Geometric correction A guided tour

Christos Dimitrakakis

Intelligent Systems Laboratory Amsterdam, University of Amsterdam, The Netherlands

July 17, 2009

- Introduction
- Constrained optimisation
 - The Langranian
 - Linearisation
- 3 Optimisation for geometric estimation
 - The covariance matrix
 - "A posteriori" covariance matrices
- 4 Hypothesis testing
- Corrections
 - Image points and lines

Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects

- N Objects: $\overline{x} \triangleq \{\overline{u}_{\alpha}\}_{\alpha=1}^{N}$, $\overline{u}_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^{\infty}$.
- ullet $\overline{x} \in \mathcal{X} \triangleq imes_{i=1}^{N} \mathbb{R}^{m_i}$
- Constraint $F: \mathcal{X} \to \mathbb{R}^n$, with $F(\overline{x}) = 0$.

Observations

- Observations $u_{\alpha} = \overline{u}_{\alpha} + \Delta u_{\alpha}$, $u_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^m$.
- Noise: $\Delta u_{\alpha} \in \mathcal{T}_{\overline{u}_{\alpha}}(U_{\alpha})$, $\Delta u_{\alpha} \sim \mathcal{N}(0, \overline{V}(y_{\alpha}))$.

Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects

- N Objects: $\overline{x} \triangleq \{\overline{u}_{\alpha}\}_{\alpha=1}^{N}$, $\overline{u}_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^{\infty}$.
- $\overline{x} \in \mathcal{X} \triangleq \times_{i=1}^{N} \mathbb{R}^{m_i}$
- Constraint $F: \mathcal{X} \to \mathbb{R}^n$, with $F(\overline{x}) = 0$.

Observations

- Observations $u = \overline{u} + \Delta u$, $u \in \mathcal{U} \subset \mathbb{R}^m$.
- Noise: $\Delta u \in \mathcal{T}_{\overline{u}}(\mathcal{U})$, $\Delta u \sim \mathcal{N}(0, \overline{V}(u))$.

The problem

Definition

- Given
 - Observations u
 - Object constraints $F(\overline{u}) = 0$
 - Noise constraints $\Delta u \in \mathcal{T}_{\overline{u}}$
- Estimate: \hat{u} s.t. $F(\hat{u}) = 0$.

The problem

Definition

- Given
 - Observations u
 - Object constraints $F(\overline{u}) = 0$? Noise constraints $\Delta u \in \mathcal{T}_{\overline{u}}$?
- Estimate: \hat{u} s.t. $F(\hat{u}) = 0$.

A prayer

Let $\hat{u} \approx \overline{u}$.

- Introduction
- 2 Constrained optimisation
 - The Langranian
 - Linearisation
- Optimisation for geometric estimation
 - The covariance matrix
 - "A posteriori" covariance matrices
- 4 Hypothesis testing
- Corrections
 - Image points and lines

Constrained optimisation

Constrained minimisation

For $g: \mathcal{X} \to \mathbb{R}$, $F: \mathcal{X} \to \mathbb{R}^n$, the minimum x^* satisfies:

$$g(x^*) \leq g(x),$$
 $\forall x : F(x) = 0,$

with $F(x^*) = 0$.

- Cost function: $g(\cdot)$.
- Constraints: $F(\cdot)$.

Example (Statistical parameter estimation)

Estimate parameters $x \in \mathcal{X}$ given:

- Observations u
- Constraints $F: \mathcal{X} \to \mathbb{R}^n$
- Model set $\Gamma = \{ p(\cdot|x) : x \in \mathcal{X} \}$

$$g(x) = -\ln p(u|x),$$

$$F(x) = 0$$

Constrained minimisation approaches

Penalty method

Define an augmented cost function for c > 0:

$$h_c(x) \triangleq g(x) + c ||F(x)||, \qquad x_c^* \triangleq \arg\min_x h_c(x),$$
 (2)

$$\lim_{c \to \infty} x_c^* = x^*, \qquad \text{since } \forall \epsilon > 0 \exists c_\epsilon : \forall c > c_\epsilon, \|x_c^* - x^*\| < \epsilon.$$
 (3)

Lagrangian method

For $\lambda \in \mathbb{R}^n$, $F: \mathcal{X} \to \mathbb{R}^n$.

$$L(x,\lambda) \triangleq g(x) + \lambda^T F(x),$$

$$\exists \lambda^* \in \mathbb{R}^n : \nabla_{\mathsf{x}} L(\mathsf{x}^*, \lambda^*) = 0$$

Other methods

- Barrier method (for inequality constraints).
- Projection method: Use $P: \mathcal{Z} \to \mathcal{X}$, such that F(P(z)) = 0 for all $z \in \mathcal{Z}$.

Lagrangian formulation

Constrained minimisation

Minimise g(x), with $g: \mathcal{X} \to \mathbb{R}$, subject to F(x) = 0, with $F: \mathcal{X} \to \mathbb{R}^n$.

Lagrangian

$$L(x,\lambda) \triangleq g(x) + \lambda^{T} F(x)$$

$$\exists \lambda^{*} : \nabla_{x} L(x^{*}, \lambda^{*}) = 0$$

Optimality conditions

$$\nabla_{x}L(x^{*},\lambda^{*}) = 0,$$

$$y^{T}\nabla_{xx}^{2}L(x^{*},\lambda^{*})y > 0,$$

$$\nabla_{\lambda}L(x^*,\lambda^*)=0,$$

$$\forall y \neq 0, \underline{y} \in \underline{\mathcal{T}}_{x^*}$$

sufficient

Lagrangian formulation

Constrained minimisation

Minimise g(x), with $g: \mathcal{X} \to \mathbb{R}$, subject to F(x) = 0, with $F: \mathcal{X} \to \mathbb{R}^n$.

Lagrangian

$$L(x,\lambda) \triangleq g(x) + \lambda^{T} F(x)$$
$$\exists \lambda^{*} : \nabla_{x} L(x^{*}, \lambda^{*}) = 0$$

Optimality conditions

$$\nabla_{x}L(x^{*},\lambda^{*})=0,$$

$$y^T \nabla^2_{xx} L(x^*, \lambda^*) y > 0,$$

$$\nabla_{\lambda}L(x^*,\lambda^*)=0,$$

$$\forall y \neq 0, y \in \mathcal{T}_{x^*}$$

Vector and matrix gradients

$$x \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}$, $F : \mathbb{R}^n \to \mathbb{R}^m$:

$$abla_x f(x^*) = \left(egin{array}{c} rac{\partial f(x^*)}{\partial x_1} \ dots \ rac{\partial f(x^*)}{\partial x_n} \end{array}
ight),$$

$$\nabla_{x}F(x^{*})=[\nabla_{x}F_{1}(x^{*})\cdots\nabla_{x}F_{m}(x^{*})]$$

(4)

The Lagrangian

Optimality conditions

$$\nabla_{x}L(x^{*},\lambda^{*}) = 0,$$

$$\nabla_{\lambda}L(x^{*},\lambda^{*}) = 0,$$

$$y^{T}\nabla_{xx}^{2}L(x^{*},\lambda^{*}) > 0, \forall y \neq 0, y \in \mathcal{T}_{x^{*}}$$

$$\mathcal{T}_{x^{*}} = \{y \in \mathbb{R}^{m} : \nabla_{x}F(x^{*})^{T}y = 0\}$$

Linearisation algorithm

Linearising the constraints

$$F(x) = F(y) + (x - y)^{T} \nabla_{x} F(y) + \mathcal{O}\left(x^{2}\right)$$
$$\approx (x - y)^{T} \nabla_{x} F(y),$$

Example (Quadratic cost)

if F(y) = 0.

$$g(x) = x^{T} x,$$

$$F(x) \approx (x - y)^{T} \nabla_{x} F(y)$$

for all
$$y : F(y) = 0$$
.

Linearisation algorithm

Linearising the constraints

$$F(x) = F(y) + (x - y)^{T} \nabla_{x} F(y) + \mathcal{O}\left(x^{2}\right)$$
$$\approx (x - y)^{T} \nabla_{x} F(y),$$

if F(y) = 0.

Example (Quadratic cost)

$$g(x) = x^{T} x,$$

$$F(x) \approx (x - y)^{T} \nabla_{x} F(y)$$

for all
$$y : F(y) = 0$$
.

Linearisation algorithm

Linearising the constraints

$$F(x) = F(y) + (x - y)^{T} \nabla_{x} F(y) + \mathcal{O}\left(x^{2}\right)$$
$$\approx (x - y)^{T} \nabla_{x} F(y),$$

if F(y) = 0.

Example (Quadratic cost)

$$g(x) = x^T x,$$

 $F(x) \approx (x - y)^T \nabla_x F(y)$

for all y : F(y) = 0.

- Introduction
- Constrained optimisation
 - The Langranian
 - Linearisation
- 3 Optimisation for geometric estimation
 - The covariance matrix
 - "A posteriori" covariance matrices
- 4 Hypothesis testing
- Corrections
 - Image points and lines

Optimisation for geometric estimation

Two sets of constraints

$$F(u) \approx \Delta u^{\mathsf{T}} \nabla_{u} F(\overline{u})$$
$$M(\Delta u) = \Delta u^{\mathsf{T}} v$$

Noise model

$$p(u|x) \propto \exp\left(-\frac{1}{2}(u-\overline{u})^T \Sigma^{-1}(u-\overline{u})\right), \qquad x = \mathcal{N}(\overline{u}, \Sigma).$$
 (5)

Solution

• F is linear, g is quadratic, solve for $\lambda = WF$,

$$W = \nabla_u F^T V \nabla_u F.$$

• Noise constraints irrelevant.

Christos Dimitrakakis (ISLA/UvA)

Geometric correction

Optimisation for geometric estimation

Two sets of constraints

$$F(u) \approx \Delta u^{\mathsf{T}} \nabla_{u} F(\overline{u})$$
$$M(\Delta u) = \Delta u^{\mathsf{T}} v$$

Noise model

$$p(u|x) \propto \exp\left(-\frac{1}{2}(u-\overline{u})^T \Sigma^{-1}(u-\overline{u})\right), \qquad x = \mathcal{N}(\overline{u}, \Sigma).$$
 (5)

Problems

- $\Sigma = V[\overline{u}] \approx V[u]$
- III-defined problem: Constraints depend on $F(\overline{u})$

The covariance matrix

The noise and the constraints

• We need V to estimate λ

Estimating the covariance

- ullet Approximate \overline{V} (the actual covariance) with V (the local covariance).
- ullet Problem: small $\|V \hat{V}\|$ does not imply small $\|V^{-1} \hat{V}^{-1}\|$.
- Kanatani's solution: Use linear algebra magic.

Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for $\lambda = WF$,

$$W = \left(\nabla_{u} F^{T} V \nabla_{u} F\right)^{-1} \tag{6}$$

Estimating the covariance V

- Approximate \overline{V} by V and $F(\overline{u})$ by F(u).
- We know that the rank of \overline{V} is r.

Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for $\lambda = WF$,

$$W = \left(\nabla_u F^T V \nabla_u F\right)^{-1} \tag{6}$$

Some set-like notation

$$W=Z^{-1}$$
, where $Z=(Z^{kl})$, $W=(W^{kl})$
$$Z=\left(\nabla_u F_k^T V \nabla_u F_l\right)$$

$$W=\left(\nabla_u F_k^T V \nabla_u F_l\right)^{-1}$$

Estimating the covariance V

- Approximate \overline{V} by V and $F(\overline{u})$ by F(u).
- We know that the rank of \overline{V} is r.

Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for $\lambda = WF$,

$$W = \left(\nabla_{u} F^{T} V \nabla_{u} F\right)^{-1} \tag{6}$$

Estimating the covariance V

- Approximate V by V and $F(\overline{u})$ by F(u).
- We know that the rank of \overline{V} is r.

Rank-constrained generalized inverse

$$W_i = \left(\nabla_u F^T V[u] \nabla_u F\right)_r^{-1} \tag{7}$$

Iterated linearisation

Iterated linearised constrained optimisation

1:
$$\hat{u}_1 = u$$
.

2: **for**
$$t = 1, 2, ...$$
 do

3:
$$\Sigma_t = \mathcal{P}_{\hat{u}_t} V$$

4:
$$\hat{F}_t = \Delta u^t \nabla_u F(\mathcal{P}_{\Sigma_t} \hat{u}_t)$$

5:
$$g(u|\hat{u}, \Sigma_t) \triangleq \frac{1}{2}(u-\hat{u})^T \Sigma_t^{-1}(u-\hat{u}).$$

6:
$$\hat{u}_{t+1} = \mathcal{P} \arg \min_{\hat{u}} g(u|\hat{u}, \Sigma_t).$$

7: end for

Projection

The projection \mathcal{P}_{Σ_t} of \hat{u} to F(u)=0, where the linearization is performed, is done by minising the Mahanalobis distance.

Cost function changes at every step

 $\Sigma_t \neq \Sigma_{t+1}$. Does it still converge? Convergence conditions unclear.

"A posteriori" covariance matrices

What is covariance here?

- "a priori" $m \times m$ covariance matrix V, assumed known (to some constant)
- For T a n-dimensional linear subspace of \mathbb{R}^m , $V_T = \mathcal{P}_T V$.
- $\mathcal{T}(u)$ is the tangent space to an *n*-dimensional manifold in \mathbb{R}^m , evaluated at u.
- $\bullet \ \bar{V} = V_{\mathcal{T}(\bar{u})}, \ V[u] = V_{\mathcal{T}_u}.$

What does "a posteriori" mean?

- Unrelated to conditional measures
- ullet The "a priori" covariance matrix is merely the covariance evaluated at u.
- ullet The "a posteriori" covariance matrix is the covariance evaluated at \hat{u} .

"Confidence regions" and noise

- Uncertainty about parameters must not be confused with observation noise.
- i.e. certainty that a coin is fair: $\theta = 0.5$ w.p. 1.
- Noisy measurements.

- Introduction
- Constrained optimisation
 - The Langranian
 - Linearisation
- Optimisation for geometric estimation
 - The covariance matrix
 - "A posteriori" covariance matrices
- 4 Hypothesis testing
- Corrections
 - Image points and lines

Finding the correct hypothesis

The setting

- Parameters/distribution $\theta \in \Theta$.
- Estimate $\widehat{\theta}_n \in \Theta$ from observations $z^n \triangleq \{z_1, \dots, z_n\}, z_i \in \mathcal{Z}$.
- Obtain different estimate $\widehat{\theta}_n(H)$ under different hypotheses H, i.e. if each H corresponds to a different set of constraints on Θ . Which hypothesis to use?

The meaning of hypothesis testing

- Estimate how good the estimates (hypothesis) are
- \bullet Select the most suitable hypothesis, reporting error probability $\delta.$
- Ultimately, a decision problem.

Frequentist principle

In repeated practical use of a statistical procedure, the long-run average actual error should not be greater than (and ideally should equal) the long-run average reported error.

Tail bound

Tail bound

Fix some $Z^n \subset \mathcal{Z}^n$. Then:

$$\mathbf{P}(z^n \notin Z^n | \theta) < f(\theta, Z^n),$$

f decreasing with $|Z^n|$.

Example (χ^2 -test)

$$T(z) \triangleq \int_{R_{\Sigma}(z)}^{\infty} p_{\chi^{2}}(x) dx$$
 (8)

$$R_{\Sigma}(z) = \langle z, \Sigma^{-1} z \rangle$$
 (9)

Has the property:

$$T(z) \sim \text{Uniform}(0,1),$$

if
$$z \sim \mathcal{N}(0, \Sigma)$$
.

So:

$$P(T(z) < \delta | z \sim \mathcal{N}(0, \Sigma)) < \delta$$

$$\forall \delta \in [0,1].$$

(11)

Testing for normality

The χ^2 test's performancer

Concentration inequality

Concentration inequality

Let D be a distance on Θ . Generally,

$$\mathbf{P}(D(\widehat{\theta}_n, \theta) > \epsilon | \theta) < \mathcal{O}\left(\exp(-n\epsilon^2)\right), \qquad \forall \theta \in \Theta, \epsilon > 0.$$
 (12)

Example (Hoeffding bound)

For $x \in [0,1]$, $\hat{x} \triangleq \frac{1}{n} \sum_{i=1}^{n} x_i$ and for any **P** and $\epsilon > 0$:

$$\mathbf{P}\left(\hat{x} \ge \mathbf{E} \, x + \epsilon\right) \le \exp(-2n\epsilon^2) \Leftrightarrow \mathbf{P}\left(\hat{x} \ge \mathbf{E} \, x + \sqrt{\log(1/\delta)/2n}\right) \le \delta. \tag{13}$$

Application to general measures

Let P_n be the empirical measure over \sqrt{n} disjoint subsets S_i derived from z^n (i.e. a histogram with \sqrt{n} bins). We can apply Hoeffding (or other concentration inequalities) to the distance between $P_n(z \in S_i)$ and $\mathbf{P}(z \in S_i)$, by setting $x^{(i)} = \mathbb{I}\{z \in S_i\}$.

The non-parametric Hoeffding-Kolmogoroff goodness-of-fit test

Bayesian hypothesis tests

Multiple hypotheses test

Given a set of hypotheses $H \triangleq \{ h_i : i = 1, ..., k \}$, with associated prior probabilities $\{ \pi(h_i) : i = 1, ..., k \}$, and data z, estimate

$$\pi(h_i|z) \stackrel{\triangle}{=} \frac{\mathbf{P}(z|h_i)\pi(h_i)}{\sum_{j=1}^k \mathbf{P}(z|h_j)\pi(h_j)}.$$
 (14)

ϵ -Null hypothesis test

Given a null hypothesis $h_0 = \mathbb{I}\{\theta \in \Theta_0\}$, with associated prior probability $\pi(h_0)$, construct $h_{\epsilon} \triangleq \mathbb{I}\{\theta \in \Theta_{\epsilon}\}$, where

$$\Theta_{\epsilon} = \{ \theta \in \Theta : \inf_{\theta' \in \Theta_0} D(\theta, \theta') < \epsilon \}$$

$$\pi(h_0|z) \le \pi(h_{\epsilon}|z) \stackrel{\triangle}{=} \frac{\mathbf{P}(z|h_{\epsilon})\pi(h_{\epsilon})}{\mathbf{P}(z|h_{\epsilon})\pi(h_{\epsilon}) + \mathbf{P}(z|h_{A})[1 - \pi(h_{\epsilon})]}.$$
 (15)

- Introduction
- Constrained optimisation
 - The Langranian
 - Linearisation
- Optimisation for geometric estimation
 - The covariance matrix
 - "A posteriori" covariance matrices
- 4 Hypothesis testing
- Corrections
 - Image points and lines

Coincidence

Assumptions and constraints

$$\overline{x}_1 = \overline{x}_2$$
.

 x_1, x_2 independent, $\mathbf{E} x_i = \overline{x}_i$.

Estimate $\hat{x}_i = x_i - \Delta x_i$.

Constrained cost minimisation

$$J(\hat{x}_i) \triangleq \sum_i g(x_i|\hat{x}_i, \Sigma),$$

$$g(x_i|\hat{x}_i, \Sigma_i) \triangleq \frac{1}{2} (x_i - \hat{x}_i)^T \Sigma_i^{-1} (x_i - \hat{x}_i)$$
 (16)

under constraints

$$\hat{x}_1 = \hat{x}_2$$

 $\Delta x_1, \Delta x_2$ on the image plane.

(17)

Coincidence

First order solution

$$\Delta x_1 = V[x_1] \mathbf{W}(x_1 - x_2) \tag{18}$$

$$\Delta x_2 = V[x_2]\mathbf{W}(x_2 - x_1) \tag{19}$$

$$\mathbf{W} \triangleq (V[x_1] + V[x_2])^{-1}. \tag{20}$$

Residual

"A posteriori" covariance matrix

$$V[\hat{x}] = V[x_1] \mathbf{W} V[x_2] = V[x_2] (\mathbf{I} - \mathbf{W} V[x_2])$$
 (21)

Residual $\widehat{J} = \langle x_2 - x_1, \mathbf{W} x_2 - x_1 \rangle$, with $\widehat{J} \sim \chi^2(2)$.

Hypothesis test

Perhaps better to test $||x_2 - x_1|| < \epsilon$.

More examples??

