend
a specific formulation of variable order Markov model
estimation (Dimitrakakis, 2010a) to variable order or
large MDPs. We experimentally show that this can
not only provide accurate predictions, but that the in-
ternal state of the process closely tracks the state of
the system, even though no explicit state estimation is
being performed. This can be used to implement stan-
dard reactive learning algorithms, value iteration, or
even decision-theoretic planning, as was done in (Ve-
ness et al., 2009; Ross et al., 2008)
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2. Inference for context MDPs

One can use context models to perform closed-form
inference for either discrete variable order MDPs or
for continuous MDPs. This is done by constructing a
context graph, such that for each observation history
xt = (xk)

t
k=1, there exists a set of contexts forming

a chain on the graph. We can then perform a walk
which stops with probability wt

k on the k-th node of
the chain, and generates the next observation.

Let X , Z × A be the action-observation product
space and let us denote the set of possible histories
by X ∗ =

⋃∞

k=0 X
k and let F be a σ-algebra on X ∗.

Let the context set C be the set of all sequences of
elements in F and consider a function C : X ∗ → C ,
for which we write ct = C(xt). Each context ctk ∈ F

is associated to a sequence of probability measures φt
k

φt
k(zt+1 ∈ Z) = P(zt+1 ∈ Z | ctk, x

t). (3)

We wish to perform online estimation of:

P(zt+1 | xt) =
∑

k

φt
k(zt+1)P(c

t
k | xt). (4)

For a given xt, let Bt
k denote the event that the next

observation will be generated by one of the contexts in
{ct1, . . . , c

t
k}. Then it holds that:

P(zt+1|B
t
k, x

t) = φt
k(zt+1)w

t
k+P(zt+1|B

t
k−1, x

t)(1−wt
k),
(5)

where the weight wt
k , P(ctk | xt, Bt

k), is a stopping
probability. To perform inference, we only need to
update φ and the weights. The former depends on the
details of the model at each context. For the weights,
we have the following procedure, which is is a direct
outcome of Theorem 1 in (Dimitrakakis, 2010a).

wt+1
k =

φt
k(zt+1)w

t
k

φt
k(zt+1)wt

k + P(zt+1|xt, Bt
k−1)(1− wt

k)
. (6)

2.1. The context structure

In general xt is a concatenation of observation-action
pairs, i.e. (zk, ak) ◦ (zk+1, ak+1). The main question
is what the context structure should be. If, for any
sequence xt ∈ X ∗, ct = C(xt) is such that ctk+1 ⊂ ck,
then the random walk starts from the deepest match-
ing context. If in addition, the contexts correspond
to suffixes of X ∗ and there are Dirichlet-multinomial
models at each context, then we obtain a mixture of
variable order Markov decision processes (VMDP)1

One may alternatively consider fully observable but
large spaces. Let us restrict F to an algebra generated

1The reader is referred to (Dimitrakakis, 2010a;b) for a
complete presentation.

by some subsets of X . Let X(xt) , {c ∈ F : xt ∈ c},
and define C(xt) = (ctk : k = 1, . . .) such that ck ∈
X(xt) and ordered such that ctk+1 ⊂ ctk for all k.
Now C defines a chain of contexts for each observa-
tion, where each deeper context is a smaller subset of
X .2 Since in many reinforcement learning problems A
is discrete, the main difficulty is how to partition the
state space S. However, once this (admittedly hard)
obstacle has been overcome, perhaps with some heuris-
tics, it is straightforward to update conditional prob-
abilities in the same manner as for discrete, partially
observable problems. We, however, are not tackling
this problem explicitly in this paper.

3. Action selection

Furthermore, we need to incorporate a reward model.
To do this, we shall simply add a reward distribution
P(rt+1 | c) to each context c.3 In our model, we main-
tain a distribution over contexts. It follows by ele-
mentary probability, that the expected utility can be
written in terms of the utility of each context:

E(Ut | x
t) =

∑

c

E(Ut | c, x
t)P(c | xt). (7)

Maximising the above results in a method to select
the optimal (in a decision-theoretic sense) action and
is the analogue of (2). The solution, however, requires
solving an augmented Markov decision process. In this
paper, we shall only look at methods for approximat-
ing the values of nodes by fixing the belief parameters.

3.1. Approximate methods

Given xt, we fix the context predictions to φ̂ = φt,
so that for any k > 0 and x ∈ X ∗, P(zt+k, rt+k |

c,x) = P(zt+k, rt+k | c) = φ̂(zt+k, rt+k), while we
fix the context weights to ŵ = wt, thus also fixing
the conditional distribution over contexts, to P(c | x).
Substituting the above in (7), we obtain:

Qt(c) = E(rt+1|c) (8)

+ γ
∑

zt+1

P(zt+1|c)max
at+1

∑

c
′

P(c′|xt, at+1, zt+1)Qt+1(c
′).

This immediately defines a value iteration procedure,
since were are only updating the Qt. If, for all xt,
there is some a unique c such that P(c | xt) = 1, then
this procedure becomes identical to the one proposed
by McCallum (1995). Alternatively, we may use an
algorithm such as Q-learning, shown in Algorithm 1.

2This is different from simply discretising the space and
using VMDP estimation.

3In this section we shall omit model, context and weight
subscripts when there is no ambiguity.
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Algorithm 1 Weighted context Q-learning with
stochastic steepest gradient descent

1: WCQL(K,W,Θ, S, xt, rt+1, zt+1Q̂t, η)
2: for c ≺ xt do

3: ζ := P(c | xt), p(c′|a) := P [c′ | xt ◦ (zt+1, a)].
4: Ũt := rt+1 + γmaxa

∑

c
′ Q̂t(c

′)p(c′|a)

5: Q̂t+1(c) = Q̂t(c) + ηζ
(

Ũt − Q̂t(c)
)

6: end for

4. Experiments

4.1. Prediction

We compared the accuracy of the predictions of a
VMDP (of maximum order D), a mixture of MDPs
(MMDP), as well as a single k-order MDP, all esti-
mated with closed-form Bayesian updating, on a num-
ber of tasks. Each task is an unknown POMDP µ.
There were n = 103 runs performed to a horizon
T = 106 for each µ. For the i-th run, we select
a policy π and generate a sequence of observations
zt(i) and actions at1(i) with distribution Pµ,π. For
any model ν, with posterior predictive distribution
Pν(zt+1|x

t) at time t we calculate the average accu-

racy at time t: ut(ν) ,
1
n
Pν(zt+1 = z

(i)
t+1 | x1,t = x

(i)
1,t).

Figure 1 shows the results on a stochastic maze task
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Figure 1. 8 × 8 maze, Z = 16, D = 4, ǫ = 0.1. Predictive
accuracy on mazes averaged over 103 runs and smoothed
over 103 steps, showing D-order MDP model (MDP),
mixture of MDP orders (MMDP), variable order Markov
model (BVMDP).

with Z = 16 observations, which represent a binary
encoding of the occupancy of neighbouring grid-points
by a wall. In that case, we used a policy which with
some probability ǫ > 0, or whenever a wall was de-
tected, took a random action, and otherwise took the
same action as in the previous time step. The VMDP
and MMDP were found to be superior to the MDP.
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Figure 2. State similarity matrix of an 8-state 1D-maze
problem, obtained by calculating the L1 distance of the
BVMDP context distribution at each actual state. Similar
states are lighter.

This was also the case in other tested environments. In
general, the MMDP approach exhibits step-wise per-
formance increases due to the fact that a distribution
over model orders is maintained.

4.2. State representation

The model creates an internal representation of the
current system state. To see this, consider the proba-
bility of each context conditioned on the current his-
tory, P(c|xt). This will be zero for non-matching con-
texts, and will depend on the weights wt

k for all the
matching contexts. Thus, if there are N contexts, the
effective state space is R

N
+ . Figure 2 shows the L1

distance between context distributions between each
state for a corridor task with 8 states.

4.3. Planning

In this paper we do not examine decision-theoretic
planning. However, Q-learning is easily implemented
on top of the state representation implicitly defined
by the context distribution (Alg. 1). Figure 3 shows
how performance on a POMDP maze task increases
with the depth of the context tree, for a maze task
with zt = 1 when a wall is hit and 0 otherwise, with
observation noise 0.1.

5. Conclusion

We outlined how efficient, online, closed-form infer-
ence procedure can be used for estimating large or par-
tially observable MDPs. A similar structure, proposed
by Hutter (2005), used a random walk that started
from the complete set and branched out to subsets.



Context model inference for large or partially observable MDPs

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0 200 400 600 800 1000

re
w

ar
d

t x 1000

1
2
4

Figure 3. 4×4 maze, Z = 2, ǫ = 0.01. VMDP reward with
Q-learning, averaged over 103 runs, for increasing D.

This makes the approach more suitable for density es-
timation, in this author’s view. It appears possible
that branching should also be feasible for the class of
context models presented here, though this is an open
question. It would be interesting to combine the two
approaches for conditional density estimation. Such
an approach should remain tractable.

Nevertheless, the crucial problem is how to partition
a space when no “natural” partitioning (such as the
tree of suffixes for discrete sequences, or the binary
partition for intervals) exists. This is more pronounced
for controlled processes, because one cannot rely on
the statistics of the observations to create an effective
partition. For such problems, perhaps entirely new
methods would have to be developed.

The simplicity of the inference makes it applica-
tion of approximate decision-theoretic action selec-
tion methods (DeGroot, 1970) possible. In the point-
based methods(Poupart et al., 2006), planning in
an augmented-action MDP (Auer et al., 2008; As-
muth et al., 2009), sparse sampling (Wang et al.,
2005), Monte Carlo tree search (Veness et al., 2009)
or stochastic branch and bound (Dimitrakakis, 2009)
methods have been suggested. It is an open question
which of these is best for such planning problems.
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