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Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects
o N Objects: X2{Ta}N_,, Ta € U, C R,
o X € XE XN, R™
e Constraint F: X — R", with F(x) = 0.

Observations
@ Observations u, = U + Aus, Uy € U, C R™.
o Noise: Au, € To, (Ua) , Aua ~ N(0, V(ya)).

X
X
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Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects
o N Objects: X2{Ta}N_,, Ta € U, C R,
o X € XE XN, R™
e Constraint F: X — R", with F(x) = 0.

Observations
@ Observations u =+ Au, ue Y C R".
e Noise: Au € Tz(U), Au~ N(0, V(u)).
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The problem

Definition
o Given

Observations u
Object constraints F(u) =0
Noise constraints Au € T

o Estimate: 0 s.t. F(&) =0.
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The problem

Definition
o Given

Observations u
Object constraints F(u) =0 7
Noise constraints Au € T 7

o Estimate: &s.t. F(&) =0.

A prayer

Let o ~ u.
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© Constrained optimisation

@ The Langranian
@ Linearisation
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Constrained optimisation

Constrained minimisation
Forg: X — R, F: X — R", the minimum x™ satisfies:
g(x™) < g(x), Vx : F(x) =0,
with F(x*) = 0.
@ Cost function: g(-).
e Constraints: F(-).

v
Example (Statistical parameter estimation)
Estimate parameters x € X" given:
@ Observations u
o Constraints F : X — R”
@ Model set ' = {p(-|x) : x e X'}
g(x) = —Inp(ulx), F(x)=0 (1) ]
[ 5
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Constrained minimisation approaches

Penalty method

Define an augmented cost function for ¢ > O:
he(x)2g(x) + c||F(X)]l, Xz & arg min he(x), 2
lim x7 = x", since Ve > 03c. : Ve > ¢, [[x — x| <e.  (3)
Lagrangian method
For A\eR", F: X — R".
L(x, \)2g(x) + AT F(x), AT ER" VLL(x*,\) =0
Other methods
@ Barrier method (for inequality constraints).
@ Projection method: Use P : Z — X, such that F(P(z)) =0 for all z € Z.
v
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Lagrangian formulation

: — Lagrangian
Constrained minimisation

Minimise g(x), with g : X — R, subject Lix. )2 \TF
to F(x) = 0, with F : X — R". (6 A)Ze(x) +2 F(9
AN VLL(xT,AT) =0

Optimality conditions

VxL(x™,\") =0, ViLl(x™,\*) =0, necessary
yTV2L(x", X))y >0, Yy #£0,y € T sufficient
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Lagrangian formulation

Constrained minimisation

Minimise g(x), with g : X — R, subject

to F(x) =0, with F: X — R".

Lagrangian

Optimality conditions

L(x, \)2g(x) + AT F(x)
NV L(xF,A) =0

VxL(x",\*) =0, VaL(x*,\) =0, necessary
yTV2LL(X", \")y > 0, Vy #0,y € T» sufficient
Vector and matrix gradients
xeR" f:R" =R, F:R" - R™:
Af(x*)
Ox1
Vi (x*) = : ; ViF(x") = [ViFi(x7) -+« ViFin(x7)] (4)
af(x™)
Axp )
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The Lagrangian

Optimality conditions
g(x) =x1+x2
V.L(x*,A") =0,

V)J.(X ,)\ ) = 0, dg/dx(x*)
y VaL(x*,X") > 0,y #0,y € T-

T = {y € R" : V,F(x*)Ty =0}

AF/dx(x*) T

[m] = =
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Linearisation algorithm

9
Linearising the constraints
F(x) = F(y) + (x = ) V<F(y) + 0 (x*)
~ (x = y) VxF(y),
if F(y)=0.
Example (Quadratic cost)
F g(x)=x"x,
4 F(x) = (x = ) VxF(y)
forall y : F(y) =0.
y’dF(x*)/dx
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Linearisation algorithm
9

Linearising the constraints

~ (x —y) V<F(y),

if F(y)=0.

F(x)=F(y)+ (x —y) "V«F(y) + O <x2)

Example (Quadratic cost)

F(x) ~ (x — y) VF(y)

forall y : F(y) =0.

y’dF(x*)/dx
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Linearisation algorithm
9

Linearising the constraints

F(x)=F(y)+ (x —y) "V«F(y)+ O (X2)

~ (x —y) V<F(y),

if F(y)=0.

Example (Quadratic cost)
F / g(x) =x"x,
F(x) ~ (x = y) VxF(y)

forall y : F(y) =0.

y’dF(x*)/dx
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© Optimisation for geometric estimation
@ The covariance matrix
@ “A posteriori” covariance matrices

X
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Optimisation for geometric estimation

Two sets of constraints

F(u) ~ Au’ V,F(7)
M(Au) = Au’ v

Noise model

p(u]x) o exp (-%(U—H)Tz*(u—ﬁ)), x = N(@, X). (5)

Solution
o F is linear, g is quadratic, solve for A = WF,

W =V,F VV,F.

@ Noise constraints irrelevant. )

ad
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Optimisation for geometric estimation

Two sets of constraints

F(u) ~ Au’ V,F(0)
M(Au) = Au"v

Noise model

i) o= (—%(u BT —v)) ,

x = N(1,X). (5)

Problems
o ¥ = V[u] =~ V[u]
o lll-defined problem: Constraints depend on F(T)
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The covariance matrix

The noise and the constraints
@ We need V to estimate A

Estimating the covariance

@ Approximate V (the actual covariance) with V (the local covariance).

o Problem: small ||V — V|| does not imply small |[V~! — ¥~

@ Kanatani's solution: Use linear algebra magic.
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Estimating a good covariance matrix

Finding the Lagrange vector
F is linear, g is quadratic, solve for A = WF,

W = (VUFTVVUF)_1

(6)

Estimating the covariance V

o Approximate V by V and F(u) by F(u).
o We know that the rank of V is r.
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Estimating a good covariance matrix

Finding the Lagrange vector
F is linear, g is quadratic, solve for A = WF,

W= (quTvqu)fl (6)

Some set-like notation
W = Z7! where Z = (Z¥), W = (W¥)

7 = (VUFkT vqu,)

W= (VquT vqu,) o

Estimating the covariance V

@ Approximate V by V and F(u) by F(u).
@ We know that the rank of V is r.
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Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for A = WF,

W= (VUFTVVL,F)7

1

(6)

Estimating the covariance V

@ Approximate V by V and
o We know that the rank of

F(T) by F(u).
Visr.

Rank-constrained generalized inverse

Wi = (VUFTV[U]VUF) '

r
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Iterated linearisation
9

Iterated linearised constrained
optimisation

1: Ih = u.

2. fort=1,2,...do

3: = ’Pat |74

4 F=Au'V,F(Ps, i)

5 g(ulo, Xe) 2 (u— )" N (u — ).

6: Oey1 = Pargming g(u|d, X¢).

7: end for |
Projection

The projection Py, of &l to F(u) = 0, where
the linearization is performed, is done by
minising the Mahanalobis distance.

Cost function changes at every step

3>+ # Y41 Does it still converge?
y’dF(X*)/dX Convergence conditions unclear.

vy
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“A posteriori” covariance matrices

What is covariance here?
@ “a priori” m x m covariance matrix V/, assumed known (to some constant)

o For 7 a n-dimensional linear subspace of R”, V7 = Pz V.

@ T (u) is the tangent space to an n-dimensional manifold in R™, evaluated at u.

o V= Vra, V[u = Vg,

What does “a posteriori" mean?
o Unrelated to conditional measures
o The “a priori" covariance matrix is merely the covariance evaluated at v.

@ The “a posteriori” covariance matrix is the covariance evaluated at .

“Confidence regions” and noise
@ Uncertainty about parameters must not be confused with observation noise.
@ i.e. certainty that a coin is fair: § = 0.5 w.p. 1.

@ Noisy measurements.
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e Hypothesis testing

Geometric correction
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Finding the correct hypothesis

The setting
o Parameters/distribution 6 € ©.
o Estimate 0, € © from observations z"2{z,...,z,}, z € Z.

o Obtain different estimate 8,(H) under different hypotheses H, i.e. if each H
corresponds to a different set of constraints on ©. Which hypothesis to use?

The meaning of hypothesis testing
o Estimate how good the estimates (hypothesis) are
@ Select the most suitable hypothesis, reporting error probability .

o Ultimately, a decision problem.

Frequentist principle

In repeated practical use of a statistical procedure, the long-run average actual error
should not be greater than (and ideally should equal) the long-run average reported error.
v
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Tail bound

Tail bound

Fix some Z" C Z". Then:
P(z" ¢ Z"|0) < £(0,2Z"),
f decreasing with |Z"|.

Example (x?-test)

T(z)= h py2(x) dx (8)
Rs(2)
Rs(z) = (2,27'2) (9)
Has the property:
T(z) ~ Uniform(0, 1), if z~ N(0,X). (10)
So:
P(T(z) < é|z ~N(0,X)) < 4, vé € [0,1]. (11)
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Testing for normality

1 T T
: N(0,1)
z N(0.1,1.1) ===
exponential -
. normalised exponential -
0.8 |- B
0.6 |- B
0.4 - B
0.2 |- B
X
X
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The x? test’s performancer

Rejection ratio of x2 test with 8=0.1

N@©,1)

N(0.1, 1.1) ======= "___,........... .
09 exponential - b
normalised exponential -
08 | 4
07} = .
06 [ |

rejection ratio

L I X
&l
80 90 100

# observations
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Concentration inequality

Concentration inequality

Let D be a distance on ©. Generally,

P(D(0,,0) > €|0) < O (exp(—neQ)) , V0 € ©,¢> 0. (12)

v

Example (Hoeffding bound)

For x € [0,1], 223" | x; and for any P and € > 0:

P(% > Ex+e) < exp(—2né’) < P (x > Ex+ \/Iog(l/é)/2n) <5 (13)

v

Application to general measures

Let P, be the empirical measure over y/n disjoint subsets S; derived from z" (i.e. a
histogram with /n bins). We can apply Hoeffding (or other concentration inequalities)
to the distance between P,(z € ;) and P(z € §;), by setting x') =1{z € §;}.

v
X
X
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The non-parametric Hoeffding-Kolmogoroff goodness-of-fit test

Rejection ratio of Hoeffding-Kolmogoroff test with 5 < 0.5

1 H T T T T T T T T
: N(0,1)
: N(0.1,1.1) -
: exponential
: normalised exponential -
08 ! :
06| i

rejection ratio

- -
o= . -
- -

- APt e . s -

10 20 30 40 50 60 70 80

# observations
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Bayesian hypothesis tests

Multiple hypotheses test

Given a set of hypotheses H2{ h; : i =1,..., k}, with associated prior probabilities
{m(hi) : i=1,...,k}, and data z, estimate

P(z|hi)(hi)

m(hi|z)E = (14)
Sy Pzl b)) (k)
e-Null hypothesis test
Given a null hypothesis hg = I{6 € ©o}, with associated prior probability 7(ho),
construct he2T{0 € ©.}, where
g = . inf D d
0. ={0€0O 9)2@0 (0,0") < e}
(ho|z) < (he|z)2 P(zlhe)m(he) (15)

P(zlhe)m(he) + P(z[ha)[1 — m(h:)]

Christos Dimitrakakis (ISLA/UvA) Geometric correction July 17, 2009 24 /28



© Corrections
@ Image points and lines
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Coincidence

Assumptions and constraints
X1 = X2
x1, X2 independent, E x; = X;.
Estimate Xi = x; — Ax;. )
Constrained cost minimisation
1 _ A
J(&)E D e(xil%i, T), g(xil%, Ti)=5 (4 — %) 7 a — %) (16)
under constraints
X = %, Axy, Ax; on the image plane. (17)
v

X
X
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Coincidence

First order solution

AX1 = V[X1]W(X1 — Xz) (18)
AXz = V[Xz]W(Xz — X1) (19)
Wé(V[xl] + V[xz])_l. (2O)J
Residual
“A posteriori” covariance matrix
V[&] = V[x]WV[x2] = V[x](l - WV[x]) (21)

Residual J = (x; — x1, Wx, — x1), with J ~ x2(2).

Hypothesis test

Perhaps better to test ||x2 — xi|| < e.

v
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More examples??
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