
Ensembles for sequence learning

THÈSE No 3518 (2006)

presentée à la Faculté sciences et techniques de l’ingénieur

École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de docteur ès sciences

par

Christos Dimitrakakis

Bachelor of Engineering,

University of Manchester, UK

Master of Science,

University of Essex, UK

acceptée sur proposition du jury:

Prof. Hervé Bourlard, directeur de thèse

Dr. Samy Bengio, codirecteur de thèse

Prof. Holger Schwenk, rapporteur

Dr. Andrew Morris, rapporteur

Prof. Aude Billard, rapporteur

Lausanne, EPFL

2006 Updated with errata, 2008

2

Version abrégée

Cette thèse explore l’application de méthodes d’ensemble à différentes tâches d’apprentissage séquentiel,

ainsi qu’à leurs relations, avec emphase sur les problèmes d’apprentissage supervisé et par renforcement.

On concentre sur le development et l’examination critique des nouveaux mèthodes ou de nouveaux ap-

plications des mèthodes existant.

Dans ces deux types de problemes, même après avoir observé des données on n’est souvent pas sûr

de l’hypothèse correcte parmi les possibles. Cependant, dans beaucoup de méthodes pour problèmes

supervisés et aussi par renforcement, cette incertitude est ignorée, dans le sens qu’il n’y a qu’une solution

sélectionnée dans tout l’espace des hypothèses. En dehors de la solution classique offerte par la formulation

bayesienne analytique, les méthodes d’ensemble offrent une approche alternative pour représenter cette

incertitude. Cela se fait simplement en maintenant un ensemble d’hypothèses alternatives.

Le problème séquentiel supervisé qui est considèré est la reconnaissance automatique de la parole

par des modèles de Markov cachés. L’application de méthodes d’ensemble sur ce problème présente des

difficultés en soi, puisque la plupart d’entre elles ne peuvent être facilement adaptées à des tâches d’ap-

prentissage séquentiel. Cette thèse propose différentes approches pour appliquer des méthodes d’ensemble

à la reconnaissance automatique de la parole et ainsi développe des méthodes pour l’entrâınement effi-

cace des mélanges phonétiques avec ou sans accès des données pour l’alignement phonétique. De plus,

une notion de perte esperée est introduite pour l’intégration des modèles probabilistiques avec l’approche

de boosting. Dans certains cas il y a des améliorations substantielles par rapport au système de base.

Dans les problèmes d’apprentissage par renforcement le bout est d’agir d’une manière qui maximise les

récompenses futures dans un certain environnement. Dans ces problèmes, l’incertitude devient importante

parce que ni l’environnement ni la distribution des récompenses ne sont connus. Cette thèse présente de

nouveaux algorithmes pour agir optimalement en présence d’incertitude, basés sur des considérations

théorétiques. Des représentations d’incertitude basée sur des méthodes d’ensemble sont développées et

testées sur quelques tâches simples, avec une performance comparable à l’état de l’art. Le thèse aussi

fait des parallélismes entre les représentations d’incertitude proposées qui sont basées sur des estimations

du gradient et le “prioritised sweeping” et aussi entre l’application d’apprentissage par renforcement

sur le contrôle d’un ensemble des classificateur et des méthodes d’apprentissage d’ensemble supervisées

classiques.

Mots clés : Ensembles, boosting, bagging, melange des experts, reconnaissance de la parole, ap-

prentissage par renforcement, exploration-exploitation, incertitude, apprentissage des séquences, décision

i

ii

séquentiels.

Abstract

This thesis explores the application of ensemble methods to sequential learning tasks. The focus is on

the development and the critical examination of new methods or novel applications of existing methods,

with emphasis on supervised and reinforcement learning problems.

In both types of problems, even after having observed a certain amount of data, we are often faced

with uncertainty as to which hypothesis is correct among all the possible ones. However, in many

methods for both supervised and for reinforcement learning problems this uncertainty is ignored, in the

sense that there is a single solution selected out of the whole of the hypothesis space. Apart from the

classical solution of analytical Bayesian formulations, ensemble methods offer an alternative approach to

representing this uncertainty. This is done simply through maintaining a set of alternative hypotheses.

The sequential supervised problem considered is that of automatic speech recognition using hidden

Markov models. The application of ensemble methods to the problem represents a challenge in itself, since

most such methods can not be readily adapted to sequential learning tasks. This thesis proposes a number

of different approaches for applying ensemble methods to speech recognition and develops methods for

effective training of phonetic mixtures with or without access to phonetic alignment data. Furthermore,

the notion of expected loss is introduced for integrating probabilistic models with the boosting approach.

In some cases substantial improvements over the baseline system are obtained.

In reinforcement learning problems the goal is to act in such a way as to maximise future reward in a

given environment. In such problems uncertainty becomes important since neither the environment nor

the distribution of rewards that result from each action are known. This thesis presents novel algorithms

for acting nearly optimally under uncertainty based on theoretical considerations. Some ensemble-based

representations of uncertainty (including a fully Bayesian model) are developed and tested on a few

simple tasks resulting in performance comparable with the state of the art. The thesis also draws some

parallels between a proposed representation of uncertainty based on gradient-estimates and on “prioritised

sweeping” and between the application of reinforcement learning to controlling an ensemble of classifiers

and classical supervised ensemble learning methods.

Keywords: Ensembles, boosting, bagging, mixture of experts, speech recognition, reinforcement learn-

ing, exploration-exploitation, uncertainty, sequence learning, sequential decision making.

iii

iv

Contents

xiii

1 Introduction 1

1.1 Motivation and goals . 3

1.2 Contributions . 5

1.3 Organisation . 6

2 Background 7

2.1 Sequence learning . 7

2.1.1 Supervised learning tasks . 7

2.1.2 Probabilistic inference . 9

2.1.3 Sequential decision making . 11

2.2 Mixture models . 14

2.2.1 Training and model selection . 15

2.2.2 Bagging . 16

2.2.3 Boosting . 17

2.2.4 Margins . 18

2.2.5 Mixture of experts . 19

2.3 Speech recognition with hidden Markov models . 20

2.3.1 Continuous speech recognition . 21

2.3.2 Multi-stream decoding . 24

I Ensembles for speech recognition 27

3 Phoneme mixtures 29

3.1 Prior research . 29

3.2 Data and methods . 30

3.3 Model training at the phoneme level . 32

3.4 Continuous speech recognition with mixtures . 33

3.5 Experiments . 34

v

vi CONTENTS

3.6 Discussion . 36

4 Expectation boosting 39

4.1 Boosting for word error rate minimisation . 39

4.1.1 Sentence loss function . 41

4.1.2 Error expectation for boosting . 41

4.1.3 Experimental results . 44

4.2 Generalisation performance comparison . 46

4.3 Discussion . 48

4.4 Afterword . 49

II Ensembles and sequential decision making 51

5 An overview of reinforcement learning 53

5.1 Reinforcement learning . 54

5.2 Value functions . 55

5.2.1 Value function estimation . 55

5.2.2 Temporal-difference (TD) value function estimation 56

5.2.3 Gradient descent implementation . 57

5.2.4 Eligibility traces . 58

5.3 Exploration in reinforcement learning . 59

6 Reinforcement learning ensembles for classification 61

6.1 General architecture . 62

6.1.1 Implementation . 62

6.1.2 Comparison with mixture of experts . 65

6.2 Experimental results . 66

6.3 Conclusions and future research . 68

7 Optimal exploration 71

7.1 Exploration Versus Exploitation . 71

7.2 Related work . 73

7.3 Optimal Exploration Threshold for Bandit Problems . 74

7.3.1 Solutions for Specific Distributions . 76

7.3.2 Solutions for the Exponential Distribution . 76

7.4 Extension to the General Case . 77

7.5 Optimistic Evaluation . 78

7.6 Experiments on bandit problems . 79

7.7 Discussion and conclusion . 80

CONTENTS vii

8 Estimates of return distributions 83

8.1 Gradient-based estimates . 84

8.1.1 Variance estimates . 84

8.1.2 Relation of variance estimates to convergence . 85

8.1.3 Gradient estimates . 86

8.2 Action selection . 87

8.2.1 Application of variance estimates to action values 87

8.2.2 Tabular action value methods . 87

8.2.3 Eligibility traces and variance estimates . 88

8.2.4 Function approximation methods . 88

8.2.5 Methods for action selection . 89

8.3 Alternative approaches . 90

8.4 Experiments . 91

8.4.1 The pole balancing task . 92

8.4.2 Results . 93

8.4.3 Discussion . 96

8.5 Ensemble estimates of return distributions . 99

8.5.1 Ensembles of independent estimators . 99

8.5.2 Bayesian methods . 101

8.5.3 Evaluation on bandit tasks . 103

8.6 Conclusion . 109

9 Conclusion 111

A Definitions and Notation 113

A.1 Notation . 114

A.1.1 Sets, sequences and probabilities . 114

A.1.2 Scalars, vectors, norms and gradients . 114

A.1.3 Commonly used symbols . 115

A.2 Additional Definitions . 115

A.2.1 The E3 algorithm . 117

B Miscellany 119

B.1 Optimality of multi-stream . 119

B.1.1 Decoding . 120

B.2 Exponential-family Priors in Time . 120

B.3 Model-based reinforcement learning . 122

B.3.1 World models . 122

B.3.2 Eligibility traces . 122

B.4 Hypothesis tests . 123

B.4.1 Two-proportion z-test . 123

viii CONTENTS

B.4.2 Bootstrap estimate for speech recognition . 124

B.5 Proofs . 124

B.5.1 Distance Bound . 124

B.5.2 Noise residual . 126

C Supplementary results 127

C.1 Random bandit problems . 127

Abbreviations 131

Curriculum Vitae 147

List of Figures

2.1 Markov decision process . 13

2.2 Mixture models . 14

2.3 Hidden Markov model . 20

2.4 A phonetic model . 21

2.5 A hidden Markov model for speech recognition. 21

3.1 A phoneme mixture model . 32

3.2 Illustration of single-path multi-stream decoding . 33

3.3 Tuning HMM hyper-parameters . 35

3.4 Phoneme classification errors. 36

3.5 Comparison of word error rates for three different decoding schemes in a hold-out set . . . 37

3.6 Relation between phoneme classification and word recognition error 38

4.1 The sentence loss function (4.1) for η ∈ {1, 5, 10}. 42

4.2 Training word error rates for various values of gamma, compared with the previous boosting

approach. 44

4.3 Test word error rates for various values of gamma, compared with the previous boosting

approach. 45

4.4 Significance levels of word error rate difference between the top four models. The his-

tograms are created from 10,000 bootstrap samples of the test data, as described in Ap-

pendix B.4.2. 50

5.1 Relationships between estimates . 56

6.1 Cumulative margin distribution for RL on the ionosphere dataset 67

7.1 Average reward in a bandit task . 80

8.1 Average rewards of ad-hoc methods on the 16-arm bandit tasks 94

8.2 Total rewards in the graph task . 95

8.3 Performance in the pole balancing task . 98

8.4 Estimating the mean of a Bernoulli random variable . 103

ix

x LIST OF FIGURES

8.5 Average rewards of populations in bandit tasks . 104

8.6 Comparison of average rewards in bandit tasks . 105

8.7 Performance of best methods in 1000 random bandit problems 106

C.1 Average rewards in 128-arm bandit tasks with pessimistic initial values. 128

C.2 Average rewards in 128-arm bandit tasks with optimistic initial values. 129

List of Tables

4.1 Generalisation performance comparison for speech recognition 47

6.1 Test classification error on 9 UCI benchmark datasets. 66

8.1 Pole-balancing simulation model. 92

8.2 Performance in 1000 random 16-arm bandit problems with pessimistic initial estimates . . 93

8.3 Performance in 1000 random 16-arm bandit problems . 107

8.4 Performance in 1000 random 128-arm bandit problems . 107

8.5 Average CPU usage of exploration methods on random bandit problems 108

A.1 Common meanings of symbols . 116

xi

xii LIST OF TABLES

Acknowledgments

I wish to thank my supervisor, Samy Bengio, for his invaluable aid and guidance during the writing of

this thesis and my thesis director, Hervé Bourlard, for his continued support. I also extend my thanks

to Silvia Chiappa, Daniel-Gatica Perez, José del R. Milán, Hynek Hermansky, Joseph Keshet, Ricardo

Chavarriaga, Jean-François Paiement and all the other researchers and students at IDIAP for their time,

feedback and friendship as applicable. I would particularly like to thank Mikaella Keller and Petr Motlicek

for comments on parts of the thesis. Special thanks go to Hélèn Paugame-Moisy and to Mikaella Keller

for translating the abstract into proper french. The interesting discussions with Adam Atkinson, Sean

Barrett, Zho Fang, Stephen Granade, Gunther Schmidl, Dan Schmidt, Dan Shiovitz, Jacob Wildstrom

and the other people on if-MUD have helped me improve some technical and presentational aspects of

the work. I would also like to thank Richard Sutton, without whose encouragement I would never have

embarked upon this PhD. Finally, I am indebted to my family for their support during this period.

This work was carried out in the framework of the Swiss National Center of Competence in Research

(NCCR) on Interactive Multimodal Information Management (IM2). The NCCR are managed by the

Swiss National Science Foundation on behalf of the federal authorities. This work has also received

financial support from both the Swiss National Science Foundation from the grants Divide And Learn

(2100-61243.00) and ADASEQ (2000-65101.01) under the MULTI project (2000-068231.021/1) and from

IDIAP.

xiii

xiv

Chapter 1

Introduction

Machine learning is in general concerned with the inference of models given some observations. The

inferred models can then be used for making decisions. The inference procedure corresponds to firstly

selecting a hypothesis class within which a model that explains the data is expected to be found and

secondly to searching for such a hypothesis. However there is always some uncertainty remaining about

which of all the possible hypotheses is correct, since more than one model might fit the observations to

some degree. This uncertainty can also affect the decision making process. To motivate the following

discussion, it might be useful to consider a simple example of model inference and decision making.

Consider attempting to estimate the probability of a coin coming heads or tails through observation

of repeated throws. Our belief at any point in time can be represented by the set of models that we

think are in agreement with the data together with our confidence in them. For example if we have two

alternative models in our hypothesis class, firstly that the coin is fair and the secondly is that the coin

is biased, observing 90 heads out of 100 throws may make us believe that the biased model is a better

explanation. When we subsequently decide whether or not to accept a bet on a future outcome, this

decision will be based on our new belief. Naturally, our current beliefs depend upon both our observations

and our beliefs prior to having seen any observations.

One particularly important type of prior belief is to assume that decisions and observations occur

independently of previous ones. In the coin inference problem we could assume that each of the coin

throws was independent of each other. In other cases however there may be some type of temporal

structure. In another version of the coin problem, while the coin throws themselves may be independent

of each other, we will still have a sequential decision making problem if after every bet we are allowed

to decide whether or not to continue betting. Then the temporal structure arises because of the fact

that our current beliefs depend upon our previous ones. Another temporal dependence arises if we are

playing a game such as chess against an adversary: then clearly the history of our decisions can affect

his future moves, simply because we change the board state: thus, our future observations can depend

upon previous ones. And clearly, our own future moves will depend on prior ones. This is true even if the

two players are both simply reacting according to a fixed plan to each observed board position, since the

task includes a time-dependent state of the environment. However, if the player makes moves according

1

2 CHAPTER 1. INTRODUCTION

to some particular beliefs, those can also change after each move. This changing belief state, like in the

continuous-betting coin problem, induces a temporal structure in itself.

Problems without temporal structure are frequently called static learning tasks, as they model de-

pendencies between variables that are not dependent in time. These include static pattern recognition,

clustering and function approximation (see for example Bishop, 1995). Tasks with temporal structure fall

into the domain of sequence learning and include applications such as sequential decision making (Bert-

sekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Govindarajulu, 2004; Wald, 1947), speech recognition

(Rabiner and Juang, 1993) and system control (Bertsekas, 2001).

In most common applications involving either type of problems, inference results in the selection of a

single inferred model. However there exist many cases in which there is a plurality of models, each one

of which modelling the data to some extent. Multiple models can arise in the following cases: Firstly,

when multiple models have been constructed out of necessity, perhaps because each one uses slightly

different assumptions. Secondly, when there is a ’natural’ breakdown of the problem. Thirdly, when

an algorithm explicitly calls for the construction of multiple hypotheses. Lastly, when the framework in

which inference is performed, such as a probabilistic framework, requires maintaining a belief over the

complete hypothesis set. Methods where multiple models are maintained instead of a single model fall in

the domain of ensemble methods.

This thesis shall be concerned with the application of such methods to sequence learning tasks, in

particular with the problems of speech recognition and reinforcement learning. While ensemble methods

have been in use for quite some time in static learning tasks, their use in sequential tasks has been

limited.1 Thus it is interesting to investigate if, how and whether it is worthwhile to apply or adapt

existing ensemble methods to sequential learning tasks.

The application of ensemble methods might also serve some practical purposes. Firstly, because it

may allow for model reuse; using different combinations of previously inferred models for different tasks.

Secondly, because it may allow for a more tractable optimisation procedure; it can be easier to infer

the optimal combination of a given set of relatively good sub-models than to directly infer an optimal

overall model. Thirdly because it allows us to represent uncertainty in a natural way. Such methods have

been employed successfully in static problems in the past: For example Schwenk and Bengio (2000) show

increased classification performance in a pattern recognition task using Ada-Boost (Freund and Schapire,

1997). Thus it would be interesting to see whether they can enjoy a similar success in sequential problems.

Applying such techniques is generally straightforward for static models, since these can be described

as a simple mapping from an input to an output space. Thus, it is very simple to combine multiple static

models that map to the same space for most spaces of interest2. In sequential learning, however, things

are not so clear-cut since for some tasks, such as sequence recognition, the output is the set of sequences

of any non-zero length. Thus, combining multiple experts can seldom be done by simply considering

their decisions independently. We need a formal framework to combine the experts themselves into an

appropriate mixture model that would jointly take decisions.

1One of the major applications as of the moment of writing appears to be tracking the movement of dynamic objects
via particle filtering techniques.

2For example, for any {fi} in some linear space F , their linear combination will by definition belong to the same space.

1.1. MOTIVATION AND GOALS 3

Another type of difficulty arises when the model that we are using in order to make decisions is allowed

to change each time we make decisions. For example in a speaker authentication task, we may allow our

model to incorporate newly acquired data after each successful authentication of a client. However the

optimal way to do this is not immediately obvious, since a successful authentication by an impostor would

lead to a deterioration of our model. It would be interesting to see whether ensemble methods could be

applied to sequential decision making problems such as this, by explicitly maintaining a set of alternative

hypotheses such that decision will be made taking into account the uncertainty represented by this set

of hypotheses.

To summarise, one may say that this thesis, as the title suggests, deals with sequence learning (the

speech recognition and reinforcement learning problems) and ensembles (boosting, bagging, mixture of

experts, particle filters). The main question is how to apply ensemble methods (where a model is built

of many similar elements) to sequential learning problems, such as speech recognition and reinforcement

learning. Perhaps Chapter 6 is an exception to the overall theme, as it describes an RL technique used as

an optimisation method for training an ensemble. However the speech recognition chapters specifically

address the question of using ensemble techniques for solving the problem of speech recognition, while the

last two chapters specifically address the problem of exploration in reinforcement learning and (among

other things) propose an ensemble (a population of estimates) as a component of an approximate solution

to the problem. Thus, with the exception of Chapter 6 (where the application is not sequence learning,

but where the algorithm is borrowed from sequence learning) all chapters refer to ensemble methods for

sequence learning to some degree.

The following section shall describe the motivation and goals of the thesis, the specific contributions

made and will offer a guide on reading through the range of topics presented.

1.1 Motivation and goals

The original goal of this work was to extend ensemble methods for static learning tasks to sequential learn-

ing. Initially, the motivation was that the fact that such methods had resulted in superior generalisation

performance in static tasks and it would be interesting to see whether similar gains could be obtained in

a sequence learning setting. Accordingly, some such extensions are considered in the supervised learning

setting, with an application to speech recognition.

As a secondary consideration, ensemble methods are interesting because they offer a way to simplify

the minimisation of cost functions. On the one hand, there exist problems for which it is natural or

convenient to utilise certain models for expressing the relationships between observations. On the other

hand, it can be the case that the adaptation of such models in order to minimise a cost function of interest

is hard: It might be easier to find the optimal way to combine a set of fixed basis models , rather than

discovering a new model. In this thesis such a technique is utilised within a boosting framework3 in order

to improve performance 4 in a speech recognition task.

3Boosting refers to a set of methods for “boosting” the performance of basis models through their combination. See
Section 2.2.3 for more details

4As measured by the word error rate (Section 2.26).

4 CHAPTER 1. INTRODUCTION

Thirdly, such models offer a way to represent uncertainty since each member of the ensemble can

be viewed as corresponding to an alternative hypothesis. This can be done in either a relatively ad-hoc

way, or in the Bayesian framework. We utilise bagging and a related technique, where the ensemble is

composed of a number of independent estimators, in the context of speech recognition and reinforcement

learning, in which case Bayesian methods are also considered.

In the speech recognition framework, the following goals were set: Firstly, to investigate whether

ensemble methods could be usefully applied to the task of phoneme classification. Secondly, to see whether

the resulting ensemble models could be also used in a speech recognition task; since full inference using

such models is hard, another goal was to consider a number of approximate inference techniques for the

speech recognition task. Thirdly, to examine whether it was possible to develop a boosting-based scheme

for the minimisation of word error rates. Finally, to see whether in practice the developed techniques

perform significantly better than single HMM speech recognition.

While optimisation techniques such as expectation-maximisation are very useful when exact prob-

abilities can be inferred, in the cases where inference is hard or infeasible, an approximate training

approach may be used in its stead. Part of the work presented here covers using a reinforcement learning

approach for controlling the adaptation of a mixture of classifiers. The goal was to examine whether

such approximate techniques for model adaptation in ensemble models are performing comparably to

more conventional ensemble methods, with a view to eventually employing such methods in a sequence

recognition framework.

Reinforcement learning methods usually deal with problems where optimisation is not performed over

a set of given data, but where some form of sampling takes place5. The form of sampling used can

influence the speed of convergence significantly. While asymptotic convergence is guaranteed with only

weak assumptions on the type of sampling used (Jaakkola et al., 1994), it might however be possible to

obtain better short-term performance through appropriate sampling.

There is an inherent trade-off between sampling so as to improve the accuracy of the current model

(exploratory behaviour) and sampling so that some cost measure given our current model is minimised

(greedy behaviour), which is referred to as the exploration-exploitation trade-off. One of the aims of the

work was to create a formal framework for the exploration-exploitation trade-off, from which the optimal

balance between the two extremes would immediately arise. This balance turns out to depend upon

information concerning our model’s accuracy. In order to represent the uncertainty of our estimates in

some meaningful way, two simple techniques are explored: ([a]) 1. a simple gradient-based technique 2. an

ensemble method inspired by particle filtering(see Casella et al., 1999, for example) While this work is also

partly motivated by the need to formalise some ad-hoc aspects of frequently used exploration methods,

the ultimate aim was to develop nearly-optimal methods for the reinforcement learning problem that

remain tractable. In particular, using an ensemble of estimates as a sampling and integration method

seemed particularly attractive in this context.

5This is one of the main differences with a conventional supervised learning setting, though active learning is an exception.

1.2. CONTRIBUTIONS 5

1.2 Contributions

The first set of contributions lies in the field of speech recognition. Firstly two well-known ensemble

methods, boosting and bagging, which have been applied in the past to create classifier mixtures for

static patterns, are applied to the problem of phoneme classification. Secondly, methods to use the

resulting mixture models for speech recognition are investigated. Multi-stream techniques are employed,

which had been previously used to combine together models that used different types of features. Our

application of multi-stream is a slight departure from the usual case since ti is the models that are

different, but they observe the same data. This approach was initially presented in the ICASSP 2004

conference (Dimitrakakis and Bengio, 2004b).

Training mixture models to improve sequence classification does not necessarily result in improved

sequence recognition using the same models. A further contribution lies in the development of a technique

to apply boosting methods directly to the problem of speech recognition, where the objective to be

minimised is the word error rate. This objective implies that a loss function should be defined over

a whole utterance. We show experimentally that a uniform loss over each utterance does not lead to

improved performance while using boosting and we develop a temporal credit assignment scheme for

defining appropriate loss distributions over utterances. This technique is shown to significantly reduce

word error rates and our preliminary results had originally been presented in ICASSP 2005 (Dimitrakakis

and Bengio, 2005a).

The second set of contributions lies in the field of reinforcement learning. Firstly we consider how it is

possible to train an ensemble of classifiers using reinforcement learning techniques. This is theoretically

possible, since a supervised learning problem can be cast into a reinforcement learning framework. The

use of reinforcement learning in such a context is explored experimentally for training ensemble classifiers

and is compared with two well-known ensemble algorithms and is shown to perform similarly. This work

has been published in (Dimitrakakis and Bengio, 2005b) and presented in ESANN 2004 (Dimitrakakis

and Bengio, 2004a).

Reinforcement learning problems assume active data acquisition for model inference. The trade-

off between trying to collect more data in order to improve the model and between using the current

model in order to make optimal decisions is referred to as the exploration-exploitation trade-off. We

present a simple formalisation of the concept in such a way that the balance between exploration and

exploitation depends on no extra hyper-parameters, but only on the problem formulation. From this

formalisation follow three approximate algorithms to the intractable problem of making decisions under

uncertainty. We compare these algorithms with a closely-related method based on the value of perfect

information. Since these algorithms require representing uncertainty in some way, we explore two broad

classes of such methods. The first is an agnostic gradient-based technique for maintaining estimates

of uncertainty for our model’s parameters. The second class is ensemble techniques. We consider an

ensemble composed of independent estimators and one approximating a Bayesian inference procedure,

using particle filtering techniques. In either case the distribution we are interested in is represented

explicitly as a population of different estimates. A comparison is then made between combinations of

different techniques for estimation (including the closed-form Bayesian solution) and for decision making.

6 CHAPTER 1. INTRODUCTION

Finally, we note how these techniques are related to and provide some justification for existing ad hoc

measures of uncertainty and methods of exploration. The gradient-based estimates part of this work

has been presented in (Dimitrakakis and Bengio, 2005c), while the work related to the nearly optimal

exploration policies is presented in (Dimitrakakis, 2006)

1.3 Organisation

After a brief technical introduction in Chapter 2, the thesis is organised in two parts. The first part

details contributions related to speech recognition, while the second deals with contributions related to

sequential decision making in general and to reinforcement learning particular.

In the first part, Chapter 3 deals with the application of two ensemble methods, bagging (Breiman,

1996) and boosting (Freund and Schapire, 1997), to a phoneme classification task and subsequently with

techniques for using the phoneme mixture models to perform speech recognition. Chapter 4 develops a

boosting-related technique for creating a mixture in such a way as to minimise the word error rate. This

approach is then compared with the phoneme-based approaches and with a baseline system.

The second part focuses on reinforcement learning (RL). Chapter 5 offers a brief introduction to the

field and necessary concepts and technical details. Chapter 6 focuses on the relations between supervised

and reinforcement learning techniques and explores the use of a simple RL-based technique for training

a mixture of multi-layer perceptrons in place of the EM algorithm. Chapter 7 introduces a formalisation

of the exploration-exploitation trade-off and some optimal decision thresholds based on simple bounds,

which are given in terms of probability distributions over the expected reward of actions, then proceeds

to describe practical algorithms. Chapter 8 explores two ways for representing this uncertainty. The

first is a set of simple parametrised approaches, where an estimate of the cost gradient with respect

to the parameters is used as a measure of the accuracy of the parameters. The second set of methods

explicitly maintains a distribution of estimated returns. Two of those are an ensemble representation of

distributions, one being a simple approach related to bagging and the other a Monte Carlo approximation

of a Bayesian estimate. Finally, some experiments are performed where these expressions of uncertainty

in our estimates and an analytical Bayesian estimate are used to guide exploration according to different

decision making algorithms.

Readers interested in the speech recognition part of the work are advised to continue immediately to

the subsequent chapter for background information and then proceed to chapter 4. Those interested in

the reinforcement learning part of the work reinforcement learning are advised to read Chapters 2 and 5

for a review of the basic concepts. Readers interested more in the exploration-exploitation trade-off may

skip Chapter 6 altogether and proceed directly to chapters 7 and 8.

Chapter 2

Background

2.1 Sequence learning

Sequence learning (see Sun and Giles, 2001, for example) essentially deals with the problem of discovering

relationships between variables and storing such relationships in a compact form or law. The questions

that are asked are similar, i.e. what is the expected value of y given x? or what is the probability density

of z? What distinguishes sequential learning tasks from static ones is the fact that the relationships

considered are between ordered tuples of variables: while a static task could entail learning a mapping

f : X → Y, in a sequence learning task the mapping could be of the form f : X ∗ → Y. Here, and

throughout the text, X ∗ denotes the set of all finite tuples (x1, x2, . . . , xt, . . . , xT) with xt ∈ X , while Xn

denotes the set of all such n-tuples specifically. This property makes sequential learning tasks of this type

not amenable to a simple static treatment. Common sequential learning tasks include supervised learning

tasks such as sequence classification (where we have to decide to what class a given sequence belongs)

and recognition (where we have to determine a sequence of events that have given rise to an observation

sequence), and sequential decision making tasks (where we have to make decisions in a sequential manner,

adapting our behaviour as we observe new data, and planning into the future). These are discussed below.

2.1.1 Supervised learning tasks

Supervised learning (see Trevor Hastie and Friedman, 2001, for example), tasks are in general association

tasks. The aim is to find a function f : X → Y in some class F such that some cost with respect to a

potentially infinite set of example pairs (x, y) with x ∈ X , y ∈ Y is minimised. The form and origin of

the cost and the mapping f depend upon the problem and its formulation. For example in probabilistic

models the mapping results from a distribution over Y and the optimal model is that whose conditional

(or posterior) probability given the data and our prior knowledge is highest. In this respect, sequential

supervised learning tasks do not differ from static ones. However, when X or Y is a sequence space, some

specific application areas arise, for example in the diagnosis of cardiac diseases from electrocardiogram

(ECG) data, the detection of the onset of epileptic seizures from electroencephalogram (EEG) data, the

7

8 CHAPTER 2. BACKGROUND

recognition of speech and the categorisation of music to name but a few. Those and other application

areas within supervised sequence learning belong to one of the following different class types: sequence

classification, sequence segmentation, sequence recognition and sequence prediction.

The sequence classification task entails assigning a sequence to one or more of a set of categories.

The classification of a piece of music from a set of predetermined categories, speech-based user authen-

tication and patient diagnosis using ECG data can all be formulated as sequence classification tasks.

More formally, given a finite label set Y and an observation set X , the sequence classification task entails

creating a mapping f : X ∗ → Y, such that for any x ∈ X ∗, with x = (x1, x2, . . . , xT), xt ∈ X , T > 0,

f(x) corresponds to the predicted label, or classification decision, for the observed sequence x.

For probabilistic models, the predicted label is derived from the conditional probability of the class

given the observations, or posterior class probability P (Y = y|X = x).

While some models estimate this probability directly, other models estimate p(x|Y = y), the condi-

tional density of the observations given the class label. The posterior class probability can be obtained

by using the definition of conditional probability in the form that is known as Bayes’ rule:

P (Y = y|X = x) =
p(x|Y = y)P (Y = y)

p(x)
. (2.1)

Definition 2.1 (Bayes classifier) A classifier f : X ∗ → Y that employs (2.1) for calculating P (Y =

y|X = x) and makes classification decisions according to

f(x) = arg max
y∈Y

P (Y = y|X = x) (2.2)

is referred to as a Bayes classifier.

At least in an abstract sense, this task formulation is exactly the same as the formulation of the

static classification task, the only difference being in the types of models used and the space X , which in

our case can be a sequence. Application areas where this task formulation include speaker identification

and verification, music classification. Either application could be implemented in this framework by

first creating a number of models equal to the number of classes, such that each model represents the

class. Then, given a sequence belonging to an unknown class, the class posteriors are calculated. At that

point, it is possible to directly make a decision by selecting the class with the highest posterior given the

observations.1

In the sequence segmentation task, we are trying to detect the onset time of particular events,

assuming that the sequence of events is known. For example given a set of EEG data containing an

epileptic seizure we can attempt to find the time at which the seizure occurred. As another example,

we may have a phonetic transcription of a spoken word and be tasked with determining the onset of

various phonetic units from the speech signal. More formally, we are given sequences of labels y ∈ Y∗

and observations x ∈ X ∗ in pairs (x, y) such that the length of the label sequence, m = L(y), is smaller

than or equal to n = L(x). The task is to determine the label sequence f ∈ Yn that maximises

1However, care should be taken as this simply selects the most probable class and makes an implicit assumption about
the costs of making incorrect decisions. Discussion of varying costs for decisions will be deferred until Section 2.1.3.

2.1. SEQUENCE LEARNING 9

P (Y = f |X = x). Not all possible label sequences are considered, since we are limited to sequences {fi}
for which ∃ t ∈ [1,m] such that fi = yt ∀i ∈ [1, n] under the constraint that fi+1 = yt or fi+1 = yt+1.

This limits the choice of sequences to a large, but finite set of possible sequences. Thus, at least formally,

the sequence segmentation task is equivalent to the sequence classification task, though in practice an

exhaustive evaluation is not performed. In general this task formulation is used when the purpose is to

discover the onset of events that are known to have occurred within the observation time window.

In sequence recognition, we attempt to determine a sequence of events from a sequence of observa-

tions. For example, given a spoken sentence we may try to infer the sequence of words that was spoken

or given a musical recording we can infer the sequence of notes played. More formally, we are given a

sequence of observations x and are required to determine a sequence of labels y ∈ Y∗, i.e. the sequence

y = (y1, y2, . . . , yk), L(y) ≤ L(x) with maximum posterior probability P (y|x). In practice, models are

used for which it is not necessary to exhaustively evaluate the set of possible label sequences.

In sequence prediction tasks, we are given a sequence of observations x and are required to predict

future values of the sequence. While such a prediction can take the form of a full probability density

p(xt+1:t+k|x1:t), often it consists simply of an expectation, i.e. E[xt+1|x1:t]. Dynamical system modelling,

as employed for example in weather and stock market prediction, music generation and the simulation of

controlled systems, falls within the sequence prediction framework. Sequence prediction is closely related

to other tasks where temporal relationships between instances of a random variable are modelled, such

as sequence smoothing and filtering.

2.1.2 Probabilistic inference

In order to solve any of the above supervised tasks, we must solve two different inference problems.

Firstly, given some set of data D, we must infer a model which will be used to predict the data. Typically

we attempt to find a model h∗ within a class of models H which minimises some particular cost criterion.

In a probabilistic framework, In all three cases, we assume that there is a set of models H representing all

the possible hypotheses. Furthermore, each model h ∈ H defines a probability distribution p(·|h). The

exact form will depend upon the model and problem. A frequent choice when modelling dependencies

between variables x, y, is to use the model for either the conditional p(y|x, h) or the joint density p(y, x|h).
For cases where h defines simply a deterministic function f , this density is singular. We also in general

assume a prior belief ξ over the set of models H, which we define as a probability density with value

p(h|ξ) for every h ∈ H. In this framework, there are three types of inference that take place: maximum

likelihood (ML), maximum a posteriori (MAP) and full Bayesian inference.

In MAP inference, we attempt to find the density

p(·|h∗), h∗ = arg max
h

p(h|D, ξ), (2.3)

in other words, the model with maximum posterior probability given the data and the prior. ML inference

10 CHAPTER 2. BACKGROUND

is essentially the same as MAP, but with p(h′|ξ) = p(h|ξ) for all h, h′ ∈ H. Frequently it is written as

p(·|h∗), h∗ = arg max
h

p(h|D). (2.4)

Finally, in full Bayesian inference we never select a single model out of the set: we maintain a belief,

represented by a probability density over the whole of H which initially is the same as the prior belief ξ

and which changes as we receive more data. We can write this posterior density as

pH(·|D, ξ) =

∫

H

p(·|h,D, ξ)p(h|D, ξ)dh. (2.5)

More frequently than not, such an integration does not have a closed form solution. One attractive type

of approximation is offered by Monte Carlo methods(see Casella et al., 1999), where the integration over

the space H is approximated by a finite set of elements H, resulting in models of the type

pH(·|D, ξ) ≈
∑

h∈H

p(·|h,D, ξ)p(h|D, ξ). (2.6)

After having obtained some model, we may then use it to infer something about previously unseen

data. All the supervised learning tasks mentioned in Section 2.1.1 can be cast in the probabilistic

framework. Given our model and some observations we may predict any of the given quantities in a

probabilistic manner, with details of how inference is performed depending largely on the chosen model.

For example the Bayes Classifier presented in the previous section corresponds to the MAP inference

procedure; the difference being that the inference is performed over classes rather than models.

Nevertheless, after inference having been performed, it still is necessary to make some kind of decision.

Taking the classification task as an example, it is quite common to decide to label an unknown example

with the label of the class having the maximum posterior probability given our model and the current

observation. This simple way to make decisions unfortunately is only optimal when we just want to

minimise the probability of a classification error. Sometimes, however, the objective might be different -

for example it might be the case that each classification error carries a different cost and that we wish to

take the decision that minimises the expected cost. In discrete decision problems the calculation is usually

trivial when the expected cost of each type of error is known and either ([a]) 1. either we are being greedy

in the sense that we are only interested in minimising the expected cost for the next time step or 2. each

decision made is independent of future ones. If many decisions have to be taken in sequence and they

depend on one another, perhaps because we are controlling a dynamical system, or simply because our

model/belief may change over time2 as we observe more data, the problem becomes much more difficult.

The field which deals specifically with making sequential decisions is called sequential decision

making. This is a more general field, since it deals not only with the pure modelling aspect, but also

with data collection and with decision making with respect to both the collection of data and the use

of the model: In standard formulations of sequence classification, recognition and prediction, there is a

2Since the expected cost is also part of our model, if this is uncertain then our beliefs with respect to its value will also
change over time

2.1. SEQUENCE LEARNING 11

fixed model, which has been inferred from some data, and which is used to classify, recognise or predict

on novel data. However in the more general setting of sequential decision making, decisions made now

may have future repercussions because either the future state of the environment or the model can be

affected by our current decision.

2.1.3 Sequential decision making

The supervised learning tasks described in Section 2.1.1 can be seen as special cases of sequential decision

making (see Sutton and Barto, 1998; Wald, 1947; DeGroot, 1970)(SDM). In particular, supervised learning

tasks can be viewed as the search for an f that minimises a cost functional, such as for example

Cf =

∫ ∫

c(f(x), y)p(x, y) dx dy,

where c is a previously defined sample cost function, and p is a potential function, such as a probability

density (in which case the above integral becomes the Bayes risk). In this case c is given and minimi-

sation can be done analytically, or at least its gradient with respect to f can be computed – something

necessary for minimisation algorithms such as gradient descent (see Bertsekas, 1999) and generalised al-

ternating minimisation algorithms (see Gunawardana and Byrne, 2005, for an interesting overview) such

as Expectation Maximisation (see for example McLachlan and Krishnan, 1997).

Sequential decision making differs from the classic supervised learning setting because the decision

function f represents a sequence of decisions on which the cost Cf depends. It is possible to factorise

the cost by making it a function of instantaneous costs incurred after the decision made at each time-

step. This means that its exhaustive calculation for all possible f becomes prohibitive as the number of

individual decisions in the decision sequence increases. Another complication is that the instantaneous

costs themselves may itself be initially unknown. Lastly, in a classical supervised learning setting the

correct decision sequence for each observed sequence example would be known or would be trivially

calculated. In an SDM setting, each decision sequence would result in a noisy sequence of instantaneous

costs from which the overall cost for each f would have to be estimated.

In sequential decision problems making it is most common to refer to the problem of maximising

utility rather than a minimising cost. The utility is a functional of sample rewards rt over time, such

as for their expected weighted sum, or their lower bound with probability larger than some δ among

other possibilities. The problem is thus to make a decision now that maximises a functional of future

rewards. The rewards themselves can be random variables and the optimal decision will depend on our

beliefs about their distribution and all possible future decisions. To give a concrete example, deterministic

games (such as chess) can be placed in this framework by considering them as tasks for which the aim

is to maximise the total return R =
∑

t rt, with sample rewards being 0 in all cases apart from the

case when the game ends, when the reward would be 1 for a win, and −1 for a loss. In this case, the

probability of a win for a player would be related to his expected return by P (win) = (E[R] + 1)/2.

A single game of chess in this context is frequently referred to as an episode. It is instructive to note

than when complete episodes are considered, the total reward is known and learning the expected reward

12 CHAPTER 2. BACKGROUND

given a game is akin to a standard supervised learning task: each game constitutes an observation and

the relationships between games and rewards can be modelled. In fact, for chess, the only thing that we

need to know about a game is the final state: this completely determines the outcome of the game. On

the other hand, when individual states in each game are considered, things become more complicated.

Firstly, it is not trivial to assign probabilities of wins given a particular state. Secondly, from the point of

view of the decision maker, each decision is made with a view to a delayed reward. The following sections

give a short overview on optimal policies for immediate and delayed rewards.

n-armed Bandit problems

n-armed bandit problems (see Sutton and Barto, 1998; Mannor and Tsitsiklis, 2004; Madani et al., 2004a),

are a special form of stochastic games, in which each action from some predefined set of actions results

in a stochastic reward, whose distribution is unknown but stationary. The aim of the game is to discover

the action with the maximum average reward. More formally, consider a stochastic function r : A → R,

where A is a discrete space of size n called the action space, such that each action a results in a stochastic

reward r(a) ≡ p(r|a). We will refer to this as the reward distribution. We would like to select actions in

an optimal way, i.e. so that E[r] is maximised.3 This expectation is completely defined by a probability

distribution over actions {P (a)|a ∈ A}. Such a distribution, or method for selecting actions, is called a

policy. Policies for which this distribution does not change over time are called stationary policies. The

expected reward given some stationary policy π is easy to calculate:

E[r|π] =
∑

a∈A

E[r|a]P (a|π). (2.7)

The task is to find π∗ such that E[r|π∗] ≥ E[r|π] ∀ π 6= π∗.

If the E[r|a] is known for each action a, then it is trivial to obtain the optimal solution by setting P (a)

to 1 for the action with the maximum expected reward, and to 0 for the remaining actions. However,

normally neither the expectation nor the exact distribution is known for r and we must resort to sampling

in order to evaluate E[r|π], either directly, or through the estimation of {E[r|a]}a∈A

Different sampling assumptions allow different algorithms, which, however, are all related. When it

is possible to sample from all actions simultaneously, algorithms such as the Hedge algorithm described

in (Freund and Schapire, 1997) can be used to determine the optimal probabilities. When sampling is

limited to one action at a time, one must consider the balance between gaining new knowledge about

actions that currently appear inferior, in order to be able to determine the best action as quickly and

accurately as possible, and using the current knowledge in order to maximise the expected reward. This

is referred to as the exploration-exploitation trade-off (see Sutton and Barto, 1998, chap. 2) or (MacKay,

1997, chap. 36) and it becomes significantly harder to resolve when a dynamic environment is considered.

This problem is further addressed in Chapters 5 and 7.

3It is also possible to define a utility function that is not simply linear with respect to the reward, but which includes
perhaps its variance. That ventures into risk-sensitive decision making. In the end, it is possible to reduce all problems
to problems of simply maximising a single numerical value with appropriate transformation. Utility theory (see DeGroot,
1970, chap. 7) deals with formalising the notion of action preferences.

2.1. SEQUENCE LEARNING 13

rt rt+1

st st+1

at at+1

Figure 2.1: Markov decision process

Reinforcement learning

One may generalise the bandit problem where the environment consists of a static reward distribution

conditioned on the actions in two ways. Firstly, it can be extended to the case where the environment is

defined as a Markov decision process (MDP) rather than a static one.

Definition 2.2 (Markov decision process) A Markov decision process (see Figure 2.1.3) is defined

as the tuplet M = (S,A,T,R), comprised of a set of states S, a set of actions A, a transition distribution

T(s′, s, a) = P (st+1 = s′|st = s, at = a) and a reward distribution R(s′, s, a) = p(rt+1|st+1 = s′, st =

s, at = a)

We may now extend the notion of a policy from the simpler n-armed bandit setting to that of MDPs.

Now, a policy π defines the probability distribution P (at|st, π). Policies for which P (at|st, π) = πa,s are

called stationary.

The second generalisation consists of discovering a policy that does not only attempt to maximise

the expected immediate reward, but also future rewards. This in general is the goal of reinforcement

learning: to discover some policy π∗ for which the expectation of some functional R of the reward over

time is maximised:

π∗ = arg max
π

E[R|π].

This functional R is called the return. A common choice for R is the cumulative discounted reward:

Rt =

∞
∑

k=0

γkrt+k+1,

where γ ∈ [0, 1) is a scalar discount factor.4 One can think of γ as a mechanism for weighing the

importance of rewards in the distant future relative to immediate rewards. When γ = 0, the optimal

policy is the policy that maximises the expected value of the immediate reward only. As γ → 1, the

optimal policy is that which maximises the expected value of all future rewards.

4Setting γ = 1 corresponds to the special case of average-reward infinite-horizon problems and will not be dealt with
here.

14 CHAPTER 2. BACKGROUND

x h y

(a) Conditional mixture

x h y

(b) Static mixture

Figure 2.2: Mixture models

Given a model, (i.e. when the environment dynamics and reward expectations for each state-action

pair are known a priori), it is possible to calculate the expected return for any given policy. In fact, it

is even possible to obtain the optimal stationary policy using dynamic programming (Bellman, 1957b)

techniques. However in general the model is not known and stochastic approximation techniques must

be used. In general such methods converge only asymptotically (Jaakkola et al., 1994). Reinforcement

learning techniques fall within this domain and are more thoroughly reviewed in Chapter 5.

2.2 Mixture models

While a number of models can be used for representing our beliefs in an inference task, this thesis is

mainly concerned with ensemble methods. In such methods, sometimes also called modular methods, the

task is solved jointly by a set of similar models. We shall be mainly concerned with the class of mixture

models in a probabilistic framework.

As a motivation, we will consider the problem of estimating a function f : X → Y, given data (x, y),

with x ∈ X , y ∈ Y. To give a concrete example, in a classification task x might be an observation and y

a vector of class membership probabilities. The following exposition will not be restricted to such tasks

however, but to the more general case of estimating the conditional density p(y|x).
The goal can be stated as constructing f in order to minimise some appropriate loss function. We will

focus on probabilistic methods, where the aim is to estimate the conditional density p(y|x) in the form

of a mixture of models from a set H where each model h defines its own conditional density p(y|x, h):

p(y|x) =
∑

h∈H

p(y|x, h)p(h|x). (2.8)

This model, shown in graphical form in Figure 2.2(a), can also be stated in terms of the joint density

p(y, x) =
∑

h∈H

p(y, x|h)p(h). (2.9)

This thesis deals mostly with models where one or more of these random variables lie in a sequence

space. There is large number of such models, however will focus on only a few types.

The static mixture model, shown in Figure 2.2(b), results from the assumption that the mixing

probabilities of each model do not depend on the observations, so that p(h|x) = p(h). This is employed

in model sampling approaches investigated herein, such as bagging (Breiman, 1996).

Another special case is the switching model, where only one model is responsible for the ensemble’s

decision at any one time, i.e. x ∈ X , P (h = i|x) = 1 for some i ∈ H.

2.2. MIXTURE MODELS 15

In the case of sequence data, with x = (x1, . . . , xT), switching can be constrained by defining proba-

bilities P (ht+1 = i|ht = j, x).

2.2.1 Training and model selection

Mixture models are primarily of interest because given an appropriate set of base hypotheses H, it is

possible to approximate any function f : X → Y. In fact, many types of models are of this form,

including multi-layer perceptrons, generalised linear models (such as radial basis function networks) and

Gaussian mixture models (see Jordan (1999); Trevor Hastie and Friedman (2001) for an overview of such

models). Two questions that arise when training such models are firstly how the mixture components

are selected and secondly how the mixing parameters are adapted.

In sampling methods, a base hypothesis h ∈ H is created from the data according to some distribution

p(x|h). For the case where the distribution over the data is the same for all base hypotheses, the

corresponding posterior distribution p(h|x) is uniform. Such sampling also provides an opportunity to

introduce model priors p(h) in a non-analytic way. Bagging and cross-validated committees (see for

example Parmanto et al., 1995) belong to this category, while particle filters and other Monte Carlo

estimation methods have been long used as approximate Bayesian estimation procedures. As will be

seen in Part II, such methods can also be useful for making decisions under uncertainty, where it is

necessary to use a probability distribution to represent the uncertainty in our beliefs. In that case, the

probability distribution over the hypothesis space will be approximated by a finite number of (highly

probable) elements.

Another potential advantage of mixture methods is that the mixing parameters can be relatively few

and that for certain cost functions there is a single global minimum. Thus, it can be much easier to adapt

the mixing parameters of a mixture of hypotheses in a given class for the minimisation of a particular

cost than to find the hypothesis in the class that minimises it. As will be seen in Part I, this can be used

for word error rate minimisation in speech recognition.

A final advantage is the potential robustness to noise. By selecting only a single hypothesis within the

allowed class, one completely disregards all the other hypotheses in the same class. With a limited number

of data, this appears counter-intuitive from a probabilistic perspective: Initially one has a prior belief

that covers all of the hypothesis space. Subsequently to observing data, one obtains a posterior belief

(2.5) which potentially again covers all of the space. Although it can be difficult to perform Bayesian

inference in practice, it may be possible to simulate it with a finite set of hypotheses.

However, even with a finite number of hypotheses, the overall model complexity can be extremely

high. Ensemble pruning (see for example Zhang et al., 2006; Partalas et al., 2006) techniques attempt to

reduce the size of the ensemble while maintaining or improving upon its performance.

Finally, there exist methods for constructing ensembles where not all members share the same input

and output space. Firstly, it is possible to vary the input space across experts by using different sets

of features for each one. Another option is to associate each target point in Y with a point in a higher

dimensional space Z and then have each member of the ensemble perform a mapping hi : X → Zi, where

Zi is a subspace of Z. Then the outputs of all experts can be combined to reconstruct a vector in Z.

16 CHAPTER 2. BACKGROUND

The classic way of doing this for multi-class classification problems is the error-correcting output code

described by Dietterich and Bakiri (1995). In this thesis we will be concerned only with ensembles in

which all members share the same input and output space. Three such methods, bagging, boosting and

mixture of experts, will be described in the remainder of the section.

2.2.2 Bagging

Model inference in classification tasks can be stated as the procedure of finding a hypothesis h ∈ H,

given some data D, that maximise the posterior density p(h|D). However, there is no reason why the

model inference should be restricted to a point estimate. One may equally well infer a distribution over

the classifier space H given the data. This can be done either parametrically or via sampling. From this

point of view, Bagging (Breiman, 1996) represents a method for sampling the classifier space H. Let us

assume we have observations o ∈ O, which may consist of input and label pairs (x, y), and draw a random

sample5 Di of pairs from a distribution D. Let us subsequently infer a model with maximum posterior

probability hi = arg maxh P (h|Di). After drawing N such samples Di and creating an equal number of

models, one from each sample, the models can be brought together into a mixture. This will satisfy

p(o) =

N
∑

i=1

p(o|hi)P (hi|Di)P (Di),

where we made use of the fact that p(o|hi,Di) = p(o|hi). From the sampling theorem, this leads to

p(o) ≈ 1

N

N
∑

i=1

p(o|hi). (2.10)

In practice bagging is performed by uniformly sampling from a fixed set of data D rather than the

actual data distribution. In this case each sample Di is a sample of size ‖D‖ drawn uniformly with

replacement from D, called a bootstrap replicate of D.

Bagging has attracted attention as a method to reduce estimator variance. For an unbiased model h,

E[h] = h∗, where h∗ corresponds to the ‘true’ model. However, while in expectation we are close to the

true model, each individual sample of h might be far from the h∗. This can be expressed via the variance

Var[h − h∗]. If we consider hi as an independent sample of an estimator and we use h(N) to denote a

”bagged” estimator made up of N models then

lim
N→∞

h(N) = lim
N→∞

1

N

N
∑

i=1

hi = E[h],

from which it follows that

lim
N→∞

Var[h(N) − h∗] = Var[E[h] − h∗],

which for unbiased estimators is 0..

5Herein we follow the standard nomenclature of calling a random sample a set of realisations

2.2. MIXTURE MODELS 17

2.2.3 Boosting

Boosting algorithms (Meir and Rätch, 2003; Schapire and Singer, 1999; Freund and Schapire, 1997) are

a family of ensemble methods for improving the performance of classifiers by training and combining

a number of experts through an iterative process that focuses the attention of each new expert to the

training examples that were hardest to classify by previous ones. The most commonly used boosting

algorithm for classification is Ada-Boost (Freund and Schapire, 1997), where an ensemble of experts is

able to decrease the training error exponentially fast as long as each new classifier has a classification

error smaller than 50%.

An algorithmic view of boosting

More precisely, an Ada-Boost ensemble is composed of a set of ne experts, E = {e1, e2, ..., ene
}. For each

input x ∈ X, each expert ei produces an output yi ∈ Y . These outputs are combined according to the

reliability βi ∈ [0, 1] of each expert:

y =

ne
∑

i=1

βiyi. (2.11)

The expert training is an iterative process, which begins with training a single expert and subsequently

trains each new expert in turn, until a termination condition is met. While there exist many variants

of Ada-Boost for multi-class classification problems, in this work we will mainly concentrate onAda-

Boost.M1. The experts are trained on bootstrap replicates of the training dataset D = {di|i ∈ [1, N]},
with di = (xi, yi). The probability of adding example di to the bootstrap replicate Dj is denoted as

pj(di), with
∑

i pj(di) = 1. At the end of each boosting iteration j of Ada-Boost.M1, βj is calculated

according to:

βj = ln
1 − εj

εj
, (2.12)

where εj is the empirical expected loss of expert ej , given by

εj =
∑

i

pj(di)l(di), (2.13)

where l(di) is the sample loss of example di. If, for any predicate π, we let [π] be 1 if π holds and 0

otherwise, it can be defined as: l(di) = [hi 6= yi], (i.e. the zero-one loss). After training in the current

iteration is complete, the sampling probabilities are updated so that pj(di) is increased for misclassified

examples and decreased for correctly classified examples according to:

pj+1(di) =
pj(i) exp(βl(di))

Zj
, (2.14)

where Zj is a normalisation factor to make Dj+1 into a distribution. Thus, incorrectly classified examples

are more likely to be included in the next bootstrap data set. Because of this, the expert created at each

boosting iteration concentrates on harder parts of the input space.

A second multi-class extension is Ada-Boost.M2, where a weight vector wi,y is maintained for each

18 CHAPTER 2. BACKGROUND

class that an example can belong to and where the base classifier is a function f : X × Y → [0, 1], thus

providing some confidence measure (not necessarily with a probabilistic interpretation) of how likely the

data is to belong to each one of the classes. The calculation of example weights and coefficients for the

linear combination of classifiers requires the calculation of these confidence measures for all the classes in

Y. This calculation may be prohibitive for applications where the number of classes is extremely large.

Freund and Schapire (1997, Section 5.2) gives more details on this particular algorithm.

In general, Ada-Boost and other boosting algorithms can be viewed as greedy optimisation methods6

or the minimisation of a cost related to the classification margin (Smola et al., 2000, see). A brief overview

of classification margins follows.

2.2.4 Margins

Let us say we have a set D of inputs and target pairs x ∈ X , y ∈ Y drawn from a distribution D. Assume

some margin function m : X × Y → R and some classifier f : X → Y. The margin function provides

some measure of the confidence with which a classifier is making a classification and has the property

that m(x, y) > 0 for any correctly classified example (x, y). One useful such margin function is the one

defined for a binary classifier with output space Y = [−1, 1]:

Definition 2.3 (Two-class classification margin)

m(x, y) = yf(x) (2.15)

This particular margin function equals 1 when the correct label is predicted with high confidence and

−1 when an incorrect label is predicted with high confidence. An equivalent function can be written for

the multi-class case, with Y = [0, 1]n, where n is the number of classes, and fy denoting the score (which

could be a probability) that the classifier assigns to class y, the margin can be written as

Definition 2.4 (Multi-class classification margin)

m(x, y) = fy(x) − max
y′ 6=y

fy′(x) (2.16)

Thus the margin can serve as a measure of how far away from the decision threshold a classification

is made. In general we would like to find a function f : X → Y that maximises some functional F of the

margin over all the examples (or alternatively that minimises some cost function related to F, such as a

bound).

If the function f is parameterised with parameters w, then we can employ the chain rule of differ-

entiation and be able to use gradient descent methods to find parameters that minimise the relevant

cost. In some cases, such as in the case of the linear combination of hypothesis and exponential cost in

Ada-Boost, the solution can be obtained analytically.

6Greedy in the sense that a decision is made which would have been optimal had it been the last one to be made. Such
decisions are termed greedy since they can potentially sacrifice long-term for short-term gains.

2.2. MIXTURE MODELS 19

The functional

The functional F[m] can in general be written as

F[m(f, y)] =
∑

i

z(i)m(f(xi), yi).

The following are some commonly used functionals, where we use the shorthand notation m(i) ≡
m(f(xi), yi)

Definition 2.5 (Average margin) This is useful for constructing a cost function that maximises the

margin everywhere.

FD[m] =
∑

i∈D

m(i) (2.17)

Definition 2.6 (Minimum margin) Useful for constructing a cost function that maximises the mini-

mum margin.

FD[m] = min
i∈D

m(i) (2.18)

Since no gradient can be computed for the minimum margin, it is common to use approximations or

bounds in order to utilise gradient-based methods for its maximisation (see Smola et al., 2000; Zemel and

Pitassi, 2000; Friedman, 2001).

Definition 2.7 (Exponential margin) This is useful for constructing a cost function that puts more

emphasis on the minimum margin, however tries to increase the margin everywhere. When β → 0, it

becomes the same as the average margin and when β → ∞, it becomes the same as the minimum margin.

FD[m] =
∑

i∈D

m(i)
exp(−βm(i))

∑

j∈D exp(−βm(j))
(2.19)

2.2.5 Mixture of experts

The mixture of experts (MoE) architecture was introduced in (Jacobs et al., 1991). Unlike the mixtures

in bagging and boosting, the mixture of experts model is not a static mixture since there is a dependency

between h and the observations x.

The model essentially takes the form of (2.8), with multi-layer perceptrons, called experts, representing

each term p(y|x, h) and another multi-layer perceptron, called the gate or gating function representing

the p(h|x) term.

The original algorithm employed a form of gradient descent for parameter adaptation. It was later

extended to a hierarchical mixture of experts with expectation-maximisation training in (Jordan and

Jacobs, 1994).

20 CHAPTER 2. BACKGROUND

st st+1

ot ot+1

Figure 2.3: Hidden Markov model

2.3 Speech recognition with hidden Markov models

Speech recognition techniques generally consist of methods for utilising prior knowledge, such as the

phonetic, lexical and grammatical morphology of the language that we wish to recognise in order to

specify a class of models that correspond to the overall morphological structure, and subsequently finding

the models within this class that predict the available data well, according to some well-defined optimality

criterion. One such simple, yet natural, class is that of hidden Markov models.

Definition 2.8 (Hidden Markov model) A hidden Markov model is a probabilistic model describing

the relations between two variables: a state variable s in some discrete space S, and an observation

variable o ∈ O. These take values st and ot respectively at time t, which are related through:

P (st|st−1, st−2, . . .) = P (st|st−1) (2.20)

P (ot|st, ot−1, st−1, ot−2, . . .) = P (ot|st), (2.21)

These dependencies admit the following factorisations of the joint distribution:

P (st, st−1, st−2, . . .) = P (st|st−1)P (st−1|st−2, . . .)

=

t
∏

k=1

P (sk|sk−1) (2.22)

P (ot, st, ot−1, st−1 . . .) = P (ot|st)P (st, ot−1, st−1, ot−2, . . .)

=

t
∏

k=1

P (ok|sk)P (sk|sk−1), (2.23)

which means that only three types of distribution need to be modelled: P (ok|sk), the observation (or

emission) distribution, P (sk|sk−1), the transition distribution and the P (s1) ≡ P (s1|s0), the initial state

distribution.

Training usually consists of finding a model m∗ within a class of models M defining the distributions

P (ok|sk,m
∗), P (sk|sk−1,m

∗) with maximum posterior density

m∗ = arg max
m

p(m|D),

2.3. SPEECH RECOGNITION WITH HIDDEN MARKOV MODELS 21

s1 s2 s3

o1 o2 o3

Figure 2.4: A phonetic model

7 8 9 11 1210

1 2 3 4 5 6

Phoneme B Phoneme C

Phoneme BPhoneme A

B

Word A

Word B

Figure 2.5: A hidden Markov model for speech recognition.

where D is a set of observation sequences. Most of the time M is restricted to models with a particular

number of states and allowed transitions between states. In that case a number of optimisation techniques

might be used, though in practice expectation maximisation tends to be preferred, in particular the Baum-

Welch algorithm (Baum et al., 1970), which uses the forward-backward algorithm as the expectation step.

The most common way to apply such models to speech recognition is to associate each state s with

morphological features a ∈ A, such as phonemes, syllables, or words, through a distribution P (a|s),
which takes values in {0, 1} in standard practice: This is done by creating a graph, as the one shown in

Figure 2.5, with a set of parallel chains such that each chain maps to one word; for example, given that

we are in the state s = 4 at some time t, then we are also definitely (i.e. with probability 1) in Word

A and Phoneme B at time t. In general, we can determine the probabilities for sequences states, we

can also determine most probable sequence of words or phonemes, i.e. given a sequence of observations

(o1:T), it is then possible to infer a state distribution P (s1:T |o1:T) and subsequently a distribution over

morphologies, to wit the probabilities of possible word, syllable or phoneme sequences. More details are

given in the following section.

2.3.1 Continuous speech recognition

Speech exhibits a hierarchical structure, whose levels correspond to different temporal scales, from short-

term features such as phonemes, to long-term ones such as words and utterances. When hidden Markov

22 CHAPTER 2. BACKGROUND

models are employed, it is advantageous to construct a model at each level in such a way that the complete

speech model remains a hidden Markov model.

In the Gaussian-mixture hidden Markov model applied to speech, the features in observation space O
are features derived from a short-term speech signal, modelled using a Gaussian mixture. A commonly

used such set of features are Mel-frequency cepstral coefficients (see for example Rabiner and Juang, 1993)

(MFCC). Such features are derived from a linear frequency transform of a short window of audio data

after pre-emphasis. The full frequency information is reduced by integrating into a fixed set of bands with

Mel fiterbanks. Finally, IDFT or DCT is performed to obtain the cepstral coefficients. Frequently, first-

order approximations of the first and second time derivatives of the cepstral coefficients are also included

in the features. Other types of features are certainly possible, but this thesis will not be concerned with

this topic.

Individual phonetic units are modelled using hidden Markov models, usually comprising of not more

than 5 states. The models, such as the one depicted in Figure 2.4, have a topology such that ’backwards’

transitions are not possible, i.e. P (st+1 = i|st = j) = 0 for all j > i. Such a topology is commonly referred

to as a left-to-right topology. Words are formed through the concatenation of phoneme models7. The

architecture of the overall model is such that each state s in the overall model maps to one state in one

phoneme HMM and one word. The word models themselves are connected according to the transitions

allowed by the language model.

Given a set of utterances and speech data, it is possible to infer a hidden Markov model that explains

the data given the utterances by finding the model with the highest posterior probability. Unfortunately,

this inference requires the solution of an optimisation problem with many local extrema, so in practise

the parameters of the HMM are initialised from reasonable values by first optimising them over a range of

simpler sub-problems. In practice, speech recognition performs adequately after training each phoneme

model separately using phonetically labelled speech data.

After phoneme-level training, or in cases where the data does not include time-aligned phonetic labels

from the outset, a form of training called embedded training is used. Given a set of utterances, a set

of models composed of the concatenated phoneme models comprising each utterance is trained so that

we obtain ML or MAP parameter estimates given the observations. This utterance-level training has

the advantage that it does not rely on a given phonetic alignment, which can be particularly noisy

anyway, but on utterance labels, which are virtually noise-free. In a probabilistic framework, embedded

training consists of an application of the Baum-Welch algorithm with the training data. Because the

forward and backward steps in which the posterior state probabilities are calculated are time consuming,

sometimes the Viterbi approximation can be used instead. In this case the Viterbi algorithm (described

in the following subsection) is used to find the sequence of state with highest posterior probability. The

maximisation step is performed as though the states within the sequence had a posterior probability of

one and the rest a posterior probability of zero. Thus the maximisation step is sped up by a factor equal

to the number of states. However, since the complexity of the expectation step remains the same, thus

the overall speed up is not more than a factor of two.

7The sequence of phonemes that each word is composed of is called the pronunciation lexicon. It is usually determined
by linguistic studies, or simply from a lexical dictionary.

2.3. SPEECH RECOGNITION WITH HIDDEN MARKOV MODELS 23

Inference

We wish to find the sequence of words w∗ ∈ W ∗ such that P (w∗|o) ≥ P (w|o) for all w ∈ W∗. This

posterior probability of words given observations can be written as

P (w|o) =
∑

s∈ST

P (w|s)P (s|o). (2.24)

The sequence of words themselves is usually assumed to arise from some language model. In a probabilistic

framework such a model would be used to obtain a probability for P (w) for any sequence of words w.

Frequently, models called n-grams, Markov chain models of the form P (wn+1|w1, . . . , wn), are used. The

dependency on the language model can be seen if we re-write (2.24) as P (w|o) = p(o|w)P (w)/p(o).

While it is possible to calculate P (s|o) with the forward-backward algorithm, the summation required

in calculating P (w|o) can be problematic due to the very large size of ST . On the other hand, the

expression arg maxw P (w|s)P (s|o) can be simplified by approximating P (s|o) via an indicator function

which is 1 when st = s∗t and 0 otherwise, where s∗ is the sequence of states with the highest posterior

probability given the sequence of observations. Since models are constructed so that at the most one

word sequence corresponds to each state sequence, this allows inferring the word sequence directly.

In order to determine the most probable state sequence itself efficiently, the evaluation of the posterior

probabilities of all state sequences is not necessary. The problem can be restated as a shortest-path

problem instead. Let

ρt(i, j) = logP (st = i|st−1 = j, o),

and E = {p(st = i|st−1 = j)|i, j ∈ S}. Given a graph G = (N , E) and a metric ρt(i, j), with i, j ∈ N and

t ∈ [0, T], the Viterbi algorithm (Viterbi, 1967) can be used to compute a sequence {s∗i } such that

∑

t

ρt(s
∗
t , s

∗
t−1) ≥

∑

t

ρt(st, st−1), (2.25)

for all sequences {si}. The problem is essentially a shortest path problem on a tree T with T |N | nodes

and T |N |2 edges with metric −ρt(i, j), whose solution is particularly efficient.8

Using the most probable sequence of states in order to infer a sequence of words is commonly referred

to in the literature as “Viterbi decoding”. While extremely fast, its main drawback is that the sequence

of most probable words is not necessarily the one corresponding to the most probable sequence of states.9.

Fortunately a trade-off between accuracy and speed can be made by using the Viterbi algorithm to create

an n-best list of state sequences and then using that in place of the complete set ST in (2.24) to obtain

word sequence posteriors.

8Worst-case shortest-path complexity of Dijkstra’s algorithm for general graphs with n nodes is O(n2). For trees with
k nodes at each level, depth T and m connections per level, the complexity is O(kTm).

9This because, as noted previously, the Viterbi decoding procedure corresponds to inferring the most probable sequence
of words by approximating the posterior distribution over states with an indicator function.

24 CHAPTER 2. BACKGROUND

Performance measures

Some measure of performance for determining the quality of an automatic speech recognition system is

required, on the basis of some distance between the desired and actual output of the speech recogniser.

Since these outputs are sequences we need an appropriate measure in the sequence space, such as the

edit distance, otherwise known as the Levenshtein distance (Levenshtein, 1966). For two sequences a and

b, this is defined as the number of atomic operations necessary to transform a sequence of symbols a

into another a sequence b. In speech there are three types of atomic operations commonly used: word

insertions, deletions and substitutions.

The most common measure of performance10 for an automatic speech recogniser is based on the edit

distance and it is called the word error rate:

WER =
Nins +Nsub +Ndel

Nwords
, (2.26)

where Nins is the number of word insertions, Nsub the number of word substitutions and Ndel the

number of word deletions. These numbers are determined by finding the minimum number of insertions,

substitutions, or deletions necessary to transform the target utterance into the emitted utterance for each

example and then summing them for all the examples in the set.

2.3.2 Multi-stream decoding

When we wish to combine evidence from multiple models, multi-stream decoding techniques can be used

as an approximation to the full mixture model (Morris et al., 2001). Such techniques derive their name

from the fact that they were originally used to combine models which had been trained on different

streams of data or features Misra and Bourlard (i.e. 2005).

In multi-stream decoding each sub-unit model corresponding to a morphological feature a is comprised

of n sub-models a = {ai|i ∈ [1, n])} associated with the sub-unit level at which the recombination of the

input streams should be performed. For any given a, the likelihood can be written as

p(o|a) =

n
∑

i=1

p(o|a, i)p(i), (2.27)

where p(i) is a fixed weight for expert i.

We consider the case of state-locked multi-stream decoding, where all sub-models are forced to be at

the same state. This can be viewed as creating another Markov model with emission distribution

p(ot|st) =
n
∑

i=1

p(ot|st, i)p(i). (2.28)

A similar method for combining models is to consider the exponentially weighted product of emission

10There are of course other possible measures of performance, such as those described in Morris et al. (2004).

2.3. SPEECH RECOGNITION WITH HIDDEN MARKOV MODELS 25

distributions rather than the mixture.

p(ot|st) =

n
∏

i=1

p(ot|st, i)
p(i). (2.29)

However this approximation does not arise from (2.27), but from assuming a factorisation of the obser-

vations

p(ot|st) =
n
∏

i=1

p(oi
t|st, i), (2.30)

which is useful when there is a different model for different parts of the observation vector.

Multi-stream techniques are hardly limited to the above. For example Misra et al. (2003) describes

a system where p(i) is related to the entropy of each sub-model, while Ketabdar et al. (2005a) describes

a multi-stream method utilising state posteriors. In this thesis, however, we will concentrate on the two

techniques outlined above and an additional one, which will be described in Section 3.4.

26 CHAPTER 2. BACKGROUND

Part I

Ensembles for speech recognition

27

Chapter 3

Phoneme mixtures

In this chapter the application of ensemble methods to hidden Markov models (HMMs) for speech recog-

nition is examined. We mainly consider two methods: bagging and boosting, with emphasis on the latter.

Both methods feature a fixed mixing distribution between the mixture components, which simplifies the

inference, though it does not completely trivialise it.

In the speech model considered, words are hidden Markov models composed of concatenations of

phonetic hidden Markov models, where the state transitions are such that there exist no cycles other

than self-transitions. In this setting it is possible to employ mixture models at any temporal level - i.e.

a word can be represented by a mixture of word models and a phoneme can be represented by a mixture

of phoneme models.

If mixtures at the phoneme model level are considered and data with a correct phonetic segmentation

is available, then it is possible to restrict ourselves to a simple sequence classification problem in order to

train a mixture model. Application of methods such as bagging and boosting to the phoneme classification

task is straightforward. However, using the resulting models for continuous speech recognition poses some

difficulties in terms of complexity. Section 3.4 outlines how multi-stream decoding (see Section 2.3.2) can

be used to perform approximate inference in the resulting mixture model.

Chapter 4 introduces an algorithm for word error rate minimisation using boosting techniques. While

it appears trivial to do so by minimising some form of loss based on the word error rate, in practice

successful application additionally requires use of a probabilistic model for inferring error probabilities

in parts of misclassified sequences. The concepts of expected label and expected loss are introduced, of

which the latter is used in place of the conventional loss. This integration of probabilistic models with

boosting allows its use in problems where labels are not available.

3.1 Prior research

The original Ada-Boost algorithm had been defined for classification and regression tasks, with the

regression case receiving more attention recently (see (Meir and Rätch, 2003) for an overview). However,

the amount of research in the application of boosting to sequence learning has been comparatively small.

29

30 CHAPTER 3. PHONEME MIXTURES

This chapter presents methods and results for the use of boosting and bagging for phoneme classification.

In this case the formulation of the task is essentially the same as that of static classification; the only

difference being that the observations are sequences rather than single values.

Perhaps the closest approach to the one described herein was by Schwenk (1999), where boosting was

used in a speech recognition task. An HMM/ANN system was used, with the ANNs used to compute the

posterior phoneme probabilities at each state. Boosting itself was performed at the ANN level, using Ada-

Boost with confidence-rated predictions and in which the sample loss function was the frame error rate.

The resulting decoder system differed from a normal HMM/ANN hybrid in that each ANN was replaced

by a mixture of ANNs that had been provided via boosting. Thus such a technique avoids the difficulties

of performing inference on mixtures, since the mixtures only model instantaneous distributions. Zweig

and Padmanabhan (2000) appear to be using a similar technique, though the details of their approach are

not evident, but with a system based on Gaussian mixtures and they additionally describe a few boosting

variants for large-scale systems with thousands of phonetic units. Both papers report mild improvements

in recognition. In the work presented here, we are interested in seeing whether models that result from

phoneme-level boosting offer an advantage over a frame-level boosting approach.

Another interesting way to apply boosting would be to use it at the sentence level, for the purposes

of explicitly minimising the word error rate. A proposed scheme for word error minimisation and related

work in utterance-level boosting will be described in Section 4.1.

3.2 Data and methods

The phoneme data was based on a pre-segmented version of the OGI Numbers 95 (N95) data set (Cole

et al., 1995). This data set was converted from the original raw audio data into a set of features based

on Mel-Frequency Cepstrum Coefficients (MFCC) (Rabiner and Juang, 1993) (with 39 components,

consisting of three groups of 13 coefficients, namely the static coefficients and their first and second

derivatives) that were extracted from each frame. The data contains 27 distinct phonemes that compose

30 dictionary words. There are of 3233 training utterances and 1206 test utterances, containing 12510

and 4670 words respectively. The segmentation of the utterances into their constituent phonemes resulted

in 35562 training segments and 12613 test segments, totalling 486537 training frames and 180349 test

frames respectively. The feature extraction and phonetic labelling is described in more detail in (Johnny

Mariéthoz and Samy Bengio, 2004).

The models employed have a number of hyper-parameters. For model comparison in the speech

recognition task, these were tuned by holding out 1233 utterances from the training set and performing

training on the remaining 2000 utterances. Subsequently, the hyper-parameters that resulted in the best

performance in terms of word error rate were chosen for each model and then that model was trained

on the complete training set. Finally, the models were compared on the independent test set. Results in

figures and tables explicitly indicate whether they are reported on either the complete training set, the

holdout set, or the independent test set and how the selection of hyper-parameters was performed.

The comparative performance measure used depends on the task. For the phoneme classification task,

the classification error is used, which is the percentage of misclassified examples in the training or testing

3.2. DATA AND METHODS 31

data set. For the speech recognition task, the word error rate (2.26) is used. Confidence values given

for the classification error are based on a two-proportion z-test, assuming they are sampled from normal

distributions with equal variances, a reasonable assumption for large sample sizes, while for the word

error rate a bootstrap estimate is used to estimate the statistical significance of the results. The tests

are described in more detail in Appendix B.4.

For the classification task, we used pre-segmented data. Thus, the classification could be performed

using a Bayes classifier composed of 27 Hidden Markov Models, each one corresponding to one class. Each

HMM was composed of three 1 states 2, (though for one of the experiments, only one hidden state was

used) in a left-to-right topology and the distributions corresponding to each state were modelled with a

Gaussian mixture model, with each Gaussian having a diagonal covariance matrix. For the initial results

presented, ten Gaussian components are used, while for the final results the number of components is

chosen from {10, 20, 30, 40} by evaluating the performance on the hold-out set. In all cases, the diagonal

covariance matrix elements of each Gaussian were clamped to a lower limit of 0.2 times the global

variance of the data. For continuous speech recognition, transitions between word models incurred an

additional likelihood penalty of exp(−15) while calculating the most likely sequence of states. Finally, in

all continuous speech recognition tasks, state sequences were constrained to remain in the same phoneme

for at least three acoustic frames.

For phoneme-level training, the adaptation of each phoneme model was performed in two steps.

Firstly, the acoustic frames belonging to each phonetic segment were split into a number of equally-sized

intervals, where the number of intervals was equal to the number of states in the phonetic model. The

Gaussian mixture components corresponding to the data for each interval were initialised via 25 iterations

of the K-means algorithm (see, for example (Bishop, 1995)). After this initialisation was performed, a

maximum of 25 iterations of the EM algorithm were run on each model, with optimisation stopping

earlier if at any point in time t, the likelihood ℓt satisfied the following stopping criterion:

ℓt − ℓt−1

ℓt
< ε, ε > 0 (3.1)

with ε = 10−5 being used in all experiments that employed EM for optimisation.

For utterance-level training, the same initialisation was performed. The inference of the final model

was done through expectation maximisation (using the Viterbi approximation) on concatenated phonetic

models representing utterances. Note that performing the full EM computation is costlier and does not

result in significantly better generalisation performance, at least in this case. The stopping criterion and

maximum iterations were the same as those used for phoneme-level training.

1The optimal number of hidden states to use will vary depending on the data. It will predominantly depend on the
minimum duration of each phoneme in terms of the number of observation frames that it occupies with the selected set of
features. For this particular dataset, the performance of a single HMM was found to be optimal on a hold-out set when the
number of states was 3. This value was maintained for all subsequent experiments.

2and an additional two non-emitting states: the initial and final states

32 CHAPTER 3. PHONEME MIXTURES

s11 s12 s13

h o1 o2 o3

s21 s22 s23

Figure 3.1: A phoneme mixture model. The generating model depends on the hidden variable h, which
determines the mixing coefficients between model 1 and 2. The random variable h may in general
depend on other variables. The distribution of the observation is a mixture between the two distributions
predicted by the two hidden models, mixed according to the mixture model h.

3.3 Model training at the phoneme level

The simplest way to apply ensemble training techniques such as bagging and boosting to HMM training

is to cast the problem into the classification framework. This is possible at the phoneme classification

level, where each class c ∈ C corresponds to one of the possible phonemes. As long as the available data

are annotated in time so that subsequences containing single phoneme data can be extracted, it is natural

to adapt each hidden Markov model mc to a single class c out of the possible |C|, and combine the models

into a Bayes classifier in the manner described in Section 2.1.1. Such a Bayes classifier can then be used

as an expert in the Ada-Boost framework.

More specifically, each example d in the training dataset D will be a sequence segment corresponding

to data from a single phoneme c ∈ C. So each example d would be of the form d = (s, c), with s ∈ S∗ being

a subsequence of features corresponding to single phoneme data. At each iteration j of both boosting and

bagging, a new classifier hj is created, which consists of a set of hidden Markov models {mj
1,m

j
2, ...,m

j
|C|}.

Each model mj
i is adapted to the set of examples {dk ∈ Dj |yk = ci}, where Dj is a bootstrap replicate of

D, sampled uniformly in the case of bagging and according to (2.14) in the case of boosting. The p(hi)

for the mixture components is given by the uniform distribution and (2.12) respectively. In this case the

Ada-Boost method used was Ada-Boost.M1, though, since the number of classes is relatively small, other

variants for multi-class classification, such as Ada-Boost.M2, could have been used instead.

Since previous studies had shown that an increase in generalisation performance may be obtained

through the use of those two ensemble methods, it was expected that they would have a similar effect

on performance in phoneme classification tasks. This is tested in Section 3.5. While using the result-

ing phoneme classification models for continuous speech recognition is not straightforward, we describe

some techniques for combining the ensembles resulting from this training in order to perform sequence

recognition in Section 3.4.

3.4. CONTINUOUS SPEECH RECOGNITION WITH MIXTURES 33

3.4 Continuous speech recognition with mixtures

The approach described in the previous section is only suitable for phoneme classification, which requires

that the data is segmented at the phoneme level both during training and testing. However we can still

employ boosting by training with segmented data to produce a number of expert models which can then

be recombined during decoding on unsegmented data.

Component of
state−locked path

Component of
unconstrained path

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 1 Phoneme 2

Word 2

Expert A

Expert B

Expert C

B

w

wB

wA
Aw

w

C
Cw

Phoneme 2Phoneme 1

Word 1

Figure 3.2: Single-path multi-stream decoding for two vocabulary words consisting of two phonemes
each. When there is only one expert the decoding process is done normally. In the multiple expert case,
phoneme models from each expert are connected in parallel. The transition probabilities leading from
the anchor states to the Hidden Markov Model corresponding to each experts are calculated from the
expert weights βi, from equation (2.12), of each expert.

The first technique employed for sequence decoding uses an HMM comprising all phoneme models

created during the boosting process, connected in the manner shown in Figure 3.2. Each phase of the

boosting process creates a sub-model i, which we will refer to as expert for disambiguation purposes.

Each expert is a classification model that employs one hidden Markov model for each phoneme. For some

sequence of observations, each expert calculates the posterior probability of each phonetic class given the

34 CHAPTER 3. PHONEME MIXTURES

observation and its model. Two types of techniques are considered for employing the models for inferring

a sequence of words.

In the single stream case, decoding is performed using the Viterbi algorithm in order to find a se-

quence of states maximising the posterior probability of the sequence. A normal hidden Markov model

is constructed in the way shown in Figure 3.2, with each phoneme being modelled as a mixture of expert

models. In this case we are trying to find the sequence of states {st = sj
i} with maximum likelihood.

The transition probabilities leading from anchor states (black circles in the figure) to each model are

calculated from the boosting weights βi so that they sum to one and represent the confidence weight of

each expert according to:

wi =
βi

∑ne

j βj
. (3.2)

This type of decoding would have been appropriate if the original mixture had been inferred as a type of

switching model, where only one sub-model is responsible for generating the data at each point in time

and where switching between models can occur at anchor states.

The models may also be combined using multi-stream decoding (see section 2.3.2. In this case we wish

to find the sequence of combinations of states across expert with the highest likelihood. More formally, a

combination of of n experts, where expert had a state space S, would have the state space Sn. However,

state combinations and their transitions are typically constrained by forcing some of them to have zero

probability. For example a combination whereby expert A is in a state corresponding to phoneme 1 while

expert B is in a state corresponding to phoneme 2 would not be allowed.

The advantage of such a method is that it uses information from all models. The disadvantage is that

there are simply too many states to be considered. In order to simplify this, we consider multi-stream

decoding synchronised at the state level, i.e. with the constraint that P (si
t 6= sj

t) = 0. This corresponds

to equation (2.27), where the stream weights are given by (3.2). Experiments on the hold-out set with

boosting and bagging, shown in Figure 3.5, demonstrate that this should be the preferred decoding

technique among the three for models where the class probability is modelled as a mixture, which is the

expected result (see Appendix B.1).

3.5 Experiments

Since the available data includes segmentation information it makes sense to first limit the task to training

for phoneme classification. This enables the direct application of ensemble training algorithms for this

task by simply using each training segment as a training example.

Two methods were examined for this task: bagging and boosting. At each iteration of either method,

a sample from the training set was made according to the distribution defined by either algorithm and

then a Bayes classifier composed of N hidden Markov models, one for each phonetic class, was trained.

It then becomes possible to apply the boosting and bagging algorithms by using Bayes Classifiers as

the experts. The N95 data was pre-segmented into training examples, so that each one was a segment

containing a single phoneme. Thus, bootstrapping was performed by sampling through these examples.

Furthermore, the classification error of each classifier is used to calculate the weights necessary for the

3.5. EXPERIMENTS 35

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
or

d
E

rr
or

 R
at

e
(%

)

states

(a)

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80

W
or

d
E

rr
or

 R
at

e
(%

)

gaussians/state

Figure 3.3: In the experiments reported in this chapter, the number of states and number of Gaussian
mixtures per state were tuned on a hold-out set prior to the analysis. Figure 3.3(a) displays the word
error rate performance of an HMM with 10 Gaussians per state when the number of emitting states per
phoneme is varied, which varies rather dramatically with the number of states. Figure 3.3(b) displays
the word error rate performance of an HMM with 3 emitting states as number of Gaussians per state
varies. In this case, the effect on generalisation is markedly lower.

weighted voting mechanism. The data that was used for testing was also segmented to subsequences

consisting of single phoneme data, so that the models could be tested on the phoneme classification

tasks. The results in training and test sets, shown in Figures 3.4(a) and 3.4(b), were validated against

the performance of a single Bayes classifier that was trained on the complete data set.

As can be seen in Figure 3.4(a), both bagging and boosting manage to reduce the phoneme clas-

sification error considerably in the training, with boosting continuing to make improvements until the

maximum number of iterations. For bagging, the improvement in classification was limited to the first

4 iterations, after which performance remained constant. The situation was similar when comparing the

models in the independent test set (Figure 3.4(b)).

Finally, a comparison between the models on the task of continuous speech recognition was made.

Firstly, it was necessary to decide on a method for performing decoding when dealing with multiple

models. The three relatively simple methods of single stream and multi-stream decoding (the latter

employing either weighted product or weighted sum) were evaluated by using approximately one third of

the training set as a hold out set. As can be seen in Figure 3.5, the weighted sum method that it is the

only one among the three techniques that could consistently offer improvement. This was expected since

it was the only method with some justification in our particular case, as it arises out of constraining the

full state inference problem on the mixture. The multi-stream product method would have been justified

if (2.30) held, which was not the case here, since each model had exactly the same observation variables.

The single-stream model could perhaps be justified under the assumption of a switching model, where a

different expert can be responsible for the observations in each phoneme. That might explain the fact

that that its performance is not degrading in the case of bagging, as the components of each mixture

should be quite similar to each other, something which is definitely not the case with boosting where

36 CHAPTER 3. PHONEME MIXTURES

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

Number of iterations

Training comparison 10 gaussians

Bayes
Bagging
Boosting

(a) Training

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 4 6 8 10 12 14 16

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

Number of iterations

Testing comparison 10 gaussians

Bayes
Bagging
Boosting

(b) Testing

Figure 3.4: Classification errors for a bagged and a boosted ensemble of Bayes Classifiers as the number
of experts is increased at each iteration of boosting. For reference, the corresponding errors for a single
Bayes Classifier trained on the complete training set are also included. There were 10 Gaussians per state
and 3 states per phoneme for all models. Results are shown in the full training dataset.

each model is trained on a different distribution of the data.

After having performed this initial analysis, the models that had been trained on the full training set

were used on the test set with a set of data. The comparison shown in Figure 3.6 was performed using

the same type of models for both boosting and bagging. It can be seen that while boosting manages to

continuously increase performance both in terms of classification error and word error rate, the bagging

approach continues to improve upon the word error rate even after it has stopped improving upon the

classification error, to the extend that in the end it actually matches boosting. A fuller comparison

between the two methods will be given in the next chapter, where the number of Gaussian units per state

and the number of experts will be tuned on a hold-out set. Furthermore, an alternative boosting method

specifically for minimising the word error rate will be explored.

3.6 Discussion

The experimental results indicate that boosting at the phoneme level can significantly improve phoneme

classification performance, while also increasing the performance for sentence recognition. Perhaps sur-

prisingly, bagging has a similar effect in sentence recognition for a much smaller effect in classification.

While after training the models there is only one way to combine them in order to perform phoneme clas-

sification, the task of sentence recognition does not present an obvious (optimal, yet tractable) method for

the combination of models. Indeed, the performance varies significantly depending on the combination

method used, of which the multi-stream weighted sum method, arguably the most suitable method of the

three for mixture models. An interesting subject of further research would be to pursue better methods

for expert combination during decoding, as an alternative to the current multi-stream methods, such as

perhaps a Monte Carlo approximation to the full posterior estimation of word sequences.

It is interesting to contrast the bagging and boosting methods for creating the mixture components.

3.6. DISCUSSION 37

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

W
E

R
 (

%
)

Experts

Boost

Bayes
single
wsum
wprod

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

W
E

R
 (

%
)

Experts

Bag

Bayes
single
wsum
wprod

Figure 3.5: Generalisation performance on the hold-out set in terms of word error rate after training
with segmentation information. Results are shown for both boosting and bagging, using three different
methods for decoding. Single-path and multi-stream. Results are shown for three different methods single-
stream (single), and state-locked multi-stream using either a weighted product (wprod) or weighted sum
(wsum) combination.

While boosting performs much better than bagging in the phoneme classification task, this improvement

is not so evident in the continuous speech recognition task. This is made clearer in Figure 3.6, where

it can be seen that bagging continues to degrease the word error rate while the classification error

remains approximately the same, though in any case the differences are not great. Taking this under

consideration suggests that it might be advantageous to perform boosting in order to minimise the word

error rate directly. Such an approach is examined in the subsequent chapter.

38 CHAPTER 3. PHONEME MIXTURES

 5

 6

 7

 8

 9

 10

 10 12 14 16 18 20

W
or

d
E

rr
or

 R
at

e
(%

)

Classification Error (%)

Relationship between phoneme classification and word recognition

bagging
boosting

Figure 3.6: Relationship between phoneme classification errors and word recognition errors in testing for
two different ensemble methods using 10 Gaussian components per mixture.

Chapter 4

Expectation boosting

It is also possible to apply ensemble training techniques at the utterance level. As before, the basic

models used are HMMs that employ Gaussian mixtures to represent the state observation distributions.

Attention is restricted to boosting algorithms in this case. In particular, we shall develop a method

that uses boosting to simultaneously utilise information about the complete utterance, together with an

estimate about the phonetic segmentation. Since this estimate will be derived from bootstrapping our

own model, it is unreliable. The method that is developed in this chapter will take into account this

uncertainty.

More specifically, similarly to (Cook and Robinson, 1996), sentence-level labels (sequences of words

without time indications) are used to define the error measure that we wish to minimise. The measure

used is related to the word error rate, as defined in (2.26). In addition to a loss function at the sentence

level, a probabilistic model is used to define a distribution for the loss at the frame level. Combined, the

two can be used for the greedy selection of the next base hypothesis. This is further discussed in the

following section.

4.1 Boosting for word error rate minimisation

In the previous chapter (and (Dimitrakakis and Bengio, 2004b)) we have applied boosting to speech

recognition at the phoneme level. In that framework, the aim was to reduce the phoneme classification

error in pre-segmented examples. The resulting boosted phoneme models were combined into a single

speech recognition model using multi-stream techniques. It was hoped that we could reduce the word

error rate as a side-effect of performing better phoneme classification and three different approaches were

examined for combining the models in order to perform continuous speech recognition. However, since

the measure that we are trying to improve is the word error rate and since we did not want to rely on

the existence of segmentation information, minimising the word error rate directly would be desirable.

This chapter describes such a scheme using boosting techniques.

Previous approaches for the reduction of word error rate include (Bahl et al., 1988), which employed

a “corrective training scheme” and an approach that also used boosting (Cook and Robinson, 1996). In

39

40 CHAPTER 4. EXPECTATION BOOSTING

the latter, the authors employed a boosting scheme where the sentences with the highest error rate were

classified as ’incorrect’ and the rest ’correct’, irrespective of the absolute word error rate of each sentences.

The weights of all frames constituting a sentence were adjusted equally and boosting was applied at the

frame level. This however does not manage to produce as good results as the other schemes described by

the authors. In our view, which is partially supported by the experimental results, this could have been

partially due to the lack of a temporal credit assignment mechanism such as the one we present in this

chapter.

In other work on utterance-level boosting, Zhang and Rudnicky (2003) compares use of the posterior

probability of each possible utterance for adjusting the weights of each utterance with a “non-boosting”

where the same weights are adjusted according to some function of the word error rate. In either case,

utterance posterior probabilities are used for recombining the experts. Since the number of possible

utterances is very large, not all possible utterances are used, but an N -best list. For recombination, the

authors consider two methods: Firstly, choosing the utterance with maximal sum of weighted posterior

(where the weights have been determined by boosting). Secondly, they consider combining via ROVER,

a dynamic programming method for combining multiple speech recognisers (see Fiscus, 1997). Since the

authors’ use of ROVER entails using just one hypothesis from each expert to perform the combination,

in (Zhang and Rudnicky, 2004b) they consider a scheme where the N -best hypotheses are reordered

according to their estimated word error rate. Finally, in (Zhang and Rudnicky, 2004a) they consider a

scheme similar to the one proposed herein for assigning weights to frames, rather than just to complete

sentences. More specifically, they use the currently estimated model to obtain the probability that the

correct word has been decoded at any particular time, i.e. the posterior probability that the the word

at time t is at given the model and the sequence of observations. In our case we use a slightly different

formalism in that we calculate the expectation of the loss according to an independent model.

In terms of model recombination, possibly the work closest to the one presented here is that of Meyer

and Schramm (2006). While the scheme is not exactly the same as multi-stream weighted sum decoding,

it is nevertheless performs very similar inference. The authors there also employ Ada-Boost.M2, utilising

the posterior probability of each utterance rather than a WER-based loss function. Use of M2 is not

particularly straightforward, since the algorithm requires calculating the posterior of every possible class

(in this case an utterance) given the data. The required calculation however can be approximated by

calculating the posterior only for the subset of the top N utterances and assuming the rest are zero.

In this chapter we describe a new training method (introduced in (Dimitrakakis and Bengio, 2005a),

specific to boosting and hidden Markov models (HMMs), for word error rate reduction. We employ a

score that is exponentially related to the word error rate of a sentence example. The weights of the

frames constituting a sentence are adjusted depending on our expectation of how much they contribute

to the error. Finally, boosting is applied at the sentence and frame level simultaneously. This method has

arisen from a two-fold consideration: firstly, we need to have an accurate measure of performance, which

is the word error rate. Secondly, we need a way to more exactly specify which parts of an example most

probably have contributed to errors in the final decision. Using boosting it is possible to focus training

on parts of the data which are most likely to give rise to errors, while at the same time doing it in such

a manner as to increase an accurate measure of performance. We find that both aspects of training have

4.1. BOOSTING FOR WORD ERROR RATE MINIMISATION 41

an important effect.

The remainder of this chapter is organised as follows: Section 4.1.1 describes word error rate-related

loss functions that can be used for boosting. Section 4.1.2 introduces the concept of expected error,

for the case when no labels are given for the examples. This is important for the task of word error

rate minimisation. Previous sections on HMMs and multi-stream decoding, describe how the boosted

models are combined for performing the speech recognition task. Experimental results are outlined in

section 4.1.3. The chapter concludes with an experimental comparison between different methods in

Section 4.2, followed by a discussion.

4.1.1 Sentence loss function

A commonly used measure of optimality for speech recognition tasks is the word error rate (2.26). We

would like to minimise this quantity using boosting techniques. In order to do this, a dataset is considered

where each example is a complete sentence and where the loss l(d) for each example d is given by some

function of the word error rate for the sentence.

The word error rate for any particular sentence can take values in [0,∞), while the Ada-Boost al-

gorithm that is employed herein requires a sample loss function with range [−1, 1]. For this reason we

employ the ad hoc, but reasonable, mapping l : [0,∞) → (−1, 1]

l(x) = 1 − 2e−ηx, (4.1)

where x is the word error rate. When l(x) = −1, an example is considered as classified correctly and when

l(x) = 1, the example is considered to be classified incorrectly. This mapping includes a free parameter

η > 0. Increasing the parameter η increases the sharpness of the transition, as shown in Figure 4.1. This

function is used for l(·) in equation (2.14).

While this scheme may well result in some improvement in word recognition with boosting, while

avoiding relying on potentially erroneous phonetic labels, there is some information that is not utilised.

Knowledge of the required sequence of words, together with the obtained sequence of words for each

decoded sentence results in a set of errors that are fairly localised in time. The following sections discuss

how it is possible to use a model that capitalises on such knowledge in order to define a distribution of

errors over time.

4.1.2 Error expectation for boosting

In traditional supervised settings we are provided with a set of examples and labels, which constitute

our training set, and thus it is possible to apply algorithms such as Boosting. However this becomes

problematic when labels are noisy (see for example Raetsch et al., 2001). Such an example is a typical

speech recognition data set. Most of the time such a data set is composed of a set of sentences, with

a corresponding set of transcriptions. However, while the transcriptions may be accurate as far as the

intention of the speakers or the hearing of the transcriber is concerned, subsequent translation of the

transcription into phonetic labels is bound to be error prone, as it is quite possible for either the speaker

42 CHAPTER 4. EXPECTATION BOOSTING

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

l

Word Error Rate

Sentence loss function

1
5

10

Figure 4.1: The sentence loss function (4.1) for η ∈ {1, 5, 10}.

to mispronounce words, or for the model that performs the automatic segmentation to make mistakes. In

such a situation, adapting a model so that it minimises the errors made on the segmented transcriptions

might not automatically lead into a model that minimises the word error rate, which is the real goal of

a speech recognition system.

For this purpose, the concept of error expectation is introduced. Thus, rather than declaring with

absolute certainty that an example is incorrect or not, we simply define l(di) = P (yi 6= hi), so that the

sample loss is now the probability that a mistake was made on example i and we consider yi to be a

random variable. Since boosting can admit any sample loss function(Freund and Schapire, 1997), this is

perfectly reasonable and it’s possible to use this loss as a sample loss in a boosting context. The following

section discusses some cases for the distribution of y in the following section which are of relevance to

the problem of speech recognition.

Error distributions in sequential decision making

In sequential decision making problems the knowledge about the correctness of decisions is delayed.

Furthermore, it frequently lacks detailed information concerning the temporal location of errors. A

4.1. BOOSTING FOR WORD ERROR RATE MINIMISATION 43

common such case is knowing that we have made one or more errors in the time interval [1, T]. This form

occurs in a number of settings. In the setting of individual sentence recognition a sequence of decisions

is made which corresponds to an inferred utterance. When this is incorrect, there is little information to

indicate where mistakes were made. This difficulty is even more pronounced in episodic reinforcement

learning tasks (see (Sutton and Barto, 1998) for an overview), where in some settings no information

may be given as to the correctness of behaviour apart from a single scalar evaluation at the end of the

episode.

In such cases it is necessary to define a model 1 for the probability of having made an erroneous

decision at different points in times t, given that there has been at least one error in the interval [1, T].

Let us denote the probability of having made an error at time t ∈ [1, T],as P (yt 6= ht|yT
1 6= hT

1). A trivial

example of such a model is to assume that the error probability is uniformly distributed. This can be

expressed via the flat prior

P (yt 6= ht|yT
1 6= hT

1) ∝ 1/T (4.2)

Another useful model is to assume an exponential prior such that

P (yt 6= ht|yT
1 6= hT

1) ∝ λt−T , λ ∈ [0, 1), (4.3)

such that the expectation of an error near the end of the decision sequence is much higher. This is useful

in tasks where it is expected that the decision error will be temporally close to the information that an

error has been made. For example, if you crash while driving your car, you may assume that this was

the result of a bad decision in the last few seconds, though ultimately it might have been the result of

something occurring much earlier, such as having too much to drink or driving with worn-out tyres - or it

could be a combination of all of these. Ultimately, such models incorporate very little knowledge about

the task, apart from this simple temporal structure.

In this case we focus on the application of speech recognition, which has some special characteristics

that can be used to more accurately estimate possible locations of errors. For the case of labelled sentence

examples it is possible to have a procedure that can infer the location of an error in time. This is because

correctly recognised words offer an indication of where possible errors lie. Assume some procedure that

creates an indicator function It such that It = 1 for instances in time where an error could have been

made. We can then estimate the probability of having an error at time t as follows:

P (yt 6= ht|yT
1 6= hT

1) =
γIt

∑T
k=1 γ

Ik

, (4.4)

where the parameter γ ∈ [1,∞) expresses our confidence in the accuracy of It. A value of 1 will cause

the probability of an error to be the same for all moments in time, irrespective of the value of It, while

when γ approaches infinity we have absolute confidence in the inferred locations. Similar relations can

be defined for an exponential prior and they can be obtained through the convolution of (4.3) and (4.4).

In order to apply boosting to temporal data, where classification decisions are made at the end of

1Even if no model is explicitly defined, there is always one implicit.

44 CHAPTER 4. EXPECTATION BOOSTING

each sequence, we use a set of weights {ψ(i)
t }i corresponding to the set of frames in an example sentence.

At each boosting iteration j the weights are adjusted through the use of (4.4), resulting in the following

recursive relation:

ψ
(j+1)
t =

ψ
(j)
t γIt

∑T
k=1 ψ

(j)
k γIk

(4.5)

In this manner, the loss incurred by the whole sentence is distributed to its constituent frames,

although the choice is rather ad-hoc. A different approach was investigated by Zhang and Rudnicky

(2004a), where the loss on the frames was related to the probability of the relevant word being uttered at

time t, but their results leaves things unclear as to whether this is a good choice compared to the simple

utterance-level training scheme.

 2

 3

 4

 5

 6

 7

 2 3 4 5 6 7 8 9 10

W
E

R
(%

)

Boosting iterations

Training set

boost
g1
g2
g4
g8

g16

Figure 4.2: Training word error rates for various values of gamma, compared with the previous boosting
approach.

4.1.3 Experimental results

We experimented on the OGI Numbers 95 (N95) data set (Cole et al., 1995) (details about the setup and

dataset are given in Section 3.2). The experiment was performed as follows: firstly, a set of HMMs e0,

composed of one model per phoneme, was trained using the available phonetic labels. This has the role

of a starting point for the subsequent expert models. At each boosting iteration t we take the following

steps: firstly, we sample with replacement from the distribution of training sentences given by the Ada-

4.1. BOOSTING FOR WORD ERROR RATE MINIMISATION 45

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

W
E

R
(%

)

Boosting iterations

Testing set

boost
g1
g2
g4
g8

g16

Figure 4.3: Test word error rates for various values of gamma, compared with the previous boosting
approach.

Boost algorithm. We create a new expert et, initialised with the parameters of e0. The expert is trained

on the sentence data using EM with the Viterbi approximation in the expectation step to calculate the

expectation. The frames of each sequence carry an importance weight ψt, computed via (4.5), which is

factored into the training algorithm by incorporating it in the posterior probability of the model h given

the data x and time t, which, if we assume independence of x and t, can be written as

p(h|x, t) ∝ p(h|x)p(h|t)p(h).

In this case, p(h|t) will correspond to our importance weight ψt.

After training, all sequences are decoded with the new expert. The weights of each sentence is

increased according to (4.1), with η = 10. This value was chosen so that any sentence decodings with

more than 50% error rate would be considered nearly completely erroneous (see Figure 4.1). For each

erroneously decoded sentence we calculate the edit distance using a shortest path algorithm. All frames

for which the inferred state belonged to one of the words that corresponded to a substitution, insertion, or

deletion are then marked. The weights of marked frames are adjusted according to (4.4). The parameter

γ corresponds to how smooth we want the temporal credit assignment to be.

In order to evaluate the combined models we use the multi-stream method described in equation

(2.28), where the weight of each stream is given by (3.2)

46 CHAPTER 4. EXPECTATION BOOSTING

Experimental results comparing the performance of the above techniques to that of an HMM using

segmentation information for training are shown in Figure 4.2, for the training data and figure 4.3 for the

test data. The figures include results for our previous results with boosting at the phoneme level. We

have included results for values of γ ∈ {1, 2, 4, 8, 16}. Although we do not improve significantly upon our

previous work with respect to the generalisation error, we found that the convergence of boosting in this

setting is significantly faster. On the training set, while boosting with pre-segmented phoneme examples

had previously resulted in a reduction of the error to 3% after approximately 30 iterations (not shown),

the sentence example training, combined with the error probability distribution over frames, converged

to the same error after approximately 6 iterations. The situation was similar in testing, with the new

approach converging to a good generalisation error at 10 iterations, while the previous approach reached

requires 16 iterations to reach the same performance. A great drawback of the new approach, however, is

the need for specifying two new hyper-parameters: (a) the shape of the cost function and (b) the shape

of the expected error distribution As mentioned previously in the chapter, for a we are using (4.1) with

h = 10 and for b we have chosen a mix between a uniform distribution and an indicator function, with

γ being a free parameter. Choosing γ is not trivial (i.e. it cannot be chosen in the training set), since

apparently large values can lead to overfitting, while values that are too small seem to provide no benefit.

For the experiments described in Section 4.2 we will be holding out part of the training set in order to

select an appropriate value for γ.

While the two boosting approaches are equivalent performance-wise respect, in our view the sentence

training approach represents a more interesting alternative, for a number of reasons. Firstly, we are

minimising the word error rate directly, which is a more principled approach since this is the real objective.

Secondly, we don’t in principle need to rely on segmentation information during training. Lastly, the

temporal probability distribution, derived from the temporal structure of word errors and the state

inference, provides us with a method to assign weights to parts of the decoded sequence. Its importance

becomes obvious when we compare the performance of the method for various values of γ. When the

distribution is flat (i.e. when γ = 1), the performance of the model drops significantly. This at least

supports the idea of using a probabilistic model for the errors over training sentences.

4.2 Generalisation performance comparison

In a real-world application one would have to use the training set for selecting hyper-parameters to use

in unknown data. To perform such a comparison, the training data set was split in two parts; holding

out 1/3rd of it for validation. For each model, we used the number of Gaussians (selected from a possible

set of values {10, 20, 30, 40, 50}, the number of experts and any other hyper-parameters, such as γ, giving

the best results in the validation set to train a model on the full training set. This was then evaluated

on the independent test set.

Table 4.2 summarises the results obtained, indicating the number of Gaussians per phoneme and

the word error rate obtained for each model. If one considers only those models that were created

strictly using the classification task, that is without adapting word models, ensemble methods perform

4.2. GENERALISATION PERFORMANCE COMPARISON 47

Model Gaussians Word error rate (%)
GMM 30 8.31

GMM embed 40 8.12
Boost GMM 10 × 30 7.41

HMM 10 7.52
HMM embed 10 7.04
Boost HMM 10 × 10 6.81

E-Boost HMM 7 × 10 (γ=8) 6.75
Bag HMM 16 × 20 5.97

Table 4.1: Test set performance comparison of models selected on a validation set. The second column
indicates the number of Gaussians per phoneme. For ensemble methods, n ×m denotes n models, each
havingm Gaussian components per state. GMM indicates a model consisting of a single Gaussian mixture
for each phoneme. HMM indicates a model consisting of three Gaussian mixtures per phoneme. Thus
the HMMs, the total number of Gaussians is three times that of the GMMs with an equal number of
components per state. Boost and Bag models indicate models trained using the standard boosting and
bagging algorithm respectively on the phoneme classification task, while E-boost indicates the expectation
boosting algorithm for word error rate minimisation. Finally embed indicates that embedded training
was performed subsequently to initialisation of the model.

significantly better (with more than 99% confidence2. Against the baseline HMM embed model, however,

not all methods perform so well, as can be seen in Figure 4.2. In particular, the estimated probability

that Boost is better than HMM embed is merely 51% and the difference in performance is just 0.23%,

while against the simple HMM the result is statistically significant with a confidence of 91%. Slightly

better performance is offered by E-Boost, with significance with respect to the HMM and HMM embed

models at 98% and 65% respectively. Overall bagging works best, performing better than other methods

with a confidence of at least 99% in all cases, while approximately 97.5% of the probability mass lies

above the 0.5% differential word error rate when it is compared to the baseline model, as can be seen in

Figure 4.4(a).

However these results are not quite near the state of the art on this database. Other researchers

(Lathoud et al., 2005; Ketabdar et al., 2005b; Athineos et al., 2004; Hermansky and Sharma, 1998; Doss,

2005, for example), have achieved word error rates 5.0±0.3%, mainly through the use of different phonetic

models. Accordingly, some preliminary experiments were performed with Markov models using a more

complex phonetic model (composed of 80 tri-phones, i.e. phonemes with contextual information). A

single such model achieved word error rates of 4.8± 0.1% (not shown in the table) which is in agreement

with published state of the art results. This indicates that using a model that is closer to what we are

trying to model could be better than using mixtures of simpler models. Further experiments to test

whether even better results could be obtained by considering ensembles of tri-phone models indicated

that the boosting-based approaches could not increase generalisation performance, achieving a word error

rate of 5.1% at best, while the simpler bagging approach managed to reach a performance of 4.5%. Even

though the reasons for this are not apparent, it is tempting to conclude that the label noise combined with

2The signifance was measured with a bootstrap estimate, which is described in Section B.4.2.

48 CHAPTER 4. EXPECTATION BOOSTING

the variance-reducing properties of bagging are at least partially responsible for this success. Although

it should be kept in mind that the aforementioned tri-phone results are merely are preliminary, they

nevertheless indicate that in certain situations ensemble methods and especially bagging may be of some

use to the speech recognition community.

4.3 Discussion

In this and the previous chapter we presented some techniques for the application of ensemble methods to

HMMs. The ensemble training was performed for complete HMMs at either the phoneme or the utterance

level, rather than at the frame level. Using boosting techniques at the utterance level was thought to lead

to a method for reducing the word error rate. Interestingly, this word error rate reduction scheme did not

improve generalisation performance for boosting, while the simplest approach of all, bagging, performed

the best.

There are a number of probable causes. The first one is that the amount of data is sufficiently

large for ensemble techniques to have little impact on performance, i.e. there is enough data to train

sufficiently good base models. The second is that the state-locked multi-stream decoding techniques were

investigated for model recombination lead to an increase in generalisation error as the inference performed

is very approximate. The third is that the boosting approach used is simply inappropriate. The first case

mustn’t be true, since bagging does achieve considerable improvements over the other methods. There

is some evidence for the second case, since the GMM ensembles are the only ones that should not be

affected by the multi-stream approximations and while a more substantial performance difference can

be observed, it nevertheless is not much greater. The fact that bagging’s phoneme mixture components

are all trained on samples from the same distribution of data and that it outperforms boosting is also

in agreement with this hypothesis. This leaves the possibility that the type of boosting training used is

inappropriate, at least in conjunction with the decoding method used, open.

Future research in this direction might include the use of other approximations for decoding than

constrained multi-stream methods. Such an approach was investigated by Meyer and Schramm (2006),

where the authors additionally consider the harder problem of large vocabulary speech recognition (for

which even inferring the most probable sequence of states in a single model may be computationally

prohibitive). It could thus be also possible to use the methods developed herein for large vocabulary

problems by borrowing some of their techniques. The first method, (also used by Zhang and Rudnicky,

2003),relies on finding an n-best list of possible utterances, assuming there are no other possible utterances

and then fully estimating the posterior probability of the n alternatives. The second method is based upon

a technique developed by Schramm and Aubert (2006) for combining multiple pronunciation models.

In this case each model arising from boosting could be used in lieu of different pronunciation models.

Another possible future direction is to consider different algorithms. Both Ada-Boost.M1, which was

employed here, and Ada-Boost.M2, are using greedy optimisation for the mixture coefficients. Perhaps

better optimisation procedures, such as those proposed by Mason et al. (2000), may have an advantage.

4.4. AFTERWORD 49

4.4 Afterword

So far, even though we have seen that the application of ensemble methods can be extended in practice

to sequential tasks, our view has been limited to supervised learning tasks. The tasks that we have

examined, sequence (i.e. phoneme) classification and sequence (i.e. speech) recognition, are special cases

of sequential decision making tasks, in the sense that a decision is made after each novel observation: in

one case the decision is a class label, and in the other a sequence of words. These problems somewhat

restricted because (a) there is a fixed set of data from which we can sample with virtually no cost and

(b) the data directly gives the optimal mapping from observations to decisions. Because of (a), we do

not need to be overly concerned with the requirements of estimation algorithms. We can simply make

the most of the data that we have now, aiming to maximise performance later. Naturally, in some

applications where data acquisition is expensive, or where the model might need to be updated as time

passes, (a) is no longer true. Item (b) means that, for probabilistic modelling, simply the decision with

the highest posterior probability given the observations needs to be taken. This only occurs because we

implicitly assume a known fixed cost that is equal for all erroneous decisions. We shall explore these

matters further in the second part of the thesis.

50 CHAPTER 4. EXPECTATION BOOSTING

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(a) Boost vs HMM embed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(b) E-Boost vs HMM embed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(c) Bag vs HMM embed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(d) E-Boost vs Boost

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(e) Bag vs Boost

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

WERdiff5% 95%
2.5% 97.5%

0.5% 99.5%

histogram

(f) Bag vs E-Boost

Figure 4.4: Significance levels of word error rate difference between the top four models. The histograms
are created from 10,000 bootstrap samples of the test data, as described in Appendix B.4.2.

Part II

Ensembles and sequential decision

making

51

Chapter 5

An overview of reinforcement

learning

In sequence recognition the aim is to associate a sequence of observations o = (o1, . . . , on), with oi ∈ O,

to a classification decision y ∈ Y. This can be done by using an injection f : A∗ → Y to map a sequence

of decisions a = (a1, . . . , am), ai ∈ A, m ≤ n onto the class space. More generally, we could define a

probabilistic model that is factorisable into

p(y|o, h) =
∑

a∈A∗

p(y|o, h)p(a|o, h).

This follows from the standard conditional mixture model (2.8) under the assumption that p(y|a, o, h) =

p(y|o, h). Given some data pairs d = (o, y) and a prior distribution p(h), the aim is to find a decision

h∗ ∈ H such that p(h∗|y, o) ≥ p(h|y, o) for all f ∈ F . Such a problem is ultimately a modelling

problem and decision-making amounts to simply selecting the most probable output sequence given some

observations and our model.

A more general framework than that of sequence recognition is that of sequential decision making

(SDM). The framework makes use of the concept of a Markov decision process1, in which the agent

attempts to maximise some measure of future rewards in an unknown environment. This is not simply a

modelling problem. Even with a complete model of the MDP, it would be necessary to perform dynamic

programming in order to find the optimal solution to the problem. However, the typical reinforcement

learning setting starts from limited knowledge of the MDP and the algorithms must be able to discover

the optimal.

This chapter will describe reinforcement learning in some more detail. Firstly, we shall give a definition

of the reinforcement learning problem. Then we shall introduce the concept of a value function, which

describes how ’good’ a state or state-action pair is in a particular MDP and discuss reinforcement learning

methods that utilise such functions in order to asymptotically discover the optimal policy in a given

1Or more generally, a partially observable Markov decision process (POMDP), see Definition A.1.

53

54 CHAPTER 5. AN OVERVIEW OF REINFORCEMENT LEARNING

environment. The chapter concludes with a short introduction to the exploration-exploitation tradeoff in

reinforcement learning.

In the following chapter we attempt an ensemble consisting of a number of base hypotheses trained

using an adaptive policy. This policy is learnt through a reinforcement-learning inspired technique, where

for every example seen a decision is made as to which of the base hypotheses will be used to predict its

label. This method’s effectiveness for an essentially supervised task is demonstrated by experimental

results on several UCI benchmark databases. Furthermore, some parallels are drawn between the re-

inforcement learning based method and a mixture of experts (Jacobs et al., 1991) model trained using

Expectation Maximisation.

In the above task the reinforcement learning method was simply choosing the hypotheses with the

maximum expected reward (i.e. minimum expected classification error). Thus it is essentially a gen-

eralisation of a multi-armed bandit problem (see Section 2.1.3), with two differences: Firstly, that the

expected reward distribution over the possible actions depends on the observation, and secondly that this

distribution is not stationary as all the base hypothesis slowly change during training. However, even the

basic stationary non-associative bandit problem is not as simple as it might seem at first glance. While

straightforward algorithms exist for determining the expected reward from each possible action asymp-

totically, it is difficult to do so while simultaneously maximising the reward received. The sampling from

the reward distribution in order to determine it more accurately is frequently referred to as exploration,

while the use of our current knowledge of this distribution in order to maximise the expected return is

referred to as exploitation. Chapter 7 elaborates on the trade-off between exploration and exploitation

and talks about basic mechanisms for implementing such a trade-off algorithmically. Subsequent chapters

consider two classes of methods for estimating uncertainty in estimates of expected returns: the first is

based on estimates of parameter accuracy, while the second class explicitly maintains a distribution of

rewards using a number of approaches. Apart from the analytical Bayesian estimate, we consider two

ensemble methods that uses a population of estimators to represent a distribution of estimates in a man-

ner. One such method is similar to bagging, while the other is a particle grid filter: an explicit Monte

Carlo approximation of the analytical Bayesian solution. This part concludes with a short discussion on

how such estimates of uncertainty can be used to create optimal exploration policies.

5.1 Reinforcement learning

As previously mentioned in Section 2.1.3, reinforcement learning is generally concerned with the problem

of acting in an unknown environment. It is a special problem in sequential decision making where the

utility is some measure of the future return

Rt =
∞
∑

k=0

γkrt+k, γ ∈ [0, 1], (5.1)

where rt is generated by a Markov decision process M (see Definition 2.2).

Since the future values of r are unknown, calculating R is not possible. However its statistical

5.2. VALUE FUNCTIONS 55

distribution can be calculated for any particular policy π and MDP M. In particular, it is possible to

estimate its expectation. The expected return for a policy π can be written as

E[Rt|π] =
∞
∑

k=0

γkE[rt+k|π] = E[rt|π] + γE[Rt+1|π]

The objective can be formulated as finding π∗ such that

E[Rt|π∗] ≥ E[Rt|π] ∀π

Other conditional expectations of the return are also of interest, and lead to important algorithms.

Such forms are referred to as value functions and are used in value-based reinforcement learning meth-

ods such as temporal-difference learning (Sutton, 1988), Q-learning (Watkins and Dayan, 1992) and

SARSA (Rummery and Niranjan, 1994; Sutton, 1996)

5.2 Value functions

The expected value of the return if we start from state s and follow policy π there after forms the state

value function

Qπ(s) = E[Rt|π, st = s] (5.2)

The expected return if we take action a in state s and follow π there after forms the state-action value

function

Qπ(s, a) = E[Rt|π, st = s, at = a] (5.3)

These conditional forms are especially useful. If we know Q∗, the value function of the optimal policy

π∗, we can select actions optimally. On the other hand, as the policy improvement theorem states (see for

example (Sutton and Barto, 1998)), if we know the state-action value function for any particular policy

π, we can immediately improve it by creating a new, greedy policy π′ for which P (at = a|st = s) ≥
P (at = a′) for a = arg maxiQ

π(s, i).

If only state values are known, then calculating an improved policy requires knowledge of the MDP’s

transition probabilities p(st+1|st, at). Our attention however will be restricted to the model-free case, i.e.

when there is no explicit model for the MDP, either one given or one estimated through observation.

5.2.1 Value function estimation

The most obvious way to estimate the value function for a particular policy is through Monte Carlo (MC)

sampling (see Casella et al., 1999; Doucet et al., 2001). By selecting actions according to the policy we

wish to evaluate, and recording all rewards received, it will be possible to simply calculate the expectation

of return for every state-action pair through averaging the observed samples of the return that occurred

56 CHAPTER 5. AN OVERVIEW OF REINFORCEMENT LEARNING

E[R|s1] E[R|s2] E[R|s3]

s1 s2 s3 terminal

s4

Figure 5.1: Relationships between estimates. We consider a model with four states and a terminal state,
which has a reward of 0. There is a dependence on the return (and its expectation) among linked states.
This dependence can be utilised to improve estimates of the return on less-frequently visited states, when
those are linked to more frequently visited ones.

after each state-action pair. This can be written as follows:

Q̂π(s) = Ê[Rt|π, st =s] =
1

N

N
∑

n=1

Rtn
, stn

= s (5.4)

Q̂π(s, a) = Ê[Rt|π, st =s, at =a] =
1

N

N
∑

n=1

Rtn
, stn

= s, atn
= a (5.5)

This straightforward formulation unfortunately requires that tasks terminate because it requires gener-

ating multiple samples of the return.

Such Monte Carlo methods tend to also make inefficient use of data: The estimate of the expected

return for each state-action pair is determined solely by the observed returns. However, fact there exists

an intrinsic dependence between our estimates, which can be exploited in order to make better use of

our observations. For example, consider the model shown Figure 5.2.1. If we have already observed some

trajectories for s1, s2, s3 then we have an estimate for E[R|s2]. Then, upon observing a transition s4 → s2,

we can update our estimate of E[R|s4] immediately, without waiting for arrival at the terminal state,

because of the additive nature of the return. This form of bootstrapping is used in temporal-difference

methods and it allows the estimation of returns in non-terminating environments.

5.2.2 Temporal-difference (TD) value function estimation

The random variable we are sampling from is the return Rt. While the MC uses actual samples of the

return, TD methods employ bootstrapping by using the expected value of the return instead. So a sample

Rt is replaced by an estimate of the form rt + γÊt[Rt+1|·]. This way it is possible to make use of the

current observation, (st, rt, st−1, at−1), to update our value function estimates.

In general, updates are performed so as to minimise some measure of the discrepancy between our

estimates and our observations. One useful such measure is the ‖dt‖2, where dt is referred to as the

temporal difference error

dt = rt + γÊt[Rt+1|·] − Êt[Rt|·].

5.2. VALUE FUNCTIONS 57

In the algorithms which we will examine, value functions are represented by some parametrised function

f(w, ·) ≡ Ê[R|·] and the value function approximation is performed by minimising the expected value of

‖dt‖2 via stochastic gradient descent methods. Note that the gradient of the parameters with respect to

the cost will be

∇θ‖dt‖2 = ∇θf∇f‖dt‖2 = 2∇θfdt

Specific forms of the temporal difference error lead to specific algorithms. The TD-learning algo-

rithm (Sutton, 1988) maintains an estimate of the state values of the current policy and uses the update

dt = rt + γÊt[Rt+1|π, st = s] − Q̂π
t (s) ≈ rt + γQ̂π

t (s′) − Q̂π
t (s) (5.6)

The SARSA algorithm maintains an estimate of the state-action values of the current policy and uses

the update

dt = rt + γÊtRt+1|π, st = s] − Q̂π
t (s, a) ≈ rt + γQ̂π

t (s′, a′) − Q̂π
t (s, a) (5.7)

Q-learning maintains an estimate of the state-action values of the optimal policy and uses the update

dt = rt + γÊt[Rt+1|π∗, st = s] − Q̂∗
t (s, a) ≈ rt + γmax

a′

Q̂∗
t (s

′, a′) − Q̂∗
t (s, a) (5.8)

The first two methods are referred to as on-policy methods, while the Q-learning is an off-policy

method. In the first case, the policy being evaluated is the same as the policy used to sample the

environment, while in the second case the sampling policy differs from the one being evaluated. When

we simply maintain individual estimates for each possible state-action pair, the value function can be

updated according to

Q̂t(s, a) = Q̂t−1(s, a) + ηtdt, (5.9)

where ηt > 0 is a step-size parameter. However, as we will see below, this is just a special case of a

general steepest stochastic gradient descent update.

5.2.3 Gradient descent implementation

If we consider the cost C = E[‖dt‖2], and a parametrised function Q with parameters θ for minimising

it, then the gradient descent update can be simply written as

δt = ∇θQ ∇QC = 2∇θQ dt,

where dt is the temporal-difference error. Then updating the parameters θ with steepest gradient descent

amounts to

θt+1 = ηt∇θQdt. (5.10)

The gradient of the evaluation function with respect to the parameters depends upon the function’s

architecture. We shall make a further distinction between tabular and approximating architectures for

value function estimation. In the tabular case, a discrete state-action space is assumed, and a different

58 CHAPTER 5. AN OVERVIEW OF REINFORCEMENT LEARNING

estimate θs,a is maintained for each one of the possible values Q(s, a). This can be written as

Q(s, a) = Is















θ1,1 · · ·
... θs,a

...
...

. . .
...

θm,n















I ′a,

where Is and Ia are indicator vectors of the form (0, . . . , 0, 1, 0, . . . , 0), such that the i-th component is

1 when s = i or a = i respectively. In that case (5.10) becomes simply (5.9), with each estimate Q(s, a)

corresponding to a parameter θs,a.

Any other choice of for the parametrisation ofQ is usually referred to as an approximating architecture,

with linear models and sigmoidal neural networks being the ones mostly used in practice.

5.2.4 Eligibility traces

Both MC and TD methods maintain a model for some conditional expectation of the return, E[Rt|·]. In

MC methods, the model is

R∞ ≡ Ê[Rt|rt+1, . . . , r∞] = Rt,

the actual sampled value for that particular episode. If we take the expectation we see that E[R∞] =

E[Rt]. In TD methods, we only use a partial sample up to time t + K and for the remaining time an

estimate is used based on our current model is used (setting K = 0 corresponds to the estimates given

in the previous section):

RK ≡ Ê[Rt|rt+1, . . . , rt+K] =

K
∑

i=0

γirt+i + γK+1Ê[Rt+1+K].

It is possible to mix the two approaches through a convex combination

E[Rt] = αR∞ + (1 − α)R0,

with α ∈ [0, 1]. This gives rise to the update

dt = α(R∞ −Qt) + (1 − α)(R0 −Qt),

which is a mixture between the Monte Carlo and the temporal-difference updates. Alternatively, all

estimates can be mixed in order to obtain

dt ∝
∑

i

αi(Ri −Qt).

If we define αi = λi, λ ∈ [0, 1], we can use eligibility traces, which can be viewed as importance

weights on the parameters (see (Precup et al., 2000) and Appendix B.3.2 for further discussion). In

5.3. EXPLORATION IN REINFORCEMENT LEARNING 59

particular, we may define the eligibility trace for a state-action pair (or simply a state or an action) as:

et(·) = γλet−1(·) + ∇θt
Ê[Rt|·]. (5.11)

For tabular action value methods, this simply corresponds to what is referred to as accumulating eligibility

traces

et(s, a) = γλet−1(s, a) + It(s, a) (5.12)

where It(s, a) = 1 if st = a, at = a and 0 otherwise. Alternatively, one may use replacing eligibility traces,

et(s, a) = (γλet−1(s, a)) (1 − It(s, a)) + (It(s, a)) , (5.13)

which may be useful in particular problems (see Sutton and Barto, 1998, chap. 6,7).

For tabular action-value methods, eligibility traces are used as importance weights for updating esti-

mates, that is

Q̂t(s, a) = Q̂t−1(s, a) + et(s, a)ηtdt. (5.14)

5.3 Exploration in reinforcement learning

One of the main assumptions in reinforcement learning is that all state-action pairs (s, a) will be sam-

pled infinitely often, and given this assumption, most algorithms are only guaranteed to asymptotically

converge(Jaakkola et al., 1994). This sampling requirement explains why in most cases a purely greedy

policy is not used. The sampling of the state-action space is referred to as either the exploration policy

or the action selection method2

Definition 5.1 (ǫ-greedy action selection) In this action selection mechanism, the highest evaluated

action is selected with probability 1− ǫ and a random action is selected otherwise, leading to the following

probabilities.

P (at = i|st = s) =







(1 − ǫ) + ǫ/|A| i = arg maxa∈AQ(s, a)

ǫ/|A| otherwise

Definition 5.2 (softmax action selection)

P (at = i|st = s) =
exp(βQ(s, a))

∑

a′∈A exp(βQ(s, a′))

Aside from explicitly forcing a sampling of the environment, sampling can be encouraged by adding

a constant exploration bonus ρ to the estimated expected return of unvisited state-action pairs. The

method of optimistic initial values, where the initial estimates of return for all state action pairs is set to

2Such policies are inherently non-stationary, since they depend on how our estimates of the value of actions change over
time. However, under certain conditions they converge to stationary policies.

60 CHAPTER 5. AN OVERVIEW OF REINFORCEMENT LEARNING

a high value is the most elementary such methods and has the advantage that a fully greedy policy can be

used. In Dyna-Q learning (Sutton, 1990) an exploration bonus is added to all state-action pairs that have

not been recently visited. The Dyna algorithm includes an environment model, which enables efficient

exploration of states that have not been visited in the past. Finally, techniques related to exploration

have been used in prioritised sweeping (Moore and Atkeson, 1993), for the purpose of restricting the

number of parameter updates to be performed in the model.

In order to motivate the development of better exploration techniques, consider the scenario of se-

lecting actions in an episodic environment. Greedy action selection would always select the actions with

the highest expected return, which is optimal in terms of expected return according to our currently

inferred model if this is the last episode to be experienced. However, if there remain many episodes to

be experienced, perhaps a better strategy would be to explore the environment in the next few episodes,

so our model of it can be improved, until our model is sufficiently accurate that it virtually guarantees

that using it will give us the maximum possible return. Thus intuitively it seems that the randomness

in action selection should be increased when the number of episodes is larger, since then more time is

available to collect rewards, the more we can potentially benefit from reducing the uncertainty in our

model.

A formal description of how the trade-off between exploration and exploitation naturally arises in

rational agents under uncertainty will be given in Chapter 7, together with some practical algorithms

and some illustratory experimental results. The methods used to estimate and represent uncertainty form

a crucial aspect of any such algorithm and Chapter 8 introduces two such methods. The first method is

based on estimating the gradient and Hessian of the cost function, while the second is based on sampling

from a prior distribution of models in order to create an ensemble in a manner reminiscent of bagging

and particle filtering (see Casella et al., 1999), but with a different set of goals: firstly, to maintain

a distribution over possible values of actions, and secondly to use this distribution in order to sample

efficiently from the environment.

Chapter 6

Reinforcement learning ensembles

for classification

The problem of pattern classification has been addressed in the past using mainly supervised learning

methods. In this context, a set of N example patterns D̂ = {(x1, y1), (x2, y2), ..., (xN , yN)} is presented

to the learning machine, which adapts its parameter vector so that when input vector xi is presented to

it the machine outputs the corresponding class yi ∈ {1, 2, . . . , |C|}, where |C| ∈ N is the number of classes.

Let us denote the output of a learning machine for a particular vector xi as h(xi). The classification

error for that particular example can be designated as li = 1 if h(xi) 6= yi and 0 otherwise. Thus, the

classification error for the set of examples D̂ can be summarised as the empirical error L̂ =
∑

i li/N . If

D̂ is a sufficiently large representative sample taken from a distribution D, then L̂ should be close to the

generalisation error, L =
∫

pD(x)l(x). In practice, however, the training set provides limited sampling of

the distribution D, leading to problems such as overfitting. Thus it is expected that L > L̂.

Since the generalisation error cannot be directly observed, it has been common to use a part of

the training data for validation in order to estimate it. This has led to the development of techniques

mainly aimed at reducing the over-fitting caused by limited sampling, such as early stopping and K-fold

cross-validation.

Another possible solution is offered by ensemble methods, such as the mixture of experts (MOE)

architecture (Jacobs et al., 1991), bagging (Breiman, 1996) and boosting (Freund and Schapire, 1997).

The boosting algorithm Ada-Boost has been shown to significantly outperform other ensemble techniques

for low-noise data (see (Bauer and Kohavi, 1999; Dietterich, 2000)). While the good performance of MOE

and bagging is frequently attributed to the independence of experts and the reduction of classifier variance,

results explaining the effectiveness of Ada-Boost relate it to the margin of classification (Schapire et al.,

1998). See Section 2.2.4 for a description of margins.

In this chapter, which is was previously presented at ESANN 2004 (Dimitrakakis and Bengio, 2005b),

the possibility of using an adaptive rather than a fixed policy for training and combining base classifiers

is investigated. The field of reinforcement learning (RL) (Sutton and Barto, 1998) provides natural

61

62 CHAPTER 6. REINFORCEMENT LEARNING ENSEMBLES FOR CLASSIFICATION

candidates for use in adaptive policies. In particular, the policy is adapted here using Q-learning (Watkins

and Dayan, 1992), a method that improves a policy through the iterative approximation of an evaluation

function Q (see Section 5.2). Previously Q-learning had been used in a similar mixture model applied to a

control task (Anderson and Hong, 1994). An Expectation Maximisation based mixtures of experts (MOE)

algorithm for supervised learning was presented in (Jordan and Jacobs, 1994). Herein we attempt to solve

the same task as in the standard MOE model, but through the use of reinforcement learning rather than

expectation maximisation techniques. A description of the similarities between reinforcement learning

and expectation maximisation methods for multi-expert architectures was presented in (Toussaint, 2002).

This section is organised as follows. The framework of reinforcement learning is introduced in Sec-

tion 6.1. Section 6.1.1 outlines how the RL methods are employed in this work and describes how the

system is implemented. Experiments are described in Section 6.2, followed by conclusions and suggestions

for future research.

6.1 General architecture

The objective in classification tasks is to reduce the expected value of the error, E[l]. The empirical

loss L̂ provides a biased estimate of this error. The suggested classifier ensemble consists of a set of n

base classifiers, or experts, E = {e1, e2, ..., en} and a controlling agent that selects the experts to make

classification decisions and to train on particular examples. The controlling agent must learn to make

decisions so that E[l] is minimised. We employ reinforcement learning for the purpose of finding an

appropriate behaviour for the agent.

The following section will detail how Q-learning can be employed in classification tasks and potential

problems with the technique are discussed. On the whole, however, it is estimated that reinforcement

learning can provide an interesting alternative to supervised learning techniques even for supervised-

learning tasks.

6.1.1 Implementation

The aim of this work was to apply RL techniques to the problem of training an ensemble model. In

order to achieve this, we use a set of initially untrained classifiers, and a controlling agent, which utilises

Q-learning. During training, the agent makes decisions about which classifiers will be trained on a given

example. During testing, it determines how the labels output by the classifiers will be used to make the

classification decision for a given example.

More specifically, we employ an architecture with n experts, implemented as multi-layer perceptrons

(MLPs), and a further MLP with n outputs and parameters θ which acts as the controlling agent. All the

MLPs have a single hidden layer with hyperbolic tangent units and are trained using steepest gradient

descent. The expert MLPs use a softmax output and a cross-entropy criterion (see i.e.(Bishop, 1995)),

6.1. GENERAL ARCHITECTURE 63

which are suitable for a maximum likelihood training1. In this setting we attempt to minimise

ED̂[y log h(x)],

with h : X → Y, mapping to a probability space. The state space of the controlling agent is S ≡ X , the

same as the classifiers’ input space and its outputs approximate Q(s, aj). Thus, it is implemented with

an MLP which has the same number of inputs as the expert MLPs and with a number of outputs equal

to the number of possible actions.

At each time step t a new example x is presented to the ensemble and each expert i emits a classification

decision hi : X → [0, 1]|C|. The ensemble makes a classification decision of the form

f(x) =
∑

i

wihi(x) (6.1)

∑

i wi = 1. We examine the case where the number of actions is equal to the number of experts and

in which taking action aj corresponds to setting wi = 1 for i = j and wi = 0 otherwise. Thus, taking

action aj results in expert ej making the classification decision.2 We also chose to use the action aj to

select the expert to be trained on the particular example. As an aside, note that under a given policy,

the expected value of wi given x corresponds to E[wi|x] = p(ai|x), the probability of action ai given x.

In this manner one could write, for the softmax action selection method,

E[wi|x] = p(ai|x) =
exp(Q(x, ai))

∑

j exp(Q(x, aj))
. (6.2)

During training, the classification decision at time t results in a reward rt+1 ∈ {0, 1}, which is 1 if

the example is classified correctly and 0 otherwise. As noted before, we use the gradient form of the Q-

learning update (5.8). The derivative of the cost function (the cost is the expected squared approximation

error; see Section 5.2.2) with respect to the network outputs is δ = rt+1 + γmaxiQ(s′, ai) − Q(s, aj).

We use stochastic steepest gradient descent with learning rate η > 0. Note also that when γ = 0, the

Q-learning update is indistinguishable from other state-action value temporal difference updates such as

SARSA (see Section 5.2.2). The algorithm is implemented as follows:

1. Select example xt randomly from X .

2. Given s = xt, choose aj ∈ A according to a policy derived from Q (for example using ǫ-greedy

action selection) .

3. Take action aj , observe rt+1 and the next state s′ = xt+1, chosen randomly from X .

4. δ = rt+1 + γmaxiQt(s
′, ai) −Qt(s, aj).

5. θt+1 = θt + ηδ∇θQt(s, aj) .

1Since we are trying to find the model with maximum likelihood given the data.
2However note that when using stochastic action selection, all experts are trained to some extent on all the data.

64 CHAPTER 6. REINFORCEMENT LEARNING ENSEMBLES FOR CLASSIFICATION

6. s = s′.

7. Loop to 2, unless termination condition is met.

During testing the situation is subtly different. Firstly, no more rewards are observed and no model

adaptation occurs. Secondly, selecting actions stochastically can be disadvantageous. In order to eliminate

the stochasticity, we simply take the expectation from (6.1) to obtain

E[f(x)|x] =
∑

i

E[wi|x]hi(x).

Two specific forms were considered, independently of the action selection mechanism during training.

Firstly, that of setting p(ai|x) = 1 for i = arg maxj Q(x, aj), and secondly using the softmax form (6.2).

The former case would correspond to a belief that our evaluation function is accurate on unseen data,

which is probably not true. Thus, the smoothing performed in the latter case might be advantageous.

Choice of γ

In the algorithm we have described, the state is completely determined by the example xt. Since this

example is selected randomly (steps 1,3), we have p(st+1 = s′|st = s, at = a) = p(st+1 = s′), leading to

E[Rt|st = s, at = a] = E[rt+1|st = s, at = a] +
∑

k=1

γkE[rt+k+1|st = s, at = a]

= E[rt+1|st = s, at = a] +
∑

k=1

γk
∑

s′

E[rt+k+1|st+k = s′]p(st+k = s′|st = s, at = a)

= E[rt+1|st = s, at = a] +
∑

k=1

γk
∑

s′

E[rt+k+1|st+k = s′]p(st+k = s′)

= E[rt+1|st = s, at = a] + E[r]
∑

k=1

γk

where all expectation are taken with respect to the policy π (so there is an implicit dependency on the

policy). Thus, there is no temporal structure to be exploited by the full reinforcement learning framework,

at least in the visible part of the state. In other words, the classification task is similar to an n-armed

bandit problem 3 since the next state is not influenced by the agent’s actions. For the above reasons,

we have set the value of γ to zero. Maximisation of the expected value of equation (5.1), when γ = 0

amounts to maximising

E[Rt] = E[rt+1].

Since the optimal policy π∗ is the policy that maximises this value, we have

π∗ = arg max
π

E[rt+1|π].

3In the n-armed bandit problem (see Section 2.1.3) the objective is to choose an optimal action among n. The reward
at each time step only depends upon the action taken and a state s, but the state s does not depend upon the action taken.
Thus, the optimal policy is the same no matter what the value of γ is, as the action taken at time t only influences rt+1

and not any later rewards.

6.1. GENERAL ARCHITECTURE 65

Because of our definition of the reward, this is equivalent to finding the policy that minimises the empirical

error.

This loss of temporal structure might be considered unfortunate. Indeed, the task is more accurately

described as a partially observable process since the parameters of the classifiers constitute a state which

changes depending on the agent’s actions. This would formally necessitate the need for γ > 0, and

potentially the need to approximate the hidden state with some kind of model. Nevertheless, it seems

reasonable to argue that the part of the system state which can be expressed as a function of the classifiers’

parameters will change rapidly at the initial stages of learning and then stabilise when each local expert

approaches its region of convergence. If this is true, then the problem is similar to a semi-stationary

bandit problem4 and a value of γ = 0 is still appropriate, i.e. there is nothing to be gained by adding

temporal structure since old states can never be revisited, at least not with the particular set of actions

we have defined.

However there exist some sequence classification applications for which this is not so. These include

event detection tasks, such as the detection of the onset of failures in dynamical systems. In particular, if

we are defining a model for the state that defines a joint distribution for actions, observations and state,

then the state may no longer be degenerate. This is so in the case where each expert is a hidden Markov

model, and where we use the action to switch between models. We, however, concentrate on the simple

semi-stationary case, for which interesting parallels with the mixture of experts algorithm can be drawn.

6.1.2 Comparison with mixture of experts

The mixture of experts algorithm shares a number of similarities with the one presented here. A com-

parison between a mixture of experts using a modified version of the EM algorithm and the Q-learning

algorithm was presented in (Toussaint, 2002). We refrain from introducing new symbols whenever possible

in this section, in order to emphasise the relations between algorithms.

In the mixtures of experts framework each expert i makes a classification decision hi : X → [0, 1]|C|,
with |hi|1 = 1, where | · |1 denotes the l1 norm (A.1). Thus hi(x) can be described as probability

distribution over the classes given the data x. We use p(y|x, i) to note the probability that expert i

outputs class y, given x. Similarly, the gating mechanism is used to create a probability distribution over

the experts given the data, p(i|x), commonly referred to as the prior of each expert. Thus in order to

find the probability of each class given the data we simply use p(y|x) =
∑

i p(y|x, i)p(i|x).
In order to adjust the parameters of the gating mechanism, both in the gradient and the EM versions

of the algorithm, we estimate the corresponding posterior as

p(i|x, y) =
p(y|x, i)p(i|x)

p(y|x) .

This is the main difference with the reinforcement learning method employed herein, since the action

selection mechanism only considers binary decisions made by the classifiers. Instead of actually calculating

p(i|x, y) we are treating the reinforcement rt as a stochastic variable that depends on the action ai and

4In such a problem the expected reward from each bandit changes slowly with time

66 CHAPTER 6. REINFORCEMENT LEARNING ENSEMBLES FOR CLASSIFICATION

Dataset N. Test MLP Boost MOE RL Ref. nhu
breast-cancer 165 4.24% 1.21% (4) 4.84% (2) 6.06% (4) 6.30%∗ 25 (50)
forest 565895 31.2% 26.2% (32) 30.2% (4) 28.32% (8) 30.0%† 100 (50)
heart 80 15.0% 13.7% (2) 16.3% (2) 12.5% (16) 22.1%‡ 10 (10)
ionosphere 151 5.30% 7.28% (2) 9.27% (32) 5.96% (16) 4.00%∗ 100 (25)
letter 4000 4.45% 2.55% (32) 4.03% (4) 3.55% (2) 20.0%† 100 (50)
optdigits 2394 1.84% 2.2% (4) 2.29% (16) 2.26% (4) 2.00%∗ 100 (25)
pendigits 3498 3.20% 3.33% (16) 2.71% (4) 3.29% (2) 2.26%∗ 100 (50)
spambase 2269 6.89% 6.57% (8) 7.58% (2) 6.43% (32) 7.00%§ 50 (25)
vowel 462 56.9% 66.7% (32) 64.0% (32) 66.0% (32) 44.0%∗ 100 (100)

Table 6.1: Test classification error on 9 UCI benchmark datasets. Results are shown for a single MLP
(MLP), and mixtures of 32 experts that have been trained with boosting (Boost), mixture of experts
(MoE), and Q-learning (RL). Ref indicates a reference result. N. Test shows the number of test
samples, while nhu shows the number of hidden units for the base networks and for the gating network
(in parenthesis). Results in bold indicate that this was the best result obtained for a particular dataset.

for which E[r|x, y, π, ai] = p(i|x, y).

6.2 Experimental results

In order to evaluate the effectiveness of this approach we have performed a set of experiments on 9

datasets that are available from the UCI Machine Learning Repository (Blake and Merz, 1998). For each

dataset there was a separate training and test set. We used 10-fold cross-validation on the training set

in order to select the number of hidden units from {10, 25, 50, 100} for the base classifier. Each classifier

was then trained on the whole training set for 100 epochs per expert. The optimisation algorithm used

was steepest stochastic gradient descent with a learning rate of η = 0.01. The number of hidden units

for the gating mechanism was selected so that the temporal difference error would be minimised on the

training set. The same number of gate hidden units was used in the mixture of experts in every case. The

discount parameter γ for the controlling agent was set to 0, for the reasons explained in Section 6.1.1.

For each one of the ensemble methods shown, the number of experts was selected through splitting the

training dataset in two subsets: 2/3 of the data was used for training and 1/3rd was used for evaluation.

according to which the number of experts in {2, 4, 8, 16, 32, 64} was selected. The results reported here

are for ǫ-greedy actions selection, with ǫ = 0.1. Results with softmax action selection do not appear

significantly different5, however there is a marked difference when good, however.

A comparison was made between the RL-controlled mixture, a single MLP, the Mixture of Experts

and Ada-Boost.M1 using MLPs. As Table 6.1 summarises, the ensembles generally manage to improve

5For this particular problem, and with γ = 0, the expected return of the best action can be at most 1 while that of the
worst action can be at 0. The probability of the greedy action in ǫ-greedy methods, given n actions, is n + 1/n − ǫ. For
the softmax method, we would have a similarly flat distribution if all other experts have a similar evaluation, which is to
be expected for this particular problem.

∗k-nearest neighbours
†Neural network
‡Logistic regression
§Unknown

6.2. EXPERIMENTAL RESULTS 67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1 expert
2 experts
4 experts
8 experts

16 experts
32 experts

Figure 6.1: Cumulative margin distribution for RL on the ionosphere dataset, with an increasing number
of experts. The x axis shows P (m(X) < x), the probability that the margin of some example X is smaller
than x. See Section 2.2.4 for an explanation of margins.

test performance compared to that of the base classifier. There are three cases where the MLP performs

better, though only in the vowel dataset is its performance significantly better than that of the second

best system (p < 0.016). In turn, Boosting performs significantly better with respect to the second-best

system in all three cases: breast-cancer (p < 0.046), forest (p < 0.0001) and letter (p < 0.0046). Finally,

MOE was only best once and the RL approach twice, but in all cases with p > 0.1. These significance

figures were calculated from a two proportion z-test6. For each dataset we have also calculated the

cumulative margin distribution: the empirical probability that an example X in the training set will have

margin smaller than x, i.e. P (m(X) < x). For the RL mixture there was a constant improvement in the

distribution in most datasets when the number of experts was increased (see for example Figure 6.1).

This may provide some explanation for the improvement in generalisation performance, since for example

Schapire et al. (1998) links the minimum margin (2.18) with a bound on the generalisation error, although

this behaviour has not been consistent, as is evident from the example given. While the conditions under

which the margin is maximised are not investigated here, some explanations are given by Rosset et al.

(2003) and Collobert and Bengio (2004).

All the datasets originate from the UCI machine learning repository (Blake and Merz, 1998) and are

accompanied by information files with descriptions and reference results. It is particularly interesting

perhaps to note that the reference results given for most of those datasets were obtained with the ex-

6See Appendix B.4.1 for a description

68 CHAPTER 6. REINFORCEMENT LEARNING ENSEMBLES FOR CLASSIFICATION

tremely simple 1-nearest-neighbour method and that they are frequently very close to the best method

of the ones used here. The breast-cancer dataset, the aim is to classify a tumour as either benign or

malignant. The forest dataset examines forest cover type - the aim is to predict a qualitative measure

(cover type) through twelve quantitative cartographic measures. The number of classes is 7, and unclear

boundaries between different classes may account for some amount of label noise. The heart dataset

is used for predicting the presence of heart disease from 13 quantitative variables and it is assumed

that there is but little label noise. The ionosphere dataset is used to predict the ’good’ and ’bad’

radar returns from radar pulses. The letter dataset is used for a 26-character classification task, where

16 quantitative attributes corresponding to statistical moments and edge counts are used to describe

each observed character. The optdigits database contains handwritten digits (0-9) scanned into an 8x8

matrix. The pendigits database contains handwritten digits from a small number of writers, collected

using a graphics tablet. The data consists of the coordinates of 16 regularly spaced points on the numbers

trajectory. The data in the test set has been generated by a different set of writers than those in the

training set. The spambase database is used for the task of deciding whether a given email is spam or

not and the attributes fore each instance consist of summary information about each email, such as word

frequencies. Finally, the vowel dataset contains 11 different vowels, spoken by 90 different speakers, with

the training dataset contains data from the first 48 speakers only. In this and other of cases the data

in the test set arises from a different distribution than the data in the training set. Thus, estimates of

generalisation error from validation in the training set are inherently unreliable for optimally selecting

hyper-parameters, or indeed models. In fact, for most of these datasets it appears that selecting the

best method and associated hyper-parameters via cross-validation or a hold-out does not reliably predict

the best performing method on the test data: A selection in this manner results in making the correct

decision only 33.3% of the time. On the other hand, the worst method is predicted as being the best only

once, on the breast-cancer dataset. However research on the bias of model selection methods is beyond

the scope of this study.

6.3 Conclusions and future research

The aim of this work was to demonstrate the feasibility of using adaptive policies to train and combine

a set of base classifiers. While this purpose has arguably been reached, there still remain some questions

to be answered, such as under what conditions the margin of classification is increased when using this

approach.

An interesting aspect of this problem is the state space of the agents. As has been noted in Sec-

tion 6.1.1, the initial parameters of the experts constitute a part of the (in our case, unobservable) state

space which is only briefly visited by the agent. As learning progresses, the parameters of each expert

converge to a steady state. For the case where information about the expert parameters is not included in

the state, the problem becomes a slowly changing n-armed bandit task, which in the end becomes station-

ary. If we include such information in the state, then we are faced with a slightly different reinforcement

learning problem than the one commonly encountered. This occurs because there exist a subspace of the

state vector (related to the data) which is sampled frequently and another subspace (related to the state

6.3. CONCLUSIONS AND FUTURE RESEARCH 69

of the experts) where only a single trajectory is sampled. The question is firstly what techniques, short

of resetting the experts to an initial state, can be applied to sample more trajectories and secondly how

can knowledge from more trajectories be used to aid in the search for a better stationary point.

A very similar RL technique was recently described in Partalas et al. (2006), where actions where

instead used to select the experts from a set, in a form of ensemble pruning. There the state does not

include the observations and thus the state space does not become unmanageably large, while the problem

itself becomes fundamentally different.

Enlarging the space of actions poses another interesting problem. Suppose for example that the

best decision that we can make for a particular input is to combine the outputs of two experts, rather

than use a single expert’s output. In order to generalise for this case, we define a set of possible weight

combinations; each possible combination constitutes a different action. In (6.2) we defined the expectation

of expert weights for a particular input under a softmax policy. In general, however, it is possible to

maintain a probability distribution for the weights, rather than a simple expectation. After assuming a

joint distribution for the weights we can estimate the conditional density of the return given the weights.

Action selection could be done by sampling from the joint distribution of weights, or else importance

sampling techniques could be used. This is part of our current work in the field of action selection.

An alternative to action value methods for such enlarged spaces is provided by direct gradient descent

in policy space (Baxter and Bartlett, 2000). These have also been theoretically proven to converge in the

case of multiple agents and could be much more suitable for problems in partially observable environments

and with large state-action spaces.

70 CHAPTER 6. REINFORCEMENT LEARNING ENSEMBLES FOR CLASSIFICATION

Chapter 7

Optimal exploration

In reinforcement learning, the dilemma between selecting actions to maximise the expected return accord-

ing to the current world model and to improve the world model such as to potentially be able to achieve a

higher expected return is referred to as the exploration-exploitation trade-off. This has been the subject

of much interest before, one of the earliest developments being the theory of sequential sampling in statis-

tics, as developed by Wald (1947). This dealt mostly with making sequential decisions for accepting one

among a set of particular hypothesis, with a view towards applying it to jointly decide the termination

of an experiment and the acceptance of a hypothesis. A more general overview of sequential decision

problems from a Bayesian viewpoint is offered by DeGroot (1970). The concept naturally appears also in

a game theoretic context (see Luce and Raiffa, 1957, chap. 13) when decision making under uncertainty

is considered.

This chapter will describe a novel framework for trading exploration and exploitation nearly opti-

mally, without having to set up any prior parameters other than our prior belief on the possible set of

models. How this is possible will be made plain in Section 7.1, where the intuitive concept of trading

exploration and exploitation will be seen to arise as a natural consequence of the definition of the prob-

lem of reinforcement learning. After the problem definitions which correspond to either extreme (only

explore versus only exploit) are identified, Section 7.2 offers a summary of related work. Subsequently,

Section 7.3 derives a threshold for switching from exploratory to greedy behaviour in bandit problems.

This threshold is found to depend on the effective reward horizon of the optimal policy and on our current

belief distribution of the expected rewards of each action. A sketch of the extension to MDPs is presented

in Section 7.4. Section 7.5 uses an upper bound on the value of exploration to derive practical algorithms,

which are then illustrated experimentally in Section 7.6. We conclude with a discussion on the relations

with other methods.

7.1 Exploration Versus Exploitation

Let us assume a standard multi-armed bandit setting, where a reward distribution p(rt+1|at) is condi-

tioned on actions in at ∈ A, with rt ∈ R. The aim is to discover a policy π = {P (at = i)|i ∈ A} for

71

72 CHAPTER 7. OPTIMAL EXPLORATION

selecting actions such that E[rt+1|π] is maximised. It follows that the optimal gambler, or oracle, for this

problem would constitute a policy which always chooses i ∈ A such that E[rt+1|at = i] ≥ E[rt+1|at = j]

for all j ∈ A. Given the conditional expectations, implementing the oracle is trivial. However this tells

us little about the optimal way to select actions when the expectations are unknown. As it turns out,

the optimal action selection mechanism will depend upon the problem formulation. We initially consider

the two simplest cases in order to illustrate that the exploration/exploitation trade-off is and should be

viewed in terms of problem and model definition.

In the first problem formulation the objective is to discover a parameterised probabilistic policy

π =
{

P (at|θt)
∣

∣ at ∈ A
}

, with parameters θt, for selecting actions such that E[rt+1|π] is maximised. If

we consider a model whose parameters are the set of estimates θt =
{

qi = Êt[rt+1|at = i]
∣

∣ i ∈ A
}

, then

the optimal choice is to select at for which the estimated expected value of the reward is highest, because

according to our current belief any other choice will necessarily lead to a lower expectation. Thus, stating

the bandit problem in this way does not allow the exploration of seemingly lower, but potentially higher

value actions and it results in a greedy policy.

In the second formulation, we wish to minimise the discrepancy between our estimate qi and the true

expectation. This could be written as the following minimisation problem:

∑

i∈A

E
[

‖rt+1 − qi‖2
∣

∣ at = i
]

.

For point estimates of the expected reward, this requires sampling uniformly from all actions and thus

represents a purely exploratory policy. If the problem is stated as simply minimising the discrepancy

asymptotically, then uniformity is not required and it is only necessary to sample from all actions infinitely

often. This condition holds when P (at = i) > 0 ∀i ∈ A, t > 0 and can be satisfied by mixing the

optimal policies for the two formulations, with a probability ǫ of using the uniform action selection and a

probability 1− ǫ of using the greedy action selection. This results in the well-known ǫ-greedy policy (see

Sutton and Barto, 1998, for example), with the parameter ǫ ∈ [0, 1] used to control exploration.

This formulation of the exploration-exploitation problem, though leading to an intuitive result, does

not lead to an obvious way to optimally select actions. In the following section we shall consider bandit

problems for which the functional to be maximised is

E

[N
∑

k=0

g(k)rt+k+1

∣

∣

∣

∣

π

]

, g(k) ∈ [0, 1], N ≥ 0,

with
∑∞

k=0 g(k) < ∞. In this formulation of the problem we are not only interested in maximising the

expected reward at the next time step, but in the subsequent N steps, with the g(·) function providing

another convenient way to weigh our preference among short and long-term rewards. Intuitively it is

expected that the optimal policy for this problem will be different depending on how long-term are the

rewards that we are interested in. As will be shown later, by lengthening the effective reward horizon

through manipulation of g and N , i.e. by changing the definition of the problem that we wish to solve,

the exploration bias is increased automatically.

7.2. RELATED WORK 73

7.2 Related work

There has been a considerable body of work in this field, which relates to the bound and the algorithms

derived from it that are proposed in this chapter. Firstly, there are theoretical results that are relevant to

the discussion. Secondly, similar methods that attempt to solve the same problem. Thirdly, are related

methods that attempt to solve slightly different problems.

Specifically for bandit problems, the optimal, but intractable, Bayesian solution was given in (Bellman,

1957a), while recently tight bounds on the sample complexity of exploration have been found (Mannor

and Tsitsiklis, 2004). In the more general case (not considered here) where each bandit has state with

Markovian dynamics, Gittins indices (Gittins, 1989) can be used to formulate an optimal Bayesian solu-

tion. In fact, the result presented in this chapter is related to the proof of optimality of Gittins indices

offered by Weber (1992), where instead of searching for the supremum of the indices over all policies we

merely search for the supremum over a limited set of policies - in this case, the greedy policy and the

1-step exploratory and subsequently greedy policies. There has also been work on such problems with

adversarial agents by Auer et al. (2002).

The work most similar to the one presented here was an approximation to the full Bayesian case for the

general reinforcement learning problem, given by Dearden et al. (1998). Some of the approximations were

with respect to the model inference. However we are not explicitly concerned with this in this chapter,

simply assuming that there is some probabilistic model available. The remaining approximations were

related to selecting actions given the model uncertainty. There are two approaches, presented, one of

which is identical to Algorithm 3, while the other, a method based on the value of perfect information

(VPI), is similar related to the bound on the value of exploration that is proposed here. The similarities

will be further discussed in Section 7.7, however for the moment we will note that the VPI is used as an

additional exploration bonus to the estimated value of an action, then the highest value is chosen.

Many approaches for trading exploration and exploitation rely on the notion of an exploration bonus

to be added to the point estimate of the action evaluation. One representative such approach is Meuleau

and Bourgine (1999), which additionally distributes these bonuses to linked states. In this thesis, a similar

approach will be described in Chapter 8. In this and other cases, exploration is performed adaptively in

a non-Bayesian manner by selecting the action that maximises an upper bound on a confidence interval

for its value. One of the earliest such approaches was investigated by Kaelbling (1990), which, like all

such methods, suffers from the significant drawback that a percentile for the confidence interval must

be specified a priori. A more modern such method is E3 (Kearns and Singh, 1998), which is extremely

simple, general and effective.

A somewhat different approach from all of the above is that proposed by Karakoulas (1995). In this

particular variant of Q-learning, a model of the environment is maintained, which can be sampled. The

author then uses efficient methods to find optimal policies with high probability according to the current

learnt model of the environment. However, this is not sufficient for performing optimal exploration and

the author augments the utility function with a risk-aversion parameter, which includes the effects of

return variance in the utility function without making an attempt to separate model uncertainty from

environmental stochasticity. Due to these reasons, this approach is not directly comparable with those

74 CHAPTER 7. OPTIMAL EXPLORATION

that simply attempt to act optimally under a specific cost and belief probability distribution. On the

other hand, the sampling-based approach is very promising: similar techniques shall be employed in order

to implement the algorithms that will be developed in this section.

Other related work includes an alternative technique based on eliminating actions which are confi-

dently estimated as low-value. This approach was used by Even-Dar et al. (2006). Bresina et al. (2002)

did some work on continuous time planning under uncertainty, while Zlochin et al. (2004) worked on

model-based combinatorial optimisation. A slightly different technique from the full Bayesian approach

to estimating uncertainty was given by Wyatt (2001), where an optimistically evaluated state, which can

never be reached is used to direct exploration. Reynolds (2001a) deals with problems related to having

optimistic expectations about unknown quantities. In his thesis, Reynolds (2002) talks about how the

desired problem can be solved while performing exploration - in particular it talks about methods such

as Q-learning, which ostensibly try and determine the value function for the optimal policy.

7.3 Optimal Exploration Threshold for Bandit Problems

We want to know when it is a better decision to take action i rather than some other action j, with

i, j ∈ A, given that we have estimates qi, qj for E[rt+1|at = i] and E[rt+1|at = j] respectively1. We shall

attempt to see under which conditions it is better to take an action different than the one whose expected

reward is greatest. For this we shall need the following assumption:

Assumption 7.1 (Expected rewards are bounded from below) There exists b ∈ R such that

E[rt+1|at = i] ≥ b ∀ i ∈ A, (7.1)

The above assumption is necessary for imposing a lower bound on the expected return of exploratory

actions: no matter what action is taken, we are guaranteed that E[rt] > b. Without this condition,

exploratory actions would be too risky to be taken at all.

Given two possible actions to take, where one action is currently estimated to have a lower expected

reward than the other, then it might be worthwhile to pursue the lower-valued action if the following

conditions are true: (a) there is a degree of uncertainty such that the lower-valued action can potentially

be better than the higher-valued one, (b) we are interested in maximising more than just the expectation

of the next reward, but the expectation of a weighted sum of future rewards, (c) we will be able to

accurately determine whether one action is better than the other quickly enough, so that not a lot of

resources will be wasted in exploration.

We now start viewing qi as random variables for which we hold belief distributions p(qi), with q̄i =

E[qi] = Ê[rt+1|at = i]. The problem can be defined as deciding when action i, is better than taking action

j, under the condition that doing so allows us to determine whether qi > qj + δ with high probability

after T ≥ 1 exploratory actions. For this reason we will need the following bound on the expected return

of exploration.

1For bandit problems with states in a state space S, similar arguments can be made by considering i, j ∈ S ×A.

7.3. OPTIMAL EXPLORATION THRESHOLD FOR BANDIT PROBLEMS 75

Lemma 7.1 (Exploration bound) For any return of the form Rt =
∑N

k=0 g(k)rt+k+1, with g(k) ≥ 0,

assuming (7.1) holds, the expected return of taking action i for T time-steps and following a greedy policy

thereafter, when q̄i > q̄j, is bounded below by

U(i, j, T, δ, b) =
N
∑

k=T

g(k)
(

(q̄j + δ)P (qi > qj + δ) + q̄jP (qi ≤ qj + δ)
)

+

T−1
∑

k=0

g(k)
(

(q̄j + δ)P (qi > qj + δ) + bP (qi ≤ qj + δ)
)

(7.2)

for some δ > 0.

This follows immediately from Assumption 7.1. The greedy behaviour supposes we are following a

policy where we continue to perform i if we know that P (qi > qj + δ) ≈ 1 after T steps and switch back

to j otherwise.

Without loss of generality, in the sequel we will assume that b = 0 (If expected rewards are bounded

by some b 6= 0, we can always subtract b from all rewards and obtain the same). For further convenience,

we set pi = P (qi ≥ qj + δ). Then we may write that we must take action i if the expected return of

simply taking action j is smaller than the expected return of taking action i for T steps and then behaving

greedily, i.e. if the following holds:

N
∑

k=0

g(k)q̄j <
N
∑

k=T

g(k)
(

(q̄j + δ)pi + q̄j(1 − pi)
)

+
T−1
∑

k=0

g(k)(q̄j + δ)pi (7.3)

T−1
∑

k=0

g(k)
(

q̄j − (q̄j + δ)pi

)

<

N
∑

k=T

g(k)
(

δpi

)

(7.4)

Let g(k) = γk, with γ ∈ [0, 1]. In this case, any choice of T can be made equivalent to T = 1 by

dividing everything with
∑T−1

k=0 γ
k. We explore two cases: γ < 1, N → ∞ and γ = 1, N < ∞. In the

first case, which corresponds to infinite horizon exponentially discounted reward maximisation problems,

we obtain the following:

q̄j − (q̄j + δ)pi <

∞
∑

k=1

γkδpi (7.5)

q̄j − (q̄j + δ)pi

(1 − pi)q̄j
< γ. (7.6)

It possible to simplify this expression considerably. When P (qi ≥ q̄j + δ) = 1/2, it follows from (7.6) that

γ >
q̄j − (q̄j + δ)/2

q̄j/2
=
q̄j − δ

q̄j
. (7.7)

Thus, for infinite horizon discounted reward maximisation problems, when it is known that the all ex-

pected rewards are non-negative, all we need to do is find δ such that P (qi ≥ qj + δ) = 1/2. Then (7.7)

76 CHAPTER 7. OPTIMAL EXPLORATION

can be used to make a decision on whether it is worthwhile to perform exploration. Although it might

seem strange the qi is omitted from this expression, its value is implicitly expressed through the value of

δ.

In the second case, finite horizon cumulative reward maximisation problems, exploration should be

performed when the following condition is satisfied:

Nδpi > q̄j − (q̄j + δ)pi (7.8)

Here the decision making function is of a different nature, since it depends on both estimates. However,

in both cases, the longer the effective horizon becomes and the larger the uncertainty is, the more the

bias towards exploration is increased. We furthermore note that in the finite horizon case, the backward

induction procedure can be used to make optimal decisions (see DeGroot, 1970, Sec. 12.4).

7.3.1 Solutions for Specific Distributions

If we have a specific form for the distribution P (qi > qj + δ) it may be possible to obtain analytical

solutions. To see how this can be achieved, consider that from (7.6), we have:

γq̄j > q̄j − δ
pi

1 − pi

0 < δ
P (qi > qj + δ)

1 − P (qj > qj + δ)
− (1 − γ)q̄j , (7.9)

recalling that all mean rewards are non-negative.

If this condition is satisfied for some δ then exploration must be performed. We observe that if the

first term is maximised for some δ∗ for which the inequality is not satisfied, then there is no δ 6= δ∗ that

can satisfy it. Thus, we can attempt to examine some distributions for which this δ∗ can be determined.

We shall restrict ourselves to distributions that are bounded below, due to Assumption 7.1.

7.3.2 Solutions for the Exponential Distribution

One such distribution is the exponential distribution, defined as

P (X > δ) =

∫ ∞

δ

βe−β(x−µ)dx = e−β(δ−µ)

if δ > µ, 1 otherwise. We may plug this into (7.9) as follows

f(δ) = δ
P (qi > qj + δ)

1 − P (qi > qj + δ)
= δ

e−βi(µj+δ−µi)

1 − e−βi(µj+δ−µi)
=

δ

eβi(µj+δ−µi) − 1

7.4. EXTENSION TO THE GENERAL CASE 77

Now we should attempt to find δ∗ = arg maxδ f(δ). We begin by taking the derivative with respect to δ.

Set g(δ) = eh(δ) − 1, h(δ) = βi(q̄j + δ − µi)

∇f(δ) =
g(δ) − δ∇g(δ)

g(δ)2
=
g(δ) − δβi∇hg(δ)

g(δ)2
=
eh(δ)(1 − δβi) − 1

(eh(δ) − 1)2

Necessary and sufficient conditions for some point δ∗ to be a local maximum for a continuous differentiable

function f(δ) are that ∇δf(δ∗) = 0 and ∇2
δf(δ∗) < 0. The necessary condition for δ results in

eβi(qk+δ−µi)(1 − δβi) = 1. (7.10)

Unfortunately (7.10) has no closed form solution, but it is related to the Lambert W function for which

iterative solutions do exist (Corless et al., 1996). The found solution can then be plugged into (7.9) to

see whether the conditions for exploration are satisfied.

7.4 Extension to the General Case

In the general reinforcement learning setting, the reward distribution does not only depend on the action

taken but additionally on a state variable. The state transition distribution is conditioned on actions and

has the Markov property. Each particular task within this framework can be summarised as a Markov

decision process:

Definition 7.1 (Markov decision process) A Markov decision process is defined by a set of states S,

a set of actions A, a transition distribution T(s′, s, a) = P (s′t+1|st = s, at = a) and a reward distribution

R(s′, s, a) = p(rt+1|st+1 = s′, st = s, at = a).

The simplest way to extend the bandit case to the more general one of MDPs is to find conditions under

which the latter reduces to the former. This can be done for example by considering choices not between

simple actions but between temporally extended actions, which we will refer to as options following Sutton

et al. (1999). We shall only need a simplified version of this framework, where each possible option x

corresponds to some policy πx : S×A → [0, 1]. This is sufficient for sketching the conditions under which

the equivalence arises.

In particular, we examine the case where we have two options. The first option is to always select

actions according to some exploratory principle, such picking them from a uniform distribution. The

second is to always select actions greedily, i.e. by picking the action with the highest expected return.

We assume that each option will last for time T . One further necessary component for this framework

is the notion of mixing time

Definition 7.2 (Exploration mixing time) We define the exploration mixing time for a particular

MDP M and a policy π Tǫ(M, π) as the expected number of time steps after which the state distribution

is close to the stationary state distribution of π after we have taken an exploratory action i at time step

78 CHAPTER 7. OPTIMAL EXPLORATION

t, i.e. the expected number of steps T such that the following condition holds:

1

‖S‖
∑

s

‖P (st+T = s|st, π) − P (st+T = s|at = i, st, π)‖ < ǫ

It is of course necessary for the MDP to be ergodic for this to be finite. If we only consider switching

between options at time periods greater than Tǫ(M, π), then the option framework’s roughly corresponds

to the bandit framework, and Tǫ in the former to T in the latter. This means that whenever we take

an exploratory action i (one that does not correspond to the action that would have been selected by

the greedy policy π), the distribution of states would remain to be significantly different from that under

π for Tǫ(M, π) time steps. Thus we could consider the exploration to be taking place during all of Tǫ,

after which we would be free to continue exploration or not. Although there is no direct correspondence

between the two cases, this limited equivalence could be sufficient for motivating the use of similar

techniques for determining the optimal exploration exploitation threshold in full MDPs.

7.5 Optimistic Evaluation

In order to utilise Lemma 7.1 in a practical setting we must define T in some sense. The simplest solution

is to set T = 1, which results in an optimistic estimate for exploratory actions as will be shown below.

By rearranging (7.2) we have

U(i, j, T, δ, b) =

N
∑

k=0

g(k)q̄j +

N
∑

k=0

g(k)δpi + (1 − pi)

(

T−1
∑

k=0

g(k)(b− q̄j))

)

(7.11)

from which it is evident, since qj ≥ b and g(k) ≥ 0, that U(i, j, T1, δ, b) ≥ U(i, j, T2, δ, b) when T1 < T2,

thus U(i, j, 1, δ, b) ≥ U(i, j, T, δ, b) for any T ≥ 1. This can now be used to obtain Algorithm 1 for

optimistic exploration.

Nevertheless, testing for the existence of a suitable δ can be costly since, barring an analytic procedure

it requires an exhaustive search. On the other hand, it may be possible to achieve a similar result

through sampling for different values of δ. Herein, the following sampling method is considered: Firstly,

we determine the action j with the greatest q̄j . Then, for each action i we take a sample x from the

distribution p(qi) and set δ = x− q̄j . This is quite an arbitrary sampling method, but we may expect to

obtain a δ > 0 with high probability if i has a high probability2 to be significantly better than j. This

method is summarised in Algorithm 2.

An alternative exploration method is given by Algorithm 3, which samples each action with probability

equal to the probability that its expected reward is the highest. It can perhaps be viewed as a crude

approximation to Algorithm 2 when γ → 1 and has the advantage that it is extremely simple.

2Even if the probability of sampling a positive δ is low, one may simply increase the number of samples taken to better
approximate Algorithm 1.

7.6. EXPERIMENTS ON BANDIT PROBLEMS 79

Algorithm 1 Optimistic exploration

if ∃ δ : U(i, j, 1, δ, b) >
∑N

k=0 g(k)q̄j then
a⇐ i

else
a⇐ j

end if

Algorithm 2 Optimistic stochastic exploration

j ⇐ arg maxi q̄i.

uj =
∑N

k=0 g(k)q̄j .
for all i 6= j do
δ ⇐ x− q̄j , x ∼ p(qi)
ui ⇐ U(i, j, 1, δ, b)

end for
a⇐ arg maxi ui

7.6 Experiments on bandit problems

We will study the performance of the algorithm on random bandit problems. Such problems are interesting

mainly because the allow one to analyse the behaviour of the algorithm easily and represent the simplest

case under which an exploration-exploitation trade-off arises. More specifically, we consider n-armed

bandit problems with rewards rt ∈ {0, 1} drawn from a Bernoulli distribution. For each experimental

run, the expectations pi ≡ P (rt = 1|at = i) were drawn from a uniform distribution on [0, 1]. Unless

otherwise noted, the expected rewards are stationary. Under these conditions, the expected reward is

E[max(pi)] = n
n+1 under the oracle policy. 3 Algorithm 2 was used with g(k) = γk and b = 0, which is in

agreement with the distribution. This was compared with Algorithm 3, which can be perhaps viewed as

a crude approximation to Algorithm 2 when γ → 1. The performance of ǫ-greedy action selection with

ǫ = 0.01 was evaluated for reference.

The ǫ-greedy algorithm used point estimates for q̄i, which were updated with gradient descent with a

step size of α = 0.01, such that for each action-reward observation tuple (at = i, rt+1), q̄i ⇐ α(rt+1 − q̄i),

with initial estimates being uniformly distributed in [0, 1].

For Algorithms 2 and 3 the distribution of qi was represented through a population {pk
i }K

k=0 of point

estimates, with K = 16. Each point estimate in the population was maintained in the same manner as the

single point estimates in the ǫ-greedy approach, with each point estimate being updated independently

of the others. Sampling actions values was performed by sampling uniformly from the members of the

3The oracle policy is optimal policy if the expected rewards are known exactly. As for the expected maximum, it arises
because for a sample of independent random variables (X1, X2, . . . , Xn) drawn from a uniform distribution on [0, 1], we
can write that P (max(X) < x) = P (X1 < x, X2 < x, . . . , Xn < x) = P (X < x)n. On the [0, 1] interval, this is the c.d.f.
c(x) = xn, whose p.d.f is just p(x) = nxn−1 and E[X] = p(x) = nx(n − 1).

Algorithm 3 Sampling-greedy

a⇐ i with probability P (a = i) = P (qi > qj) ∀j 6= i

80 CHAPTER 7. OPTIMAL EXPLORATION

population for each action. This approach is further discussed in Section 8.5.

The results for two different bandit tasks, one with 16 and the other with 128 arms, averaged over

1,000 runs, are summarised in Figure 7.1. For each run, the expected reward of each bandit was sampled

uniformly from [0, 1]. As can be seen from the figure, the ǫ-greedy approach performs relatively well

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

r

t

Average reward in a 16-armed bandit task

e-greedy
sampling

opt 0.5
opt 0.9

opt 0.99

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

r

t

Average reward in a 128-armed bandit task

e-greedy
sampling

opt 0.5
opt 0.9

opt 0.99

Figure 7.1: Average reward in an multi-armed bandit task averaged over 1,000 experiments, smoothed
with a moving average over 10 time-steps. Results are shown for ǫ-greedy (e-greedy), sampling-greedy
(sampling) and Algorithm 2 (opt) with γ ∈ {0.5, 0.9, 0.99}.

when used with reasonable first initial estimates. The sampling greedy approach, while having the same

complexity, appears to perform better asymptotically. More importantly, Algorithm 2 exhibits better

long-term versus short-term performance when the effective reward horizon is increased as γ → 1. Ideally

we would like the algorithm to be optimal for the value of γ which has been selected, i.e. that the

algorithm achieving maximal expected return for a particular γ is the one whose objective function uses

the same γ. However, since the algorithms is slightly optimistic, it is expected that it will actually be

optimal for a value of γ slightly higher than what has been selected. Nevertheless, this will also depend

on a number of addition factors, including the method used to estimate and sample from the distribution

of expected rewards. More experiments analysing this behaviour will be presented in Section 8.5.3.

7.7 Discussion and conclusion

This chapter has presented a formulation of an optimal exploration-exploitation threshold for a n-armed

bandit task, which links the need for exploration to the effective reward horizon and model uncertainty.

Additionally, practical algorithms, based on an optimistic bound on the value of exploration, are intro-

duced. Experimental results show that this algorithm exhibits the expected long-term versus short-term

performance trade-off when the effective reward horizon is increased in the problem specification.

While the above formulation fits well within a reinforcement learning framework, other useful formu-

lations may exist. In budgeted learning, any exploratory action results in a fixed cost. Such a formulation

is used in (Madani et al., 2004a) for the bandit problem (see also Madani et al., 2004b, for the active

7.7. DISCUSSION AND CONCLUSION 81

learning case). Then the problem essentially becomes that of how to best sample from actions in the next

T moves such that the expected return of the optimal policy after T moves is maximised and corresponds

to g(k) = 0 ∀k < T in the framework presented in this chapter. A further alternative, described in (Even-

Dar et al., 2006), is to stop exploring those parts of the state-action space which lead to sub-optimal

returns with high probability.

When a distribution or a confidence interval is available for expected returns, it is common to use

the optimistic side of the confidence interval for action selection (Auer, 2005, 2002, for example). This

practice can be partially justified through the framework presented herein, or alternatively, through

considering maximising the expected information to be gained by exploration, as proposed by Bernardo

(1979). In a similar manner, other methods which represent uncertainty as a simple additive factor to the

normal expected reward estimates, acquire further meaning when viewed through a statistical decision

making framework. For example the Dyna-Q+ algorithm (see Sutton and Barto, 1998, chap. 9) includes

a slowly increasing exploration bonus for state-action pairs which have not been recently explored. From

a statistical viewpoint, the exploration bonus corresponds to a model of a non-stationary world, where

uncertainty about past experiences increases with elapsed time elapsed.

It is of interest to note one action selection method that is similar to the optimistic and optimistic-

stochastic algorithms presented in this chapter. This is a method based on the value of perfect information

(VPI), as originally developed by Howard (1966) and used in (Dearden et al., 1998, 1999) in order to select

actions in a Bayesian reinforcement learning setting. The similarity is due to the fact that the model also

considers the potential gains of selecting an action other than the greedy one, though the formulation is

slightly different. The VPI action selection method always selects the action that maximises the expected

return plus the expected gain due to acquired information. This expected gain is defined with respect to

action i, the action with maximum expected return Ui ≡ Ê[Rt|at = i] = q̄i/(1 − γ). and action i′, the

second best action. More specifically, we sample the distribution of rewards 4 and obtain samples qj for

each action j ∈ A (or MDPs m ∈ M). We then use U∗
j to denote the expected return of the optimal

policy in such a sample after selecting action j qj . This will simply be

U∗
j ≡ qj +

γ

1 − γ
max

k
qk (7.12)

for the stationary bandit problem (for complete MDPs this value will have to be calculated using dynamic

programming for each sample taken). Then, the gain of taking action j given U∗
j is

Gj(U
∗
j) =



















Ui′ − U∗
j ifj = i, U∗

j < Ui′

U∗
j − Ui ifj 6= i, U∗

j > Ui

0 otherwise,

(7.13)

where the expected return of the best and second-best action is Ui and Ui′ respectively. Finally, the

4Or more generally the distribution of MDPs (see Definition 2.2, page 13). This requires maintaining a distribution over
the set of possible MDPs and can be done in for example in the manner described by Dearden et al. (1999).

82 CHAPTER 7. OPTIMAL EXPLORATION

expected value of perfect information about action j is defined as

V PI(j) =

∫ ∞

−∞

Gj(x)p(U
∗
j = x)dx (7.14)

and the action chosen is that which maximises

Uj + V PI(j).

The main similarity between the methods is the evaluation of the optimal policy after some time of

exploration. The main differences are (a) In the proposed formulation we consider a lower bound for

the expected rewards. This excludes certain types of beliefs, such as Gaussians, for the distribution of

expected rewards. (b) The VPI method makes use of a second-best action. (c) Algorithms 1 and 2 search

over and sample from values of δ, while VPI performs an integration. In order to see whether those

differences have a significant impact on the performance of the algorithm, we will experimentally test

Algorithms 2 and 3 with both VPI and E3 (Kearns and Singh, 1998) in the next chapter.

In general, the conditions defined in Section 7.3, as well as the probabilistic formulation of Dearden

et al., require maintaining some type of belief over the expected return of actions in order to be able to

make an informed choice between exploratory and greedy behaviour. A natural choice for this would be

to use a fully analytical Bayesian framework. In some cases the analytical expression is not possible - for

example if we consider an exponential prior for qi, and a Gaussian distribution for rewards given their

expectation, we obtain a second-order exponential family posterior distribution with finite support. In

other cases, such as when we use a beta prior and a Bernoulli distribution for the rewards given their

expectation, we can remain within the analytical framework. Unfortunately, even in the latter case it can

be difficult to calculate P (qi − qj > δ) for Algorithm 2, or for calculating (7.14) in the VPI framework.

Thus, it might be better to consider simple numerical approaches from the outset. The following chapter

considers two such types of estimates. The first one relies on estimating the gradient of the return with

respect to the parameters. Then the estimated gradient is used as a measure of parameter variance.

This very simple method is tested against a few baseline systems using the sampling-greedy approach.

The estimates of the second type are more sophisticated. They attempt to explicitly represent a belief

distribution for the rewards of each action.5 Within that framework we consider three further cases:

(a) A population of independent estimators (b) a Monte Carlo approximation of Bayesian inference

and (c) fully Bayesian inference. The methods are tested in combination with optimistic stochastic

exploration, sampling-greedy and VPI and against simple ǫ-greedy action selection and E3.

5The extension to the full reinforcement learning case has not been considered further than the sketch given in Section 7.4,
thus we do not present methods for maintaining distributions over MDPs.

Chapter 8

Estimates of return distributions

As seen in the previous chapter, the exploration-exploitation trade-off that arises when one considers

simple point estimates of expected returns no longer appears under the Bayesian framework when full

distributions are considered. This chapter aims to develop methods for maintaining such distributions

in arbitrary models. These distributions can then be used to direct exploration, through one of the

algorithms developed in Chapter 7. While that chapter had focused mostly on the development of nearly

optimal algorithms, this chapters attempts to develop and examine methods for the representation of

uncertainty. It is found that there is an interaction between the exploration algorithm, the representation

of uncertainty and the problem on which the methods are tested.

The first such method is one of which had originally been presented in (Dimitrakakis and Bengio,

2005c). It is based on a simple gradient-based model for the estimation of the accuracy with which

a parameter is known. This model is applied to the estimation of probability distributions of returns

over actions in value-based reinforcement learning, where each parameter corresponds to the expected

return of a different state-action pair under a particular policy. While this approach is similar to other

techniques that maintain a confidence measure for action-values, it nevertheless offers an insight into

other techniques that use the gradient with respect to the parameters as an accuracy measure. The

greatest advantages of the method are its simplicity and ease of integration with existing action-value

reinforcement learnign algorithms. On the other hand, it is limited by the fact that it does not have direct

relation to probabilistic estimation and that since distributions are maintained over expected returns, only

Algorithm 3 is applicable.

In order to overcome the limitations of the gradient-based techniques an attempt was made to move

towards an approximation of fully Bayesian inference through the use of ensemble approaches for repre-

senting and estimating uncertatinty. Two such approaches are investigated: An independent estimator

approach related to bagging (Breiman, 1996) and a randomised grid filter approach related to particle

filtering (see Casella et al., 1999). The first is a rather ad-hoc method, while the second one approximates

posterior distributions via a mixture model. We test the two approaches against an analytical Bayesian

estimation procedure (which has a closed-form solution under the randomised bandit problem considered)

and against other current methods for optimal exploration in reinforcment learning.

83

84 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

8.1 Gradient-based estimates

A large number of problems in both supervised and reinforcement learning are solved with parametric

methods. In this framework we attempt to approximate a function f∗(·) via a parameterised function

f(θ, ·), given samples of f∗, with parameters θ ∈ R
n. We focus on incremental optimisation methods for

which an optimisation operator M(C, θ), where C is an appropriately defined cost, can be defined as a

stochastic process that is continuous with respect to θ. We define the sequence {θ} as θt+1 = M(C, θt).

In reinforcement learning, samples of f∗ are generated actively. Asymptotic convergence results exist

for such methods under appropriate sampling assumptions (Jaakkola et al., 1994). If we maintain a

distribution of θt (rather than a point estimate), we may be able to use it to generate samples in an

optimal sense. For example such a distribution might be used to determine whether (7.7) holds.

In this Section we explore simple gradient-based methods for measuring the accuracy of our parameter

estimates 1. More specifically, we explore ways to measure the accuracy of parameters estimated via

stochastic gradient descent methods. This involves estimating the gradient vector (and possibly the

Hessian) and subsequently using it as a measure of convergence. Two cases are considered: variance

estimates and gradient estimates. A naive variance estimate, arising from smoothness assumptions, is

given and its relation to the gradient is detailed. The relation of the gradient to convergence is outlined

and finally a simple gradient estimate is given.

8.1.1 Variance estimates

In the general setting, for each θt we sample a single value Mt from M(C, θt), where M is considered as a

random process. In our setting we will attempt to also maintain a confidence measure for our parameters.

We will attempt to do this by measuring the variance of the process at the current point θt.

Firstly, we assume that Mt is bounded2 and we attempt to estimate Ê[Mt] ≈ E[Mt].

We may further assume that M is Lipschitz continuous with respect to θ, (a function f satisfies a

Lipschitz continuity assumption in some set S if there exists L ∈ R such that ‖∇f(a)−∇f(b)‖ ≤ L‖a−b‖
for all a, b ∈ S). An alternative, though not strictly equivalent, way of expressing this continuity is to

place a prior over time for the statistics of the operator. The following simple relation follows from the

assumption of an exponential prior dependency (see Appendix B.2) for the variance of the operator M:

Vt+1 = (1 − ζ)Vt + ζ(Ê[Mt] − θt+1)(Ê[Mt] − θt+1)
′, (8.1)

with ζ ∈ [0, 1], where we have but one sample of M(C, θt) for each time t and we make use of our

smoothness assumptions for estimating variances. Now we may use Vt for our estimate of the variance of

M(C, θt).

In order to get useful estimates, we need some expressions for Ê[Mt]. We examine the two simplest

cases:

1Intuitively, when the gradient with respect to the parameters is close to zero, our algorithm has converged
2For stochastic gradient methods, under the condition that the partial derivative of the cost with respect to the parameters

is bounded, all Mt are bounded.

8.1. GRADIENT-BASED ESTIMATES 85

Definition 8.1 (Naive variance estimate) By assuming that M is a zero-mean process, i.e. that

E[Mt] = θt, we have:

Vt+1 = (1 − ζ)Vt + ζ(θt − θt+1)(θt − θt+1)
′. (8.2)

Definition 8.2 (Counting variance estimate) By assuming E[Mt] = θt+1, e.g. when M is a deter-

ministic process, we have:

Vt+1 = (1 − ζ)Vt. (8.3)

The latter method is equivalent to a class of counting schemes whereby we increase our certainty about

the mean of some random variable with each observation. With an appropriate choice for ζ such schemes

can be adequate for some problems.

If it is desirable to disallow the estimate reaching zero, then we may want to clamp it to a lower

limit. This can be achieved simply by adding a small positive constant to the above updates, or by just

limiting the variance to always be larger or equal to a fixed variance threshold. The latter method is the

one employed herein.

In the case where we maintain a set of parameters which are updated separately (such as in tabular

reinforcement learning methods, which are further discussed in Section 8.2.2), then it is also appropriate

to maintain separate variance estimates. In the following section we discuss how such estimates are

related to the convergence of the stochastic operator M for the case when it expresses a stochastic

gradient descent step.

8.1.2 Relation of variance estimates to convergence

In estimation problems we wish to find the unknown parameters θ∗ from observations. In iterative

estimation methods we would like to the distance between the current estimate θ and the unknown

parameters, so that the process can be stopped. Unfortunately, estimating |θ − θ∗|, the distance to a

solution, can be as difficult as determining θ∗ itself. On the other hand, it is generally not possible to

determine convergence, in certain special cases it presents a manageable task. To give a simple example,

when the cost surface is quadratic (i.e C = a(θ∗ − θ)2) we have |θ∗ − θ| = a|∇θC| and the magnitude of

the steps we are taking is directly related to the convergence. It is easy to show that the mean update

we have defined is an approximate measure of the gradient under some conditions.

From (8.1), we have

Vt+1 = (1 − ζ)Vt + ζη(δt + et)
′(δt + et)

= (1 − ζ)tV1 +

t
∑

k=1

(1 − ζ)t−kζη(δk + ek)′(δk + ek)

= (1 − ζ)tV1 + ζη(

t
∑

k=1

(1 − ζ)t−kδ′kδk +

t
∑

k=1

(1 − ζ)t−ke′kek) + 2

t
∑

k=1

(1 − ζ)t−kδ′kek) (8.4)

where ek is a noise process such as the stochastic gradient error term. For the case when η = 1/t we

86 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

have, with better approximation as t→ ∞, and if δk = C(θ) for all k (i.e. when α→ 0)

trace(V) ∝ ‖∇C(θ)‖2 + E[e2],

where the right hand term from the stochastic gradient method is proportional to the variance of the

observation noise in the linear case.

8.1.3 Gradient estimates

The relation of those estimates to the gradient is of interest because of the relationship of the gradient to

the distance from the minimum under certain conditions. In particular, when ∇2C(θ) is positive definite,

the following holds:

Lemma 8.1 Let θ∗ be a local minimum of C and θ ∈ S, with S = {θ : ‖θ − θ∗‖ < δ}, δ > 0. If there

exists m > 0 such that

m‖z‖2 ≤ z′∇2C(θ)z, ∀ z ∈ R
n, (8.5)

then every θ ∈ S satisfying ‖∇C(θ)‖ ≤ ǫ also satisfies

‖θ − θ∗‖ ≤ ǫ/m, C(θ) − C(θ∗) ≤ ǫ2/m.

The proof is quite straightforward and is given in Appendix B.5.1. We may now define a simple

estimate for the gradient itself.

Definition 8.3 (Gradient estimate) By using similar assumptions as in the variance estimates, we

may obtain an estimate of the gradient at time t:

Vt+1 = (1 − ζ)Vt + ζ(Ê[Mt] − θt+1) (8.6)

Here Vt is our current estimate of the gradient vector and ζ represents our belief on how fast it changes

between iterations. This can be seen by considering the equivalence of (8.6) and (B.14). In the latter, λ

monotonically depends on the accuracy of the Gaussian in (B.11), which represents the prior knowledge

on how fast the vt may change with time.

Both the naive variance estimate and the gradient estimates can be used to determine convergence of

parameters. It is perhaps interesting to note that for gradient methods with errors, the variance estimate

includes the noise term. For reinforcement learning problems with stochastic rewards at each state or

stochastic transitions between states this is significant, because it is related to the variance of the return.

If we attempt to use such convergence criteria to select actions, either estimate may prove advantageous

depending on the task.

8.2. ACTION SELECTION 87

8.2 Action selection

Most, if not all, reinforcement learning (RL) methods can be viewed as a combination of estimation and

sampling. Given a state space S and an action space A, an agent selects actions a ∈ A according to a

policy π : S → A. The aim of reinforcement learning is described as finding a policy π∗ that maximises

a utility function, for which the only available information is reward samples rt. The utility function we

shall be examining is the expectation of the return given the policy (See Section 5.1 for details).

An important subset of reinforcement learning methods is formed by value-based methods (which

are the focus of (Sutton and Barto, 1998)). These generate an evaluation for every possible action

and state pair and the policy is defined in terms of this. State-action evaluations are usually noted in

short-hand as Q(s, a) = Ê[Rt|st = s, at = a, π], i.e. the expected cost/return if we take action a at

state s while following policy π. Value function updates typically employ temporal-difference methods,

whereby parameters are adjusted in the direction of the temporal-difference error, which has the form

δ = rt +γÊ[Rt+1|st+1, at, π]−Q(s, a). In some cases parameters are adjusted according to an importance

weight, which usually takes the form of an eligibility trace ei, defined for each parameter θi.

8.2.1 Application of variance estimates to action values

These variance estimates can be applied with relative ease to action value reinforcement learning using

either a tabular or an approximation architecture (see Section 5.2.2). The naive variance estimate (8.2)

is particularly interesting because, for the tabular case, its use results in algorithm that is similar to

(Sakaguchi and Takano, 2004). For this reason we shall concentrate on this particular estimate, but we

will also be contrasting it to a gradient-related estimate.

In the following short sections we consider the application of such an estimate to reinforcement

learning; firstly in the tabular and secondly in the function approximation case. Lastly, we describe

action selection mechanisms, using the developed variance estimates, that can be applied to either case.

8.2.2 Tabular action value methods

The tabular reinforcement learning case can be obtained by defining a θ for each state-action pair Q,

so that we maintain separate variance estimates for each one. Then we consider that at each time step

the operator sample Mt can be defined as Mt ≡ Qt+1(s, a) = Qt(s, a) + α(rt + Ê[Rt+1] − Qt(s, a)). By

substituting this into (8.2), we obtain

Vt+1 = (1 − ζ)Vt + ζδδ′, (8.7)

where δ = Qt+1 − Qt is the temporal-difference error vector (scaled by the step-size constant α). For

the standard tabular case, all elements of δ will be 0 apart from the element corresponding to the action

a, which is the one to be updated and the covariance matrix δδ′ will have a single non-zero diagonal

element.

88 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

By re-arranging the terms of (8.7) we arrive at

Vt+1 − Vt = ζ(δδ′ − Vt) (8.8)

which can be written in expanded form as

Vt+1(s, a) − Vt(s, a) = ζ(δ(s, a) − Vt(s, a)). (8.9)

In the following we briefly describe how eligibility traces can be integrated in our framework.

8.2.3 Eligibility traces and variance estimates

Let us assume that the return Rt is given by a probability distribution of the form p(Rt|st, at, π). Clearly,

we may estimate E[Rt|st, at, π] by averaging the returns while following policy π. However, we can assume

that the distribution of Rt depends upon the distribution of Rt+1. We assume an exponential distribution

for this prior dependency and thus we have p(Rt+1|st+1, at+1, π) = λp(Rt+1|st, at, π)+(1−λ)W, where W
is the distribution of some unknown process, while λ ∈ [0, 1] represents our prior belief in the dependency

between values at different times.

The relation to eligibility traces is clear. We assume that an exponential prior in time governs the

probability distribution of Rt. Thus, we can perform importance sampling on our parameters through

the use of this prior: in other words each new sample should influence each parameter according to its

importance weight.

In RL methods employing eligibility traces, the update δ is applied to all the evaluations of all state-

action pairs (s, a) proportionally to the eligibility trace e(s, a). By viewing eligibility traces as importance

weights we can integrate them easily with our variance estimates. This results in the following update

for each parameter’s estimate.

Vt+1(s, a) = (1 − ζe(s, a))Vt(s, a) + ζe(s, a)δδ′, (8.10)

or in compact form

Vt+1 = (I − ζe)Vt + ζeδδ′, (8.11)

where I is the identity matrix.

8.2.4 Function approximation methods

We consider approaches where the value function is approximated with a parametrised function Qθ : S →
R

|A|.

Gradient methods are a commonly used method for adapting the parameters θ. Given ∂Q
∂θ

∂C
∂Q ≡

∇θQ∇QC, we consider an update of the form Mt = θt + dt for our parameters, where dt is the gradient

descent update. Then we simply apply (8.7) for this case and we obtain a covariance matrix for the

parameters.

8.2. ACTION SELECTION 89

8.2.5 Methods for action selection

Two methods are proposed for making use the variance estimates. The first is an intuitive action se-

lection mechanism for the case of linear approximations (including the tabular case), since the variance

of Q depends linearly on those, which allows us to analytically define a distribution over actions. An

alternative, and in our view more interesting, approach is to sample directly from the distribution of

parameters. The two methods are described in more detail in the following.

Sampling actions from action distributions

Consider the probability P (a∗ = a|s) of action a being the optimal action for some state s. We need

to obtain the posterior distribution of this for all actions, given the distribution of Q and the state, 3

denoted P (a∗ = a|Q, s). The Bayes rule gives

P (a∗ = a|Q, s) =
p(Q|a∗ = a, s)P (a∗ = a|s)

∑

b∈A p(Q|a∗ = b, s)P (a∗ = b|s) , (8.12)

where we have made use of the fact that
∑

b∈A P (a∗ = b|s) = 1. Now we must assume a distribution

family for p(Q|a∗, s). We consider the Boltzmann distribution which can be written as

p(E|i) = exp(−Ei/Kτ)

and has a physical interpretation of the distribution of the energies E of particles in a given state i

depending on the temperature τ and a constant factor K. We will be using this in the following to define

a softmax method for selection actions:

Definition 8.4 (weighted-softmax) Select actions a according to probabilities:

P (a∗ = a|Q, s) =
exp(Q(s, a)/

√
vs,a)

∑

b exp(Q(s, b)/
√
vs,b)

. (8.13)

For the tabular case, vs,a at time t is simply Vt(s, a). For the linear case, in which Q(s, a) =
∑

i wi,asi,

where w are components of a weight matrix and si is the i-th component of the state vector, the variance

is simply vs,a =
∑

i wi,aVt(i, a) where Vt(i, a) is the variance of the weight wi,a. Of course we could also

consider a full covariance matrix.

Another possibility is to consider an approximation to the action distribution, given the distribution

of parameters, which is certainly more elegant. However, it is probably simpler to sample directly from

the distribution of parameters and this is the approach we outline below.

3In our model Q is no longer a single value but a distribution characterised by the variance V . In this section we make
no distinction between our estimate of the mean and the actual distribution in order to minimise symbol use.

90 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

Sampling actions via parameter sampling

The second method applies to the more general function approximation case, as well as the tabular case.

Here we have to choose a distribution for our parameters; and then we sample from it in order to generate

actions, rather than postulating a distribution over actions and sampling from that. This is because in

the general case it is difficult to determine the distribution over actions from that of the parameters,

while in any case it is sufficient to sample from the parameter distribution directly.

Definition 8.5 (Sampling-Greedy) In this method, action sampling arises from sampling in the pa-

rameter space. At each time, we select action a∗ such that

a∗ = arg max
a

Q(s, a,Θ), (8.14)

where Θ = N (θ, Vt) is a sample randomly drawn from a normal distribution with mean θ and variance

Vt.

This will select action a∗ with probability
∏

a∈A P (Q(s, a∗) > Q(s, a)|Θ), if we consider Θ as our belief

distribution. This means that it will select each action with probability proportional to the probability

of it being the best action. The reader will have noticed that this is almost the same as Algorithm 3, but

with two differences. Firstly, the distribution is a special case. Secondly, in this case we are not sampling

from reward, but from return distributions.

8.3 Alternative approaches

As discussed in Section 7.2, there have been previous applications of such methods to the problem of

optimal action selection in reinforcement learning. Another method that is similar to the one presented

here is that of Meuleau and Bourgine (1999), where they also estimate a local measure of uncertainty which

is back-propagated in a similar manner to linked states. However, the closest approach to the gradient

estimates proposed herein that we are currently aware of is the Reliability Index method, described in

(Sakaguchi and Takano, 2004). This method has substantial similarity to our own for tabular action value

methods using the naive variance update (8.2), so we pause for a moment to ponder the differences. In

this method, actions are sampled according to a Boltzmann distribution:

Definition 8.6 (Reliability Index)

p(a|Q, s) =
exp(φQ(s, a)/

√
vs)

∑

b∈A exp(φQ(s, b)/
√
vs)

(8.15)

where vs > 0 is defined ∀ s ∈ S and is a variance estimate for each one of our Q estimates and φ is a

free parameter.

In that method, the variance update assumes the form Vt+1(s)−Vt(s) = ζ(δ(s)δ(s)′+γVt(s
′)−Vt(s)),

with a common V for all actions, or of a type Vt+1(s, a) − Vt(s, a) = ζ(δ(s)δ(s)′ + γVt(s
′, a) − Vt(s, a)).

8.4. EXPERIMENTS 91

This is then averaged over all states to obtain Vt(s) = 1
|A|

∑

a Vt(s, a). In either case, actions are selected

according to (8.15). It is perhaps important to note that a temporal-difference type of update is used (since

Vt(s
′) is the estimated variance of next state’s evaluation). The authors postulate that this represents

the dependency between the reliability of one state and the ones close to it. In our view, parameter

variances are directly related to parameter updates and γ is related to the utility function rather than

to assumptions about parameter dependencies. However, a model for setting priors about parameter

dependencies is offered by the exponential prior, commonly used in eligibility traces. This is the method

we have employed, as explained in Section 8.2.3.

Because of the close relation between this method and ours, our results can be viewed as, firstly,

a partial justification of the RI method and secondly, the generalisation of the concept to arbitrary

action-value methods.

8.4 Experiments

In this section we discuss results on a few simple discrete state tasks: a n-armed bandit problem, graph

walking and pole balancing. In the n-armed bandit task, the environment is composed of a single state

and n actions, with each action a having a reward ra ∈ {0, 1} governed by a Bernoulli distribution. In

theis environment, we used the same set up as that described in section 7.6. It is important to note here a

drawback of all those methods - while as seen in the previous chapter, we would normally like to maximise

a specific utility function, such as
∑

tE[rt]γ
t, the naive gradient-based methods explored herein do not

take into account the horizon when estimating the value of exploration. Nevertheless, for a quantitative

performance measure we estimate their cumulative expected return for different values of γ. An upper

bound on the performance on this task can be given by the asymptotically best-achievable average4,

E[max(r)] = n/(n + 1), i.e. the expected reward when the statistics of all arms are known exactly and

we always pick the arm with the highest expected reward. Numerical results are given in terms of the

ratio of performance of each method with respect to this, i.e. the ratio
∑N

t=0 γ
tE[r|·]/E[max(r)]. When

γ → 1 and N → ∞ this ratio approaches one for all methods that asymptotically converge, so for this

case another measure, the logarithmic regret, is used(see for example Auer, 2002).

The graph task consists of m nodes and n actions. Actions result in transitions from one node

to another deterministically. The first action always results in a transition from one node to the next,

forming a ring, i.e. a topologically closed path. Thus, starting from some node i it is possible to visit

all nodes in m moves by simply choosing action 1. Other actions’ transitions are determined randomly

at the beginning of each experimental round. The reward distribution for each state is Bernoulli, with

mean in [0, b] selected randomly at the beginning of each round from the bounded distribution

P (X < x) = 1/b2
∫ b

0

b− x/t

b
dt,

where b was set to 0.5.

4See also Section 7.6.

92 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

Fs = K(L0 − L)‖L0 − L‖ −KddL/dt spring force

N = mcg + Fs cos(θ) ground reaction

Ff = − tanh(nku)Nn ground friction

dub/dt = Fs/mb + g ball acceleration

dxb/dt = ub ball velocity

duc/dt = (Fin + Ff + Fs sin(θ))/mc cart acceleration

dxc/dt = uc cart velocity

ω = dθ/dt angular velocity

Table 8.1: The above equations describe the simulation model in the pole-balancing task. The g vector
has a downwards direction, while Fs is co-linear with the pole. Fin (the input force) and Ff are horizontal
forces. The cart is constrained to move only horizontally.

8.4.1 The pole balancing task

For the simulation of the pole balancing task we used a discrete first-order approximation, performed

with dt = 0.01, with a semi-elastic pole with a ball at one end and a cart sliding on a 4 meter long

surface, with walls at either side, upon which the cart bounced elastically. The simulation details are

shown in Table 8.1. The mass of the cart was mc = 1kg, while that of the ball was mb = 0.1kg. The

pole was massless, elastic, with length L0 = 1m, a stiffness of K = 200Nm−1 and a damping factor of

Kd = 1Nsm−1. Gravitational acceleration was set to g = 9.82Nm−2. The ground friction dependency

on reaction force was factorised into a linear part, with n = 0.05 modelling the maximum possible friction

given ground reaction N , and a non-linear part, with nk = 10 giving the amount of non-linear dependence

of friction with speed.

For the controller we used the following set-up. The state consisted of the angular velocity and

angle of pole, and speed and position of the cart. These were discretised to form a state space of size

384, through the splitting the variables θ, ω, xc, uc into four regions each. The controller made decisions

at a frequency of 20Hz, choosing between 2 possible actions in A. Each action resulted in a lateral

force Fin = ±10N being instantaneously applied to the cart, i.e. there was hysteresis or other engine

effects. The reward was 0 for all time, apart from failure, when it was −1 and the apparatus was reset

to a random position. For the reinforcement learning algorithms we used Q-learning updates, with a

discounting factor γ = 0.99 and accumulating eligibility traces with λ = 0.7. The learning rate was set

to α = 0.1. For the adaptive exploration methods, the variance threshold was set to 0, such that they

become purely greedy at the limit.

We have compared all the possible combinations of accuracy estimates (counting, naive and veloc-

ity), and action selection methods (sampling and weighted-softmax) against standard action selection

techniques and the reliability index method. For tasks with state, we also explored the eligibility trace

update option for variance estimates, as outlined previously. Each method has a free parameter, such as

the temperature, ǫ, or ζ, which we varied in the range [10−4, 1].

8.4. EXPERIMENTS 93

8.4.2 Results

In the bandit task, the number of arms was varied in the set {16, 32, 64, 128}. For a small number of

arms the various methods performed equally well. For increasing numbers of arms, the standard softmax

and ǫ-greedy methods failed to reach a satisfying solution when not started with optimistic estimates,

while the sampling method tended to perform slightly better than other methods. In this task, the

variance threshold was set to 10−4 and the learning rate was set to a constant η = 0.1.

Figure 8.1 shows results of the best methods (Additional results showing how the performance of each

method with different parameters are given in AppendixC.1) for 16 and 128 arms, plotted against the

asymptotically best achievable result. The weighted-softmax was performing generally worse than the

other adaptive methods. In this task we did not observe a large difference between the naive variance,

the velocity and the simple counting estimate. Note that when using naive variance updates, the only

difference between our method and RI lies in the action selection mechanism. It would thus appear to

be strange that the weighted-softmax is performing worse than RI. However, this is probably due to the

fact that, if all rewards are positive, actions with high variances are penalised by this method and it

frequently halts quickly at a sub-optimal solution.

Pessimistic initial estimates
γ greedy sm c 0.9 sm c 0.999 sm v 0.9 sm v 0.999 ws c 0.999 ws v 0.999

0.000000 51% 55% 52% 50% 49% 52% 53%
0.500000 57% 54% 52% 51% 52% 56% 53%
0.900000 67% 55% 57% 58% 59% 66% 54%
0.990000 72% 79% 78% 82% 81% 73% 67%
0.999000 73% 90% 85% 90% 88% 75% 90%
1.000000 74% 92% 87% 91% 88% 76% 95%

Optimistic initial estimates
γ greedy sm c 0.9 sm c 0.999 sm v 0.9 sm v 0.999 ws c 0.999 ws v 0.999

0.000000 50% 52% 54% 53% 50% 53% 54%
0.500000 52% 51% 53% 53% 50% 53% 59%
0.900000 59% 53% 57% 49% 48% 57% 69%
0.990000 82% 77% 81% 53% 47% 78% 82%
0.999000 95% 94% 95% 72% 70% 94% 90%
1.000000 98% 98% 98% 81% 79% 98% 91%

Table 8.2: Performance in 1000 random 16-arm bandit problems with pessimistic initial estimates, in
terms of expected cumulative discounted reward for different values of γ over 10000 time steps. The
figures show the percentage achievable with respect to the expected best when the statistics of each
arm are known a priori. Results are shown for greedy action selection with optimistic initial estimates
(greedy), sampling-greedy (sm) with ζ ∈ {0.9, 0.999} and weighted-softmax (ws) with ζ = 0.999; using
either velocity (v) or counting (c) estimates of uncertainty.

As far as the difference between the performance of the naive variance, velocity and counting esti-

mates of uncertainty is concerned, it appears that the velocity estimates produce the most consistent

performance. This is especially true when they are paired with sampling-greedy action selection.

For the graph task, we varied the number of states in {4, 16, 64} and the number of actions in

94 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
w-smax V 0.99

sam V 0.1
w-smax N 0.99

w-smax C 0.9
sam C 0.999

greedy

(a) pessimistic initial values, 16 arms

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
w-smax V 0.99

sam V 0.1
w-smax N 0.99
w-smax C 0.9
sam C 0.999

greedy

(b) optimistic initial values, 16 arms

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
w-smax V 0.99

sam V 0.25
w-smax N 0.99

w-smax C 0.1
sam C 0.25

e-greedy 0.1
softmax 0.1

(c) pessimistic initial values, 128 arms

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
w-smax V 0.99

sam V 0.1
w-smax N 0.99
w-smax C 0.9
sam C 0.999

greedy

(d) optimistic initial values, 128 arms

Figure 8.1: Average rewards of various ad-hoc methods on the 16-arm bandit tasks with initial estimates
of the mean rewards of actions set to 0 and to 1 for pessimistic and optimistic initial values respectively.
E[max] is the maximum achievable reward, sam is sampling-greedy and w-smax is the weighted softmax
action selection (with C and V standing for Counting and Velocity estimates) while greedy is greedy
action selection.

{4, 16, 64}. While in general all methods’ performance degraded with an enlargement of the space, and

all methods performed similarly for small spaces, we found that as the size of the space increased, the

sampling method performed significantly better than other methods. The weighted softmax method

appeared to be the most sensitive to the size of the space, behaving quite badly in small spaces and much

better than anything else in the 64 × 64 space. We also found that the velocity estimate offered some

improvement, especially with regard to sensitivity to ζ, while the naive and counting estimates had an

essentially identical performance. The standard softmax method achieved as good a solution as the best

methods, but only for a very limited range of values for τ , while the ǫ-greedy method performed the

worst.

Figure 8.2 summarises those results. Those indicate that for smaller sizes of the state-action space,

the standard softmax is much less sensitive to the selection of the temperature parameter. Larger spaces,

however, put it at some disadvantage. For the largest case examined here, the adaptive sampling methods

8.4. EXPERIMENTS 95

proposed perform significantly better. All such methods tend to perform better when ζ → 1 and this

effect most pronounced for the largest spaces. A tentative hypothesis for an explanation of this behaviour

could be given by considering the interaction of two factors: Firstly, the determinism of the environment

transitions, and secondly the fact that the number of iterations used is barely sufficient for trying out

all possible state-action pairs once in the largest environment. In such an environment the most obvious

approach would be to never try a seemingly inferior more than once - if the number of states is large

enough, soon a good but sub-optimal solution would be found.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.2 0.4 0.6 0.8 1 1.2

smax
RI

samp N
w-smax
samp V

(a) 16 states, 16 actions

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 0.2 0.4 0.6 0.8 1 1.2

smax
RI

samp N
w-smax
samp V

(b) 64 states, 16 actions

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.2 0.4 0.6 0.8 1 1.2

smax
RI

samp N
w-smax
samp V

(c) 16 states, 64 actions

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 0.2 0.4 0.6 0.8 1 1.2

smax
RI

samp N
w-smax
samp V

(d) 64 states, 64 actions

Figure 8.2: Total reward in the graph task after 10,000 iterations averaged over 100 experiments. Results
are shown for softmax (smax), reliability index (RI), sampling-greedy with Naive (samp N) and Velocity
(samp V) uncertainty estimates and weighted-softmax (w-smax), also with Velocity estimates. The
x-axis is the smoothing parameter ζ, or for softmax, the temperature τ .

We used the pole balancing task as a more difficult problem, where it is natural to use optimistic

initial estimates of return. In this task a greedy policy outperformed everything else by a large margin.

This is to be expected, since the nature of the reward used is sufficient for exploration to take place. In

96 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

fact, for the choice of reward function, −1 upon failure and 0 upon all other times, we have that

lim
γ→1

E[Rt|st = s, at = a, π] = −P (failure|st = s, at = a, π).

Thus greedy action selection mechanism in this case will simply be selecting the action with smallest

probability of leading to failure. This turns out to be a good overall strategy for this problem, since the

agent learns to maintain the pole at a low-risk configuration. Even a slight amount of radnomness, as

can be seen in Figure 8.3(a), can result in a large drop in performance, so any additional exploration is

not likely to benefit this task.

To summarise, the adaptive exploration methods discussed herein seem to be useful in some settings.

The optimal value for ζ appears to be similar across action selection mechanisms and variance estimates.

It is interesting to note that using the sample velocity estimate for updates, which disregards the variance

of the return, results in optimal behaviour over a larger set of values for ζ than either the sample variance

or counting estimate.

We have also briefly explored the response of the various methods to scaling of the variance estimate

as follows: The method, as described so far, used the gradient direction scaled by the learning rate to

compute the variance update. However one could remove this dependency on the learning rate. Removing

it had a strongly detrimental effect on the weighted-softmax and RI action selection methods, while the

sampling-greedy method was unaffected.

Furthermore, we would like to mention that we observed no experimental differences when using an

eligibility-type update for the variance estimates. Of course, this could have very well not been so for

other tasks.

8.4.3 Discussion

In this section, some of simple techniques for estimating parameter distributions were proposed. These

can be applied to the development of action selection mechanisms. In this restricted domain it was found

that of the estimates used, the smoothed gradient estimate and the simpler counting estimate can be used

to direct exploration relatively well in some cases. Of interest is the fact that the naive variance estimates

that are outlined are a generalisation of simple counting schemes and the scheme used in the prioritised

sweeping algorithm (Moore and Atkeson, 1993) and that used in the RI method (Sakaguchi and Takano,

2004). The connection between those estimates, the gradient, and its relation to convergence offers some

justification to the previously ad hoc use of such techniques. Particularly for prioritised sweeping, the

use of such an update might be advantageous for the case of stochastic rewards, since the current naive

estimation of accuracy might lead the algorithm to update some states far more often than necessary.

Since the aim of prioritised sweeping is to limit the amount of parameter updating to be performed,

such simple methods could be useful. There are also some interesting theoretical questions, such as

the relationship of this model and its possible application to policy-gradient methods (see for example

Baxter and Bartlett, 2000). Such methods also maintain an explicit estimate of the gradient and perform

sampling in the policy space (through sampling from the joint distribution of parameters) similarly to

8.4. EXPERIMENTS 97

the sampling-greedy approach.

In these experiments we have used the sampling-greedy method for action selection, wherein the

actions are selected proportionally to the probability of their being the best action. There are two

problems with this approach: First, that the sampling of each parameter is done independently, which

is only justifiable in some settings, as for example in the randomised bandit problem considered. In

more realistic problems sampling from the joint distribution of parameters would be better since there

is a dependency between variables. Secondly, even if the sampling is performed correctly, the sampling-

greedy algorithm is somewhat ad-hoc, i.e. it does not specifically take into account the discounting

when deciding between actions, while Algorithm 2 does. Furthermore, this approach does not even take

into account our uncertainty about the underlying MDP. In the next section, we shall take a look at a

conceptually simpler, but potentially more powerful method, inspired from particle filtering, maintaining

a set of beliefs from which we can sample conveniently.

These methods have other disadvantages. Firstly, it’s not easy to estimate what the smoothing

parameter and the variance threshold should be from simple prior beliefs. In tasks where the difference

between two estimates is very small this leads to many problems. What we would like to do is develop

methods for which little or no tuning is necessary, in the sense that the incorporation of prior knowledge

can be natural. Indeed, the next section will attempt to develop such methods, where the only tuning

required is the prior knowledge about the distribution of rewards/MDPs. Such methods could also be

useful in partially observable problems, by maintaining a belief state over the possible MDPs. However

there are some technical challenges, which we shall go over in more detail in the next section.

98 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

av
er

ag
e

tim
e

til
l f

ai
lu

re
 (

s)

episodes

greedy
e-greedy 0.001
e-greedy 0.01
e-greedy 0.1

(a) Effects of randomness

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

av
er

ag
e

tim
e

til
l f

ai
lu

re
 (

s)

episodes

greedy
samp 0.9

samp 0.999
w-smax 0.999

(b) Comparison between methods

Figure 8.3: Performance in the pole balancing task, averaged over 100 runs and smoothed over 10 episodes.
Effects of randomness in performance in the pole balancing task. Figure 8.3(a) shows how performance
changes according to the setting of the mixing parameter ǫ in ǫ-greedy action selection. Setting ǫ = 0.01
can be seen to have a severe effect on performance, while even taking just one random action out of
a thousand decreases performance noticeably Results are shown for greedy action selection (greedy),
sampling-greedy (samp) with ζ ∈ {0.9, 0.999} and weighted-softmax (w-smax) with ζ = 0.999; both
using counting estimates of uncertainty (Definition 8.2). The discounting parameter was set to γ = 0.99
and the eligibility race decay was set to λ = 0.7.

8.5. ENSEMBLE ESTIMATES OF RETURN DISTRIBUTIONS 99

8.5 Ensemble estimates of return distributions

Another interesting scenario is the use of ensemble methods for representing beliefs about the expected

value of the reward or the return, or more generally about the full MDP. In contrast to the previous

sections of the chapter, where the aim was to agnostically estimate parameter uncertainty, the methods

that will be presented in this section will attempt to explicitly represent uncertainty about quantities of

interest in the observed MDP.

In this section we investigate two such approaches, one relying on independent estimators with useful

properties (for the problem considered) and the other relying on Bayesian estimates. The first approach

is similar to bagging in the sense that an ensemble of estimators is used, each one of which observes only

a sample of the observations. This effectively leads to a population-based representation of our belief for

the expected value of the return. The approach is very similar to standard Bayesian particle-filtering

methods (see Casella et al., 1999), but is substantially simpler. The second approach considered is that

of an actual particle filter without resampling. For completeness, an analytical Bayesian approach is also

applied to the estimation problem.

Those three procedures are compared and contrasted in terms of performance in estimation accuracy,

level of expected return and amount CPU usage when used with different action selection algorithms.

More specifically, we compare the optimistic-stochastic, sampling-greedy and VPI algorithms under all

of the different estimation procedures on randomised n-armed bandit tasks. Results for greedy action

selection and the E3 algorithm are also included.

8.5.1 Ensembles of independent estimators

A population of N estimators is initialised with randomly selected parameters corresponding to our prior

belief about the joint distribution of parameters. In the simplest case, all observations are sampled

uniformly, weighed equally and the same amount of exponential forgetting is used for all estimators. For

steepest stochastic gradient descent estimation methods this is equivalent to changing parameters w(n),

for each population member i, according to

w
(n)
t+1 = w

(n)
t + η

(n)
t

∂C

∂w(n)
.

We may consider two categories of such updates. The deterministic case, where η
(n)
t+1 = η

(n)
t ∀i ∈ [1, N]

and the stochastic chase, where η
(n)
t is a random variable such that E[η

(n)
t+1] = E[η

(n)
t] ∀t. We may

additionally consider the special cases where η
(n)
t = η

(j)
t and E[η

(n)
t] = E[η

(n′)
t], ∀n, n′ ∈ [1, N] for the

deterministic and stochastic case respectively.

In the deterministic case, where all population members use the same step sizes, they should all

converge to the same values in the limit in the linear approximation convex cost case, with variance

bounded by the variance of error term in the gradient descent equation and the step-size (see Bertsekas,

1999, Proposition 1.5.1.).

In the case of stochastic step-sizes, or deterministic step-sizes that vary across the population, our

set of estimates forms a distribution which includes the stochasticity of the environment and not just

100 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

the uncertainty of our estimates. This is because a smaller step-size corresponds to a large correlation

between subsequent values of the reward distribution E[rt] (see Appendix B.2). Thus a model using large

step sizes will result in estimates close to our most recent observations, while a model using smaller step

sizes will result in estimates close to the average of our observations. To put that in context, consider

the linear estimation of E[rt]. If we start with an estimate w0, after t iterations we would have

wt = (1 − η)tw0 + η
t
∑

k=1

(1 − η)t−krk. (8.16)

Now consider rt = E[rt] + et, where et is a random variable from a stationary zero-mean distribution

E . Furthermore assume that E[rt] = r̄ ∀t, i.e. that the expected reward is stationary. Then, we may

re-write (8.16) as:

wt = (1 − η)tw0 + η

(

r̄
t
∑

k=1

(1 − η)t−k +
t
∑

k=1

(1 − η)t−kek

)

. (8.17)

By taking expectations we have, since E is zero-mean,

E[wt] = (1 − η)tE[w0] + r̄η

t
∑

k=1

(1 − η)t−k = (1 − η)tE[w0] + r̄(1 − η) (8.18)

As η → 0, limt→∞E[wt] = r̄ = E[rt]. On the other hand, if we consider (8.17), there is the additional

noise term η
∑t

k=1(1 − η)t−kek, whose variance at the limit becomes simply η
2−ηE[e2k] when the ek are

independent zero-mean random variables (see Appendix B.5.2 for a detailed proof). This confirms the

intuitive notion that the variance among estimators with a larger step-size parameter will be higher than

among estimators with a smaller parameter. In the simple linear estimation procedure of the mean of

an unknown random variable, this variance will be proportional to the variance of the random variable

itself.

In the context of reinforcement learning, it may be useful to create a population of estimators with of

a diverse set of step-size parameters. Then it would be possible to use this population to simultaneously

estimate the variance of the observations and the accuracy of our mean estimates while also considering

different assumptions about the stationarity of the process. In this case however we will be simply utilising

the population as our current belief about the distribution of expected rewards for each action.

Sampling from the Ensemble

Assume a population of parameters {w(n)}N
n=1, sampled from the probability measure PΘ which describes

our current belief. Each set of parameters w(n) defines an evaluation function

Q
(n)
t (s, a) = E[rt|st = s, at = a, n].

To use the same notation as Chatper 7, we will write q
(n)
i to represent the n-th estimate of the expected

reward of state-action pair i, or in the case of state-less problem, simply an action i. Assuming the

8.5. ENSEMBLE ESTIMATES OF RETURN DISTRIBUTIONS 101

members of {q(n)
i }N

n=1 have been sampled from our current belief, making them each one as likely as the

other.

Algorithm 3 allows a natural and efficient sampling method for this representation. In order to sample

from the distribution, all that is necessary is to uniformly choose between the members of the population,

thus the complexity in that case is O(1). However, Algorithm 2 requires the calculation of P (qi > qj +δ),

which can be approximated by sampling from the joint distribution of qi, qj . This can be done by counting

the number of times that a member sampled from one distribution will be larger than one sampled from

another. This requires doing N comparisons with j for each of N members of i, i.e. calculating

P (qi > qj + δ) ≈
N
∑

n=1

N
∑

m=1

I(q
(n)
i > q

(m)
j + δ)P (q

(n)
i , q(m)j) (8.19)

=
1

N2

N
∑

n=1

N
∑

m=1

I(q
(n)
i > q

(n)
j), (8.20)

if we assume the samples q
(n)
i are coming from the distribution of qi, i.e. our belief. The O(N2) complexity

of this, however, is prohibitive. We can reduce that to O(N) by going through all the members q
(n)
i of

action i and then comparing with a randomly selected member of action j, q
(m)
j , withm selected uniformly

in [1, N]. This gives an estimate which is equal to (8.20) in expectation.

While this estimation method is particularly simple and easy to use, it suffers from disadvantages

which result from the fact that it does not arise from a probabilistic formalism.5 Firstly, it is not easy

to express our prior beliefs about what the process looks like and secondly, the updating of those beliefs

is only approximate at best. For this reason we shall take a look at proper Bayesian methodologies for

maintaining such beliefs.

8.5.2 Bayesian methods

Assume a set of actions A and a reward r ∈ R with unknown probability distribution p(r|a) such that

E[r|a] = qa. Given a prior belief ξ over these distributions we need to determine a posterior belief after

having seen some data. More specifically, the prior belief ξ defines (a) The density of the reward given

a mean, p(r|q, ξ). (b) The density of the mean reward p(q|ξ). Through the definition of conditional

probability we have

p(q|r, ξ) =
p(r|q, ξ)p(q|ξ)

p(r|ξ) .

We will investigate special forms of the reward density.

5Each point estimate does actually correspond to a probabilistic inference procedure for tracking a discrete-time gaussian
process, as can be seen in Appendix B.2, when η is constant. However the belief over the set of estimates, i.e. the probability
that each one of them had been correct, is not maintained.

102 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

Closed-form solution for Bernoulli rewards

Let’s assume ξ such that under it r is drawn from a Bernoulli distribution such that P (r = 1|a = i) = qi.

We can then write

p(q|r, ξ) =
p(r|q, ξ)p(q|ξ)

∫∞

−∞
p(r|q, ξ)p(q|ξ)dq =

1

Z
[qr + (1 − q)(1 − r)]p(q|ξ).

Since the beta distribution is conjugate to the Bernoulli (see DeGroot, 1970, sec. 9.2), we may use it

to represent the prior and posterior distributions. In particular, we set

p(q|ξ) = qα−1(1 − q)β−1/B(α, β),

where B(·) is the beta function and

p(q|r, ξ) ≡ p(q|ξ′) = qα′−1(1 − q)β′−1/B(α′, β′),

with α′ = α+ r, β′ = β+ (1− r). Now ξ′ is our new prior distribution which we will use to obtain a new

posterior distribution after observing one more realisation.

In order to use this Bayesian estimate in the algorithms described in Chapter 7, we require two types of

computations. Firstly, sampling from the beta distribution. This was done using the sampling algorithms

developed by Cheng (1978), as provided in the C library RANLIB (Brown and Lovato, 1994). Secondly,

estimating the probability that P (x > y) for x, y drawn independently from two beta distributions. This

can be estimated easily by sampling both variables and counting the number of times one is larger than

the other.

Ensemble estimates and particle filters

In the experimental set up described in Section 7.6 the rewards are Bernoulli distributed with a mean

given by a uniform prior. This corresponds to a beta prior with the parameters α, β specified as 1, 1.

However in many other cases there may not exist an analytic Bayesian estimation procedure, therefore it

may also be of interest to examine a type of ensemble estimate that attempts to approximate the prior

and posterior distributions arising in Bayesian inference via a mixture model. There is a large body of

literature concerning such models, usually referred to as particle filters in their main application, which

is tracking of non-stationary state variables.

In such models we approximate the density p(q|·) via a set of weighted samples {(q(m), w(m))}K
m=1,

called particles:

p(q|·) ≈
∑

m

p(q|q(m), ·)p(q(m)|·) (8.21)

where p(q(m)|·) corresponds to the particle weight. Broadly, there are two interacting factors that need

to be considered in order for such methods to be used successfully: ([a]) 1. the form of p(q|q(m), ·) and

2. how new particles will be generated after an observation. The simplest way to choose p(q|q(m), ·) is to

use a fixed kernel function. However this imposes a lower limit on the variance of the distribution of q.

8.5. ENSEMBLE ESTIMATES OF RETURN DISTRIBUTIONS 103

The simplest way to update the particles is to keep their position fixed and update their weights. This

can be highly inefficient, since after a few iterations most of the weights will approach zero.

In this work we use a randomised discretisation of the distribution to create an approximate grid-

based representation (see Arulampalam et al., 2002, section IV.B), where the particles remain stationary.

As mentioned by Arulampalam et al. (2002), a proper particle filter would be more appropriate for state

estimation rather than for parameter estimation, while had the expected reward been allowed to vary

over time, particle filter methods would have been the method of choice.

8.5.3 Evaluation on bandit tasks

Apart from evaluating the methods on the random bandit task described in Section 7.6, it may be

also instructive to examine their performance in terms of the estimation accuracy of the mean of the

observed rewards. Figure 8.4 displays the estimated mean for a particular value of E[r], for the three

methods examined in this section. As the Bayesian approach’s prior perfectly matches the experimental

conditon, we see it performing excellently. The Monte Carlo approximation follows it relatively closely

for 16 particles and its precision increases as the number of particles is increased to 64, as expected. The

ensemble method is not very accurate at all, which is to be expected since the gradient descent method

with a fixed step-size is more suitable for tracking a non-stationary mean (see Appendix B.2). Indeed,

in such tasks the method can perform quite well, as can be seen in Figures 8.5 and 8.6, where it has

been used in conjunction with sampling-greedy action selection. The prior of the Bayesian approach is

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 2000 4000 6000 8000 10000

r

t

E[r]
pop (N=16, alpha = 0.01)

Monte Carlo (N=16)
Analytical

(a) 16 samples

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 2000 4000 6000 8000 10000

r

t

E[r]
pop (N=64, alpha = 0.01)

Monte Carlo (N=64)
Analytical

(b) 64 samples

Figure 8.4: An analytical Bayesian estimate (purple line) of the mean (red line) of a Bernoulli random
variable is compared with an approximate Monte Carlo approach (blue line), based on a random set of
fixed particles and with the population estimate described in Section 8.5.1, with 16 and 64 samples. For
this figure, the ensemble members use a learning rate of η = 0.01.

perfectly satisfied in this experiment and thus should be the method of choice. However in other cases

it may not be possible to find a closed-form solution for the posterior distribution. Thus, a Monte Carlo

approach may also be of interest. If we are just interested in estimating a fixed unknown parameter, such

as the expected reward, then the standard particle filters are not the method choice and it is expected

104 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

that they perform similarly to the independent estimator approach proposed here. For other forms of the

reward distribution, the grid filter or fixed particle approach should be working relatively well, although

a critical parameter in that case would be the number of samples required to approximate the belief

distribution sufficiently well. In particle filter methods, one would also have to appropriately select the

transition distribution. In the independent ensemble method, the learning rate parameter plays a role

similar to that of the transition distribution for generating new particles in particle filters (see for example

Appendix B.2). In the analytic Bayesian formulation there are no hyper-parameters to select apart from

the form of the prior and observation distributions, which have to also be selected explicitly in the Monte

Carlo methods, while they are implicitly selected in the independent estimator approach.

Apart from using such models for estimating the mean and uncertainty, it is of particular interest to

see if they can be applied to exploration in reinforcement learning. Figure 8.5 illustrates the independent

of population type and size in a standard bandit task with 128 actions, expected reward E[rt] ∈ [0, 1],

and rt ∈ {0, 1}. The expected reward was selected uniformly in [0, 1] at the beginning and at the middle

of each trial. Because of the stochasticity of the process, results shown are averaged over 100 trials and

smoothed over 100 time steps. The results shown result from using the sampling-greedy algorithm for

action selection.

 0.75

 0.8

 0.85

 0.9

 0.95

 0 500 1000 1500 2000

r

t

Deterministic population

2
4
8

16
32
64

(a) Deterministic population

 0.75

 0.8

 0.85

 0.9

 0.95

 0 500 1000 1500 2000

r

t

Stochastic population

2
4
8

16
32
64

(b) Stochastic population

Figure 8.5: Average reward on a 128-arm bandit task with Bernoulli distribution of rewards for each
action, averaged over 100 experiments and 10 time steps. Results are shown for a deterministic and
stochastic populations with population size in {2, 4, 8, 16, 32, 64}.

The deterministic population, whose variance summarises the uncertainty in our estimates, can be

used for action selection efficiently. An increase in the number of population members results in a

corresponding increase in average reward, which is our stated objective. The stochastic population, on

the other hand, is not particularly useful for this task, as its variance includes the stochasticity of the

environment.

As a quick illustration of the effectiveness of the approach, can be seen in Figure 8.6, where it is

compared with the popular method of optimistic initial values. As might have been expected, the latter

approach is very sensitive to the actual initial value chosen, with the value closest to the actual upper

8.5. ENSEMBLE ESTIMATES OF RETURN DISTRIBUTIONS 105

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

g 0.5
g 1.0
g 2.0
s 16

Figure 8.6: Average reward on a 128-arm bandit task with Bernoulli distribution of rewards for each
action, averaged over 100 experiments and 100 time steps. Results are shown for a greedy policy (g)
for an initial value of expected reward 0.5, 1, 2 and for two different ensemble policies with 16 ensemble
members. The s 16 indicates a population with 16 members, stochastic initialisation and deterministic
updates.

bound in expected rewards performing the best (initial values lower than 0.5 performed much worse).

In this respect it appears to outperform the methods described in the previous section. As far as the

optimistic intial values method is concerned, it is interesting to note that there exists a period where its

continuously exploring, alternating between sets of actions, until its estimates approach the actual values

of the best actions.

This is particularly true when overly optimistic initial values are used. The issue can be worse in

problems with state when methods using an estimate of maximal state-action values are used.6 As

Reynolds (2001a,b) points out, the max operator delays the updates of the predecessor states when

action values in successor states are over-optimistic. However this additional delay is measured only with

respect to the convergence of action values under uniform sampling. When there is an explicit need to

trade off exploration and exploitation, optimistic initial values are a reasonably good candidate.

Another comparison was made between the Bayesian model, the particle filter and the ad-hoc ensemble

estimate for 16 actions and 16 samples on a 10000 episode of the randomised n-armed bandit task over 1000

6Q-learning being the canonical example of such methods.

106 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000 10000

r

t

E[max]
Bayes + Alg. 2

Ens. + Alg. 2
VPI

greedy
E3

(a) 16 actions

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000 10000

r

t

E[max]
bayes 0.999

VPI
opt 0.999

greedy
E3

(b) 32 actions

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000 10000

r

t

E[max]
bayes 0.999

VPI
opt 0.999

greedy
E3

(c) 64 actions

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 1000 10000

r

t

E[max]
bayes 0.999

VPI
opt 0.999

greedy
E3

(d) 128 actions

Figure 8.7: Performance of best methods in 1000 random problems, smoothed over 100 time steps.
E[max] is the best possible asymptotic performance, while bayes and opt is a bayesian and ensemble
estimates using Algorithm 2 with γ = 0.999. VPI is the VPI action selection with ensemble estimates.
E3 is the E3 algorithm.

runs shows that. While apparently the ensemble estimates are performing slightly better asymptotically,

in terms of the performance measure that we are interested in, namely, the expected return for a given

discount factor, the particle filter methods are less optimistically biased and thus obtain a maximal

performance at a point close to the selected value of γ.

Figure 8.7 shows the performance of some of the best methods on the bandit task. Near the asymptote,

it can be seen that the Bayesian estimates coupled with the optimistic-stochastic algorithm perform better

than the other algorithms. As expected, the simpler ensemble estimates using the same algorithm are

always worse than the Bayesian ones. In this figure it is also easy to see the deficiencies of the simple greedy

estimation with optimistic initial values. As the number of actions, becomes larger, the sampling becomes

quite inefficient. The appearence of a small drop in performance at around 500 steps in Figure 8.7(c)

and 1000 steps in Figure 8.7(d) is related to the fact that sometimes there remains a number of actions

which are still optimistically evaluated at that point.

8.5. ENSEMBLE ESTIMATES OF RETURN DISTRIBUTIONS 107

γ grd grd bay bay bay ens ens ens VPI E3
opt rnd 0.9 0.99 0.999 0.9 0.99 0.999 0.9 0.9

0.0 53% 48% 54% 53% 55% 53% 52% 51% 55% 50%
0.5 53% 55% 57% 54% 53% 55% 53% 52% 60% 58%
0.9 58% 68% 72% 62% 60% 66% 57% 56% 73% 72%
0.99 82% 83% 89% 88% 85% 87% 81% 79% 88% 89%
0.999 95% 91% 94% 97% 97% 95% 96% 95% 95% 96%
1.0 98% 94% 95% 99% 99% 97% 99% 98% 97% 97%

Table 8.3: Performance in 1000 random 16-arm bandit problems lasting for 104 steps each. The numbers
show the expected samples used to estimate quantities in each method. Performance with more samples
(up to 128 were tried) does not give an improvement of more than 1%. The grd (o) method was initialised
with an optimistic initial estimate for all actions, while the grd (r) method used a random initial estimate
in [0, 1]. The Bayes methods use Bayesian estimates with prior matched to the experimental conditions
and Algorithm 2, while the Ens. methods use the ensemble estimates and the either the algorithm or
VPI. E3 refers to E3 action selection. The numbers refer to the value of γ, apart from VPI and E3

where it was set to γ = 0.999

γ grd grd bay bay bay ens ens ens VPI E3
opt rnd 0.9 0.99 0.999 0.9 0.99 0.999 0.9 0.9

0.0 50% 51% 50% 51% 51% 53% 52% 48% 52% 48%
0.5 49% 56% 50% 51% 51% 53% 51% 48% 56% 50%
0.9 50% 68% 60% 54% 53% 58% 53% 53% 70% 50%
0.99 59% 83% 84% 76% 68% 81% 68% 66% 87% 50%
0.999 87% 93% 91% 94% 91% 93% 91% 90% 94% 64%
1.0 96% 97% 93% 97% 98% 96% 98% 97% 96% 93%

Table 8.4: Performance in 1000 random 128-arm bandit problems lasting for 104 steps each. The numbers
show the expected samples used to estimate quantities in each method. The labels are the same as those
used in Table 8.3.

Table 8.3 and Table 8.4, compare the performance of methods quantitatively,7 where it can be seen

that Bayesian and the ensemble estimation have a performance peak approximately at the point where

the γ parameter in the evaluation measure matches the γ parameter in the algorithm itself. Naturally,

because the Algorithm 2 is slightly optimistic, the method explores more than is necessary for a given

reward horizon. Interestingly, the VPI method 8 is able to work particularly well at the initial stages, as

can be seed in the both the figures and the tables. Overall the VPI estimation appears to behave much

better for all the values of γ < 1 that were examined, even when the optimistic-stochastic algorithm was

tuned to the particular horizon that the measurements were taken against.

7Since the results have been averaged over 1000 runs, and each run lasts for 10000 steps and the rewards are Bernoulli,
the probability that a 1% difference in error is due to chance is smaller than 0.05 for γ ≥ 0.9,while it becomes infinitesimally
small for larger values.

8This reports results with the VPI method using the ensemble estimates. Results with the Bayesian estimation are worse
asymptotically, as the method stops all exploration very early. This effect seems to be related to the averaging, as when
using just one sample for calculating the VPI the Bayesian estimation was generally better than the ensemble, though in
any case worse than using more samples and and the ensemble estimate.

108 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

Average time per trial (ms)
Method

4 act. 16 sam. 4 act. 64 sam. 16 act. 16 sam.
Bayesian + Alg. 2 1692 6176 8045
Bayesian + Alg. 3 68 69 256

PF + Alg. 2 285 4055 1187
PF + Alg. 3 10 62 67

Ensemble + Alg. 2 23 58 92
Ensemble + Alg. 3 10 13 28
Ensemble + VPI 47 146 169

E3 6 6 7
Greedy 4 4 5

Table 8.5: Average CPU usage (as measured on a 900MHz Athlon AMD) of exploration methods on
random bandit problems. Results are shown for the 16-action bandit problem with bandits, averaged
over 1000 trials for the optimistic-stochastic and sampling-greedy algorithms with analytic Bayesian
(Bayesian), particle filter Bayesian (PF) and independent ensemble (Ensemble) estimation methods.
Note that the number of samples is also relevant for the analytic estimation approach, since there are
still some quantities which have to be estimated via sampling.

The E3 method, is able to perform almost as well as the Bayesian estimates if it is appropriately

tuned, for example in Figures 8.7(c) and 8.7(c). algorithms in all cases apart from when γ → 1. The

parameters for the E3 method were set to ǫ = 0.1, δ = 0.01 and a scaling coefficient for the polynomial

of 10−10. These values were selected so that there would be at least some period of greedy behaviour for

γ = 0.9 with 128 actions. However selecting a single set of values that would work in all environments

was not possible.

Since it is theoretically possible to solve the problem exactly through a complete enumeration, it is

worthwhile taking a look at the comparative CPU consumption of various methods. Table 8.5 shows the

computational requirements of the various methods. For Algorithm 2, the Bayesian method is the slowest

because it requires estimating P (X − Y > δ). The consequent sampling from the beta distributions of

X and Y in order to perform this estimation seemed to slow the method down considerably. The Monte

Carlo Bayesian approximation, while slightly faster than the pure Bayesian approach, requires a lot more

samples in order to approach its performance. Thus, for this particualr problem, it appears better to use

the Bayesian method, given the choice.

The third consideration must be the use of hyper-parameters in each method. The simplest method of

optimistic initial estimates requires setting an appropriate step-size (or step-size schedule) and an upper

bound on the expected rewards. While in this case the upper bound is trivial to set, it is not clear

how it could have been chosen had it been known that the expected rewards were drawn from a normal

distribution in place of the beta distribution. On the other hand, sometimes what is known is just an

upper bound, such as in the pole-balancing task. For the ǫ-greedy policies, one would have to also select

an appropriate randomness parameter. Similarly, for the methods seen in the previous section, one would

have to choose the smoothing parameter and the type of estimate (counting, velocity or naive variance),

which is not clear how to do. More importantly, none of these methods can be easily tuned to the choice

8.6. CONCLUSION 109

of γ, being merely exploratory heuristics. For example, one could say that intuitively ǫ should be higher

for higher γ and close to zero when γ → 0, but beyond that not much can be said. The other methods

do take into account the horizon to some extent and the only prior knowledge for the optimal-stochastic

and VPI action selection methods is the prior on the environment. This might be difficult to obtain in

some cases, but even simple techniques such as the ensemble estimate that is proposed in this thesis seem

to work relatively well - though there one would still have to select the appropriate learning rate and

initial distribution of estimates. The E3 algorithm requires just upper and lower bounds on the reward

and a number of nuisance parameters for expressing how good one would like the final solution to be.

Adjusting the values is not particularly intuitive, and in more complicated problems they might be even

harder to tune.

In summary, one could conclude that E3 has the potential to work well and is extremely fast, com-

pared to other methods. On the other hand it is slightly difficult to select its many hyper-parameters

correctly. As far as estimation goes, the Bayesian methodology has the obvious advantages of being easy

to specify a prior for and that it is extremely accurate. Unfortunately, even when Bayesian estimation

can be analytically formulated, action selection using the estimates is not analytical, not even using the

approximate optimistic-stochastic or VPI evaluation methods, which can make them relatively slow, as

can be seen in Table 8.5. Lastly, they may not be always applicable. Monte Carlo methods can be ap-

plied even where analytical estimation procedures do not exist, but this may incur a further computation

penalty and it may be difficult to select the required approximation. However they can perfectly match

the performance of the analytical appropach. The independent estimator ensemble, while fast, can not

achieve the performance of the Bayesian estimates, at least in this setting. This is to be expected since

the problem is stationary, while the estimator ensemble assumes non-stationarity - the more the prior

knowledge matches the experimental conditions, the better results one should expect.

8.6 Conclusion

A set of simple population-based models for estimating uncertainty has been presented. Such models

are computationally interesting, since they enable the simultaneous representation of uncertainty in our

estimates and of stochasticity in our observations, while maintaining beliefs about different prior assump-

tions on the stationarity of the environment. Another interesting aspect of population-based methods

is their potential relevance to neural modelling, as for example proposed in the framework by Pouget

et al. (2003). The question of whether and how biological organisms take into account uncertainty re-

mains largely unanswered, with recent evidence showing that, at least in some cases, uncertainty does

not influence choice (Daw et al., 2006).

We have presented two such methods, an independent ensemble and a grid particle filter derived

from a Bayesian formulation of the estimation problem. The methods have been compared with each

other and with analytical Bayesian estimation in simple estimation and in action selection in bandit

problems. For optimal action selection, three different algorithms were combined with the methods:

sampling-greedy, optimistic-stochastic and VPI. The results presented here indicate that such methods

may be useful for efficient exploration in more complicated tasks. Similar methods can be applied to

110 CHAPTER 8. ESTIMATES OF RETURN DISTRIBUTIONS

model-based exploration, where our different beliefs about the world can be expressed via a population of

world models. Model-based exploration techniques, where an explicit model for the complete environment

is maintained instead of only value functions or parametrised policies, should be able to allow for much

more efficient exploration. This appears like a worthwhile topic for future research. Finally, it is tempting

to ponder whether performance could be enhanced further by devising an action selection mechanism

similar to E3 that utilises full distributions rather than distribution-free bounds.

Chapter 9

Conclusion

This thesis has been examining the use of ensemble methods for maintaining multiple beliefs under uncer-

tainty in sequence learning problems. The tasks we focused on were speech recognition and reinforcement

learning problems, while we looked at a number of algorithms for both maintaining beliefs and for making

decisions using those beliefs.

In speech recognition tasks we have applied the well-known bagging and boosting algorithms initially

to phoneme classification, where we developed mixture models for each phoneme. These mixtures were

then used in order to make speech recognition decisions. This work resulted in a paper presented at

ICASSP’04 (Dimitrakakis and Bengio, 2004b). The practice of training phonetic mixtures, though suc-

cessful, relies on potentially unreliable phonetic segmentation. Thus, this work was later extended with a

boosting approach specifically addressing the problem of word error minimisation, in a paper presented

at ICASSP’05 (Dimitrakakis and Bengio, 2005a). Further results, presented in this thesis, indicate that

bagging can be more effective in reducing the effects of noisy phonetic segmentation, even when compared

with the more sophisticated boosting technique, at least for this particular dataset. The application of

the method to large vocabulary speech recognition remains a future topic of study.

Since we are interested in the interaction of ensemble methods and sequence learning, we have also

looked at ensemble training as a sequential learning problem. We compared three algorithms, (a) bagging,

(b) mixture of experts (MoE) with gradient-descent training and (c) a variant of mixture of experts using

a technique based on methods for reinforcement learning, with each other and with a baseline MLP, in

a work presented in the Neurocomputing journal (Dimitrakakis and Bengio, 2005b). In a sense, all three

ensemble algorithms make sequential decisions: Ada-Boost performs a step-wise greedy search by creating

a new classifier at every step and is the dual of the Hedge algorithm described by Freund and Schapire

(1997); MoE allocates credit to each one of the experts deterministically; while in the RL mixture the

same thing is done stochastically. They are also all making decisions greedily, since they choose the next

point estimate without a view to what possible future estimates might be.

We then consider exactly this problem: how to optimally behave under conditions of uncertainty, when

future beliefs are likely to change and the manner in which they change is influenced by the action taken

now. Such a situation requires striking a balance between greedy and exploratory behaviour and it arises

111

112 CHAPTER 9. CONCLUSION

in many optimisation problems in general. We have studied this problem mainly in the context of bandit

tasks, which is the simplest type of tasks where it can be encountered, and have developed a simple set

of algorithms for near-optimal exploration, which has been presented in ICANN’06 (Dimitrakakis, 2006).

The presented bound upon which these algorithms rely is quite similar to the VPI method, with which

some comparisons were made.

All these algorithms require maintaining a probability distribution that expresses our belief. For this

reason, we developed a few simple algorithms based on gradient estimates (Dimitrakakis and Bengio,

2005c), which can then be used to drive exploration. We have found that in some cases such methods

can be advantageous, but nevertheless give only modest gains. We have furthermore considered three

other types of estimates: (a) An analytical Bayesian estimate suitable for stationary distributions, (b) a

grid-filter Monte Carlo approximation of the Bayesian estimate, (c) an ad-hoc independent ensemble

estimate suitable for non-stationary distributions. All methods were found to be working quite well when

used in conjunction with the developed algorithms or VPI, and they have their own advantages and

disadvantages in terms of applicability, accuracy, speed and performance.

From here on it could be possible to continue in a number of directions. One could look at other

types of mixture models or inference procedures for speech recognition and the potential extension of

suggested methods to large scale speech recognition systems. A thorough comparison between different

such methods in the field, which are applied at various temporal scales and are utilising various algo-

rithms, would certainly be of some interest to the speech recognition practitioner, who may otherwise

be bewildered by this array of offerings. Another possibility is to examine other approximate optimal

exploration methods in uncertain environments and to formally expand the developed methods into the

MDP case. It is also worthwhile to consider the types of uncertainty which arise when the MDP is only

partially observable and when the state-action space is continuous. While there has been some progress

towards both directions in a Bayesian framework, the question of optimal exploration has not yet been

addressed in these cases. This remains a wide-open research topic, waiting to be explored.

Appendix A

Definitions and Notation

113

114 APPENDIX A. DEFINITIONS AND NOTATION

A.1 Notation

A.1.1 Sets, sequences and probabilities

Sets will be denoted by calligraphic characters, i.e. S. The cardinality of a set S of will be denoted by

|S|. Open intervals will be denoted by (·), while closed intervals by [·].
The set of n elements {x1, x2, . . . , xn} will be denoted in shorthand as {xi}n

i=1. The summation over

elements x ∈ X will be written as
∑

x∈X

x

or equivalently
N
∑

i=1

xi.

The probability of a random variable X taking the value x will be noted as P (X = x). When the

context is clear, the probability density of a random variable X drawn from some distribution D is

noted as p(x), otherwise as fX(t). However p(x) may be employed for both densities and probabilities

in order to make generalising statements. The expectation operator is noted as E[·]. Furthermore we

shall use Ex∈X [x] to indicate the expectation of the random variable x over the set. The expectation

over a probability measure X will be written as EX [x], or alternatively if we define a prior ξ : x ∼ X we

can use the conditional notation E[x|ξ]. If x ∼ X unambiguously then we may simply write E[x]. An

empirical estimate of the expectation, given some data D and a prior ξ, will be written in short-hand as

E[x|D, ξ] ≡ Ê[x] ≡ x̄. The variance operator is denoted as Var[·].
An ordered sequence of n values of a variable taking value xt at time t will be denoted as x =

(x1, . . . , xn). We will also define the range xa:b = (xa, . . . , xn).

The notation X ∗ is used to denote the set of all ordered n-tuples (x1, . . . , xn), with xi ∈ X , for all

n ∈ N. For example B∗ ≡ {0, 1}∗ denotes all possible binary sequences.

A.1.2 Scalars, vectors, norms and gradients

Vectors and scalars are denoted with small italics and we shall use xi for the ith member of vector x. All

vectors are column vectors unless transposed. Matrices will be denoted with capital italics. We will use

x′ for the transpose of a vector x and A′ for the transpose of a matrix A.

For vectors x ∈ R
n, |x|p, denotes the lp norm:

|x|p =

(

n
∑

i=1

xp
i

)1/p

, (A.1)

while we will frequently use ‖x‖ to denote the l2 norm.

The gradient of some function f with respect to x will be written as

∇f(x) ≡ ∂f(x)

∂(x)
.

A.2. ADDITIONAL DEFINITIONS 115

The notation for the derivative of a function f with respect to x at some point x = x∗ can be written in

the following different ways

∇xf(x∗) ≡ ∇f(x∗) ≡ ∂f(x∗)

∂x
≡ ∂f

∂x

∣

∣

∣

∣

x=x∗

.

The notation when multiple variables are involved is similar. For example, when x = (x1, x2, . . . , xn), we

can write

∇xf(x∗) = (∂f(x∗)/∂x1, ∂f(x∗)/∂x1, . . . , ∂f(x∗)/∂xn).

A.1.3 Commonly used symbols

Although there is some occassional symbol re-use, the usual meanings of symbols in the thesis are sum-

marised in Table A.1.3.

A.2 Additional Definitions

While in the standard MDP framework the policy can be formulated directly in terms of the MDP’s

current state, there exists an interesting superclass of problems for which the state is only partially

observable. These can be formalised as partially observable Markov decision processes:

Definition A.1 (Partially observable Markov decision process) A partially observable Markov de-

cision process (POMDP) is defined as the tuplet M = (S,A,OT,R), comprised of a set of states S, a

set of actions A, a transition distribution T(s, a) = P (st+1 = s′, ot+1 = o′|st = s, at = a) and a reward

distribution R(s′, s, a) = p(rt+1|st+1 = s′, st = s, at = a).

The difference between an MDP and a POMDP is the fact that instead of observing the state st of the

MDP directly, we instead observe ot, which may only give partial information about the state. For this

reason the optimal policies in POMDPs are in general non-stationary.

We may now extend the notion of a policy from the simpler n-armed bandit setting to that of MDPs.

Now, a policy π defines the probability distribution P (at|st, π). Policies for which P (at|st, π) = πa,s are

called stationary.

Any mixture of two stationary policies is also stationary (for the related game-theoretic notion of

mixed strategies, see for example Luce and Raiffa (1957, sec. 4.7-4.10))

Formally, however, the distinction between stationary and non-stationary policies is not absolute. Any

non-stationary policy with respect to the MDP of the environment is equivalent to a stationary policy

by that uses an augmented state such that the problem becomes Markov. Similarly, a stationary policy

on an MDP will appear to be non-stationary to an observer that only partially observes the MDP state.

116 APPENDIX A. DEFINITIONS AND NOTATION

General
θ model parameters
ξ prior belief
c class
C cost
D data distribution
D data set
h a hypothesis/model
H the set of all hypotheses
l(·) sample loss
L loss
N the normal distribution
s state
o observation
w a vector of mixing weights
x, y input, and output, or simply scratch random variables

Speech recognition and Boosting
β boosting mixture coefficients
ε empirical expected loss
ρ(·) an arbitrary measure
η utterance boosting loss function hyper-parameter
ψ uterrance boosting temporal credit assignment
a morphological feature (word, syllable, or phoneme)

Reinforcement learning and decision making
α, η, ζ step sizes
β accuracy in softmax action selection
Q value function
qi an estimate/sample of the expected reward of action or state-action pair i
π policy
Rt return at time t
rt reward at time t
U utility (usually equal to the expected return)
γ Decay rate for discounted cumulative rewards
g(k) Function for arbitrarily weighting rewards
λ Decay rate parameter for eligibility traces
ǫ randomness parameter for ǫ-greedy
dt temporal difference error at time t
b a lower bound on the expected rewards
ek noise process (in the context of gradient descent)
et eligiblity trace (in the context of reinforcement learning)

Table A.1: Common meanings of symbols.

A.2. ADDITIONAL DEFINITIONS 117

A.2.1 The E
3 algorithm

This section briefly describes the E3 (Kearns and Singh, 1998) algorithm and how it is used in this thesis.

The E3 algorithm uses the fact that after visiting a state at least mknown times in some MDP M,

where

mknown = O(NTRmax/ǫ)
4 Var

max
log(1/δ), (A.2)

the estimated reward and transition probabilitites for this state will be within O((ǫ/NTRmax)2) of its

true value with probability (1 − δ). Here N is the number of states, T is the reward horizon Rmax is

the maximum possible reward, Varmax is the maximum possible reward variance in the MDP, ǫ is the

required approximation and δ is the probability of failing to reach the required approximation. While the

number of visits is less than mknown, the algorithm randomly selects actions and then it behaves greedily.

To apply this algorithm in our case, we first note that it uses the convention that the rewards are

conditoinal on states, rather than state-action pairs. The algorithm can be applied to the bandit problem

by considering each action as state that can be visited at arbitrary times. Since we are using discounted

rewards instead of a finite horizon, the horizon variable becomes, as Kearns also notes, T = 1/(1 − γ).

118 APPENDIX A. DEFINITIONS AND NOTATION

Appendix B

Miscellany

B.1 Optimality of multi-stream

This section details how a classifier mixture model, where each mixture member is a generative model,

can be used for sequence recognition. We begin by detailing the classifier mixture and then we show how

the most likely sequence.

Assume an observed continuous random variable O ∈ O and a discrete class membership random

variable Y ∈ Y. Assume that we have a model of conditional densities {p(o|y)|y ∈ Y, o ∈ O}. We wish

to determine P (y|o) the probability of o belonging to class y. From the definition of the joint density,

p(o, y) = p(o|y)P (y) = P (y|o)p(o), we have:

P (y|o) =
p(o|y)P (y)

p(o)
(B.1)

Consider a set of classifiers H that employ this rule to determine class posterior probabilities, such

that each classifier h estimates for each class y, P (y|o, h). Furthermore, consider a reliability term wh,

which we assume determines the prior probability that expert h is correct,1 i.e. for each h ∈ H,

P (h) = wh/
∑

i

wi

and
∑

h∈H P (h) = 1.

For static mixtures, i.e. assuming P (h|o) = P (h), we can marginalise to obtain the probability of

class y given data o as a weighted sum of the posterior probabilities given by each expert:

P (y|o) =
∑

h∈H

P (h)P (y|o, h)
∑

h∈H whP (y|o, h)
∑

h∈H wh
. (B.2)

1This corresponds to the weights in the static mixture model created by boosting. Meyer and Schramm (2006) use the
boosting weights in a similar manner.

119

120 APPENDIX B. MISCELLANY

This can then be extended to:

P (y|o) =

∑

h∈H whp(o|y, h)P (y|h)
p(o)

∑

h∈H wh
. (B.3)

After we make the simplifying assumption that the prior probabilities of classes are the same for each

model h, i.e. that P (y|h) = P (y) ∀ h and since p(o|h) = p(o) we have:

P (y|o) =
P (y)

∑

h∈H whp(o|y, h)
p(o)

∑

h∈H wh
. (B.4)

B.1.1 Decoding

If each of the models is a path, o being now a sequence of inputs o1, o2, .., oT , then p(o|h) (approximately,

assuming p(ot|ot−1, st) = p(ot|st), P (st|st−1, st−2, . . . , s1) = P (st|st−1) and dropping the c subscript) is:

p(x|y, h) ≈
T
∏

t=1

p(ot|sh∗
t)P (sh∗

t |sh∗
t−1) (B.5)

where {sh∗
t }t∈[1,T] is the MAP state sequence for model h.

Likewise, the data density, given a path through all models is:

p(x|y) =
∑

h∈H

wh

T
∏

t=1

p(ot|sh
t)P (sh

t |sh
t−1). (B.6)

In order to perform decoding, we construct a single trellis diagram V such that V (i, t) is the likelihood

for the MAP path given that the state at time t is i. In order to simplify this, we constrain the state

across models so that sh
t = i ∀h. Then V h(i, t) is the corresponding path leading to state i for model h

at time t. We denote

m = arg max
k

V (k, t− 1) = arg max
∑

h∈H

βhV
h(k, t) (B.7)

as the from which follows:

V (i, t) =
∑

h∈H

βhp(ot|sh
t = i)P (sh

t = i|sh
t−1 = m)V h(m, t), (B.8)

Thus, in the constrained case it is possible to infer the MAP state sequence using the Viterbi algorithm

by simply considering the weighted sum of likelihoods and transition probabilities locally at each state.

B.2 Exponential-family Priors in Time

Let us express the dependency of two random variables in time vt and vt+k via some prior ξ. In some

cases the expectation of vt+k given the prior and some observations can be written in linear form. One

such case is the following.

B.2. EXPONENTIAL-FAMILY PRIORS IN TIME 121

Suppose a random variable V , generated by Markov process of the form

p(vt|v1, . . . , vt−1) = p(vt|vt−1) (B.9)

We introduce another random variableX ∈ R with realisations xt, for which we assume that p(xt|vt, vt−1) =

p(xt|vt), resulting in:

p(vt|xt, vt−1) =
1

p(xt|vt−1)
p(xt|vt)p(vt|vt−1). (B.10)

We now use consider a that the transition distribuion is Gaussian

p(vt|vt−1) ∝ e−a‖vt−vt−1‖
2

, (B.11)

with a > 0 and a Gaussian distribution with unit variance p(xt|vt) ∝ e−b‖xt−vt‖
2

to obtain:

p(vt|xt, vt−1) ∝
1

p(xt|vt−1)
e−b‖vt−xt‖

2

e−a‖vt−vt−1‖
2

. (B.12)

We wish to find vt with maximum a posteriori probability. This requires finding vt that minimises

f(vt) = b‖vt − xt‖2 + a‖vt − vt−1‖2, (B.13)

where we note that the term p(xt|vt−1) does not influence the minimisation procedure and can be ignored.

A necessary condition for a minimum is that the first derivative with respect to the vt is zero. From this

it follows that

∇f(vt) ∝ b(vt − xt) + a(vt − vt−1) = 0

v∗t =
bxt + avt−1

a+ b
= (1 − λ)xt + λvt−1 (B.14)

where λ = a
a+b . Thus, a linear parameter update corresponds to the above simple discrete-time Gaus-

sian process inference procedure. The step-size λ expresses our belief as to how much of the observed

randomness is due to the stochasticity of the state rather than the observation given the state. When

b≪ a, i.e. when the process is assumed to be almost stationary or when the accuracy of the observations

is supposed to be very low, not as much importance is placed upon new observations for updating our

estimate.

122 APPENDIX B. MISCELLANY

B.3 Model-based reinforcement learning

Completely determining the return distribution for some policy π requires the calculation of

p(rt+k|st = i, π) =
∑

j

p(rt+k, st+k = j|st = i, π)

=
∑

j

p(rt+k|st+j = j)p(st+k = j|st = i, π)

for all i ∈ S and all n > 0. We can expand the above expression using the recursive relation

p(st+1|st, π) =
∑

i

p(st+1|at = i, st)p(at = i|st, π).

B.3.1 World models

When there is a model for the p(st+k = i|st = j, π) we can use samples of the distribution p(rt+k|st+k = i)

to estimate p(rt+k|st = j, π) for all k rather than rely on the Bellman relations. In some cases we may

model the transitions between each state pair explicitly.

In some a simpler model can be used. One commonly used such model is offered by eligibility traces,

which can be seen as an agnostic way to perform importance sampling in an unknown environment. The

following section outlines the links between eligibility traces, importance sampling and a prior belief in

the determinism of the underlying environment-agent Markov chain that generates the observed samples.

B.3.2 Eligibility traces

It is possible to derive eligibility traces in the form of a model for state transition probabilities where

the parameter λ arises from a prior on the amount of randomness exhibited by the Markov chain formed

when selecting actions on some MDP M according to some policy π. This prior model is useful as a type

of smoothing when performing parameter updates using sampling techniques.

We denote the vector of state probabilities as x = (x1, x2, . . . , x|S|) and p(x|ξ) will be used for our

prior belief over possible state transition probabilities. Together with some observations D, this can be

used to calculate

p(x|D, ξ) =
p(x|ξ)p(D|x, ξ)

p(D|ξ) .

In this case we will consider D being a single observation (st, st+k). For ξ we shall employ a Dirichlet

prior:

Definition B.1 (Dirichlet distribution) The Dirichlet distribution can be used as a conjugate prior

for multinomial sampling over n discrete outcomes

p(x|ξ) =
Γ(A)

∏n
i=1 Γ(ai)

n
∏

i=1

xai−1
i , (B.15)

B.4. HYPOTHESIS TESTS 123

where A =
∑n

i=1 ai and ai > 0, i ∈ {1, . . . , n}.

We would like to employ this distribution as a prior to describe the expected randomness. Let

ai = 1 − λ for all i ∈ {1, . . . , n}, with λ ∈ [0, 1]. For λ = 1, we have a uniform prior over transition

probabilities. When λ→ 0, the transition probabilities tend to become deterministic.

B.4 Hypothesis tests

There are two statistical tests used throughout this thesis in order to assess the significance of results

in supervised learning tasks. The first one, the z-test, is used for classification tasks, while a bootstrap

estimate of confidence intervals is employed for speech recognition tasks. In either case, one should always

keep in mind that such tests only give us some information about the probability ǫ that the difference in

scores will be at least δ, should the methods be tested on different data coming from the same distribution.

B.4.1 Two-proportion z-test

In a two-proportion z-test of two independent Bernoulli variables, where we observe xi positive results

for ni tests, we start by measuring the empirical mean of each one p̂i = xi

ni
. We want to know something

about the distribution of p̂1− p̂2. We know that the variances are simply Var[p̂i] = pi(1−pi)/ni and that

Var[p̂1 − p̂2] = Var[p̂1] + Var[p̂2]

If we assume the same variances for both variables then we can write

Var[p̂1 − p̂2] = p(1 − p)

(

1

n1
+

1

n2

)

.

For large n1, n2, p̂1 − p̂2 is approximately normal. We replace p with p̂ = x1+x2

n1+n2

and obtain

z =
(p̂1 − p̂2)

√

p̂(1 − p̂)(1/n1 + 1/n2)

will be Gaussian distributed with mean 0, variance 1. Now we integrate over the tails of the corresponding

Gaussian to obtain

P (‖p̂1 − p̂2‖ > x|p1 = p2) = 1 − 2√
2π

∫ x

0

e−t2/2dt

There are two problems with this test. Firstly, to the Gaussianity assumption this test is not very reliable

for small n1, n2. The second is the assumption of independence, as pointed out in (Dietterich, 1998),

does not make such a test very suitable for comparing classifiers, since a lot of times there is considerable

overlap in the sets of misclassified examples. Experimental results provided by Dietterich indicate that

while its type I error is acceptable it is not very powerful in the sense that its probability of rejecting the

null hypothesis (that the two classifiers are identical) is small. Thus it is probably not wise to draw very

firm conclusions from this test.

124 APPENDIX B. MISCELLANY

B.4.2 Bootstrap estimate for speech recognition

Bootstrap methods(Efron and Tibshirani, 1993, see) are useful methods for simulating the calculation of

estimates {fi} from multiple samples {Di} drawn from some distribution D. Since we normally have but

a finite-size sample D, the samples Di are drawn with replacement from D, the empirical distribution,

rather than from D, the distribution of interest.

The method herein was originally advocated for evaluating speech recognition performance by Bisani

and Ney (2004). It amounts to using the results of speech recognition on a test set of sentences as an

empirical distribution of errors. More specifically, for comparing two systems A and B we draw identical

bootstrap samples Dk from the test set. For each sentence i ∈ Dk, containing ni words, we obtain the

number of errors made by each system, which we denote as εA
i and εB

i , respectively. Then we calculate

the difference in word error rate on this sample:

∆Wk =

∑

i∈Dk
(εA

i − εB
i)

∑

i∈Dk
ni

.

We thus obtain a sample S = {∆Wk}K
k=1 of K bootstrap estimates of the difference in word error rate.

It is then possible to use this as an empirical distribution to estimate quantities of interest. In our case,

we are interested in

P (∆W > 0) =

∫ ∞

0

p(∆W)d∆W ≈ 1

B

K
∑

k=1

u(∆Wk),

where u(x) = 0 if x ≤ 0 and 1 otherwise. This quantity approximates the probability that system A is

better than system B.

B.5 Proofs

B.5.1 Distance Bound

The following bound is useful for deciding on the termination of gradient methods(Bertsekas, 1999, Section

1.2 and Exercise 1.2.10).

Lemma B.1 (Distance bound) Let θ∗ be a local minimum of C and θ ∈ S, with S = {θ : ‖θ−θ∗‖ < δ},
δ > 0. If there exists m > 0 such that

m‖z‖2 ≤ z′∇2C(θ)z, ∀ z ∈ R
n, (B.16)

then, for all θ ∈ S,

‖θ − θ∗‖ ≤ ‖∇C(θ)‖/m, C(θ) − C(θ∗) ≤ ∇‖C(θ)‖2/m.

For any twice continuously differentiable function f , it holds that:

∇f(y) = ∇f(x) +

∫ 1

0

∇2f
(

x+ t(y − x)
)

(y − x)dt.

B.5. PROOFS 125

We apply this to C and note that ∇C(θ∗) = 0 to obtain:

∇C(θ) =

∫ 1

0

∇2C
(

θ∗ + t(θ − θ∗)
)

(θ − θ∗)dt

(θ − θ∗)′∇C(θ) =

∫ 1

0

(θ − θ∗)′∇2C
(

θ∗ + t(θ − θ∗)
)

(θ − θ∗)dt.

From (B.16), we have:

(θ − θ∗)′∇C(θ) ≥ m‖θ − θ∗‖2

‖θ − θ∗‖‖∇C(θ)‖ ≥ m‖θ − θ∗‖2

‖θ − θ∗‖ ≤ ‖∇C(θ)‖/m,

which concludes the first part of the proof.

The second statement can be proven by using the following second order expansion that holds for

every function f that is twice continuously differentiable over an open sphere f centred at x, and with

y : x+ y ∈ S:

f(x+ y) = f(x) + y′∇f(x) +
1

2
y′∇2f(x)y + o(‖y‖2) (B.17)

from which it follows that:

f(y) − f(x) = f(x+ (y − x)) − f(x) = (y − x)′∇f(x) +
1

2
(y − x)′∇2f(x)(y − x) + o(‖y − x‖2) (B.18)

We also need the fact that

min
y∈Rn

{

(y − x)′∇f(x) +m‖y − x‖2/2
}

= − 1

2m
‖∇f(x)‖2. (B.19)

(This can be proven by the fact that at the minimum, the derivative of the argument of the minimum

operator will have a derivative of 0, resulting in y∗ = −∇f(x)
m + x. A substitution completes the proof.)

From (B.16) and (B.18), we have:

f(x+ (y − x)) − f(x) = (y − x)′∇f(x) +
1

2
(y − x)′∇2f(x)(y − x) + o(‖y − x‖2)

≥ (y − x)′∇f(x) +
m

2
‖y − x‖2

We can then replace the right hand side with its minimum, as given by (B.19), which gives:

f(x+ (y − x)) − f(x) ≥ − 1

m
‖∇f(x)‖2.

We now replace

C(θ) − C(θ∗) ≤ 1

2m
‖∇C(θ)‖2,

126 APPENDIX B. MISCELLANY

which concludes the second part of the proof.

We further note that if ‖C(θ)‖ ≤ ǫ then the following inequalities also hold:

‖θ − θ∗‖ ≤ ǫ/m, C(θ) − C(θ∗) ≤ ǫ2/m.

B.5.2 Noise residual

We consider some update process defined such as the one in (8.17), where the noise term is a random

variable ek ∼ E , for which the following conditions hold:

E[ek] = 0 (B.20)

p(e1, . . . , et) =

t
∏

k

p(ek) (B.21)

(B.22)

we have, for η ∈ [0, 1]

E

[

(

η
t
∑

k=1

(1 − η)t−kek

)2
]

= η2E

[

(

t
∑

k=1

(1 − η)t−kek

)2
]

(B.23)

We note that due to (B.21) we have:

lim
t→∞

E

[

(

t
∑

k=1

γt−kek

)2
]

= lim
t→∞

t
∑

k=1

γ2(t−k)E[e2k] =
E[e2k]

1 − γ2
(B.24)

so finally plugging this into (B.23) we obtain

lim
t→∞

η2E

[

(

t
∑

k=1

(1 − η)t−kek

)2
]

= η2 E[e2k]

1 − (1 − η)2
=

η

2 − η
E[e2k]. (B.25)

The error residual is approaches the noise variance when η is close to 1 and becomes 0 when η = 0.

Appendix C

Supplementary results

C.1 Random bandit problems

This appendix looks the behaviour of the heuristic methods in the bandit tasks in some more detail.

The first obvious thing is that in general the use of pessimistic initial values (Figure C.1)results in worse

performance than optimistic initial values (Figure C.1). The sampling-greedy and weighted-softmax

seem to be less affected by the choice of initial values, though the selection of the ζ parameter poses an

additional difficulty.

127

128 APPENDIX C. SUPPLEMENTARY RESULTS

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.0

0.001
0.01

0.1
0.25

0.5

(a) ǫ-greedy

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.0

0.001
0.01

0.1
0.25

0.5

(b) softmax

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.01

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(c) sampling-greedy counting

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.01

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(d) sampling-greedy variance

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.01

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(e) sampling-greedy velocity

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(f) weighted softmax counting

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(g) weighted softmax variance

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(h) weighted softmax velocity

Figure C.1: Average rewards in 128-arm bandit tasks with pessimistic initial values.

C.1. RANDOM BANDIT PROBLEMS 129

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.0

0.001
0.01

0.1
0.25

0.5

(a) ǫ-greedy

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.0

0.001
0.01

0.1
0.25

0.5

(b) softmax

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.001

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(c) sampling-greedy counting

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.001

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(d) sampling-greedy variance

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.01

0.1
0.25

0.5
0.75

0.9
0.99

0.999

(e) sampling-greedy velocity

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(f) weighted softmax counting

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(g) weighted softmax variance

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E[max]
0.1

0.25
0.5

0.75
0.9

0.99
0.999

(h) weighted softmax velocity

Figure C.2: Average rewards in 128-arm bandit tasks with optimistic initial values.

130 APPENDIX C. SUPPLEMENTARY RESULTS

Abbreviations

AR Auto-regressive

ANN Artificial neural network

DCT Discrete cosine transform

DFT Discrete Fourier transform

DP Dynamic programming

EM Expectation maximisation

GMM Gaussian mixture model

HMM Hidden Markov model

IDFT Inverse discrete Fourier transform

MAP Maximum a posteriori

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MDP Markov decision process

MFCC Mel-frequency Cepstrum coefficients

ML Maximum likelihood

MLP Multi-layer perceptron

MOE Mixture of experts

MSE Mean square error

POMDP Partially observable Markov decision process

RI Reliability index

RL Reinforcement learning

SARSA State-action-reward-state-action

SVM Support vector machine

TD Temporal difference

WER Word error rate

131

Index

, 97

accumulating eligibility traces, see eligibility traces,

accumulating

Ada-Boost, 2, 17, 29, 30, 32, 41, 44, 61, 111

Ada-Boost.M1, 17, 32, 66

Ada-Boost.M2, 17, 32, 40

augmented state, 115

bagging, 3–6, 14–16, 16, 19, 29, 30, 32, 34–37, 47,

48, 54, 60, 61, 83, 99, 111

bandit problems, 12

base classifier, 18, 66, 67

basis model, 3

Baum-Welch algorithm, 21

Bayes classifier, 8, 10, 31, 32, 34–36

Bayesian estimation, see inference, Bayesian

boosting, iii, 3–6, 16, 17–19, 19, 29, 30, 32–37, 39,

40, 47, 48, 61, 66, 67, 111, 119

bootstrap estimate, 31, 47, 124

bootstrap replicate, see bootstrapping

bootstrapping, 16, 17, 31, 32, 34, 39, 50, 56

classifier, 5, 16, 17

confidence values, 31, see statistical significance

continuous speech recognition, 21, 29, 31, 32, 35,

37, 39

control, 2, 62, 92, 95

cost, 4, 6, 7, 9–11, 15, 18, 19, 57, 60, 63, 74, 80, 84,

85, 87, 99

cost function, 3, 11, 15, 19, 46

decision making, 1, 5, 6

sequential, 2, 11–14

diagonal covariance matrix, 31

E3 algorithm, 73, 82, 99, 108–110, 117

edit distance, 24, see Levenshtein distance, 45

eligibility traces, 58–59, 87, 88, 91, 92, 96, 98, 122

accumulating, 59

replacing, 59

embedded training, 22, 22, 47

Viterbi, 22

ensemble, 3–6, 14, 15, 17, 54, 60, 63, 83, 99, 102,

105–107, 109, 112

ensemble methods, 2, 4, 5, 17, 29, 32, 38, 46–48, 61,

66, 111

ensemble pruning, 15, 69

environment, iii, 1, 11–14, 54, 57, 59, 60, 73, 91, 95,

99, 104, 109, 110, 115, 122

episode, 11, 43, 58, 60, 105

ǫ-greedy, 59, 63, 66, 72, 79, 80, 82, 93, 94, 116

estimation, 5, 12, 15, 36, 56, 57, 83, 85, 87, 96,

99–103, 109

estimator variance, 16

expectation boosting, 39–46

error expectation, 42

sequential decision making, 42

expectation maximisation, 11, 21, 31, 54, 62

expected reward, 12, 54, 65, 72, 74, 78–81, 91

experts, 2, 34

exploitation, 4, 54, 60

exploration, 4, 6, 54, 59, 60, 83, 96, 104, 109

exploration bonus, 59

exploration-exploitation trade-off, 4, 5, 71–82, 83

forward-backward algorithm, 21

132

INDEX 133

frames

acoustic, 31

Gaussian mixture model, 15, 22, 31

gradient descent, 11, 18, 19, 57, 69, 79, 88, 103, 116

stochastic, 57, 84, 85

stochastic steepest, 57, 63, 66, 99

greedy, 4, 10, 18, 39, 48, 55, 59, 60, 71–73, 75, 78,

82, 92, 93, 111

grid filter, 83, 104

hidden Markov model, 20, 22, 29

emission distribution, 31

states, 31

topology, 31

hyper-parameters, 5

hypothesis testing, 123–124

inference, 1, 5, 9

Bayesian, 9, 10, 15

maximum a posteriori, 9, 9

maximum likelihood, 9, 9

K-means algorithm, 31

large vocabulary speech recognition, 48

large vocabulary speech recognition, 111

learning rate, 93

Levenshtein distance, 24

loss function, 5, 14, 30, 39–42

machine learning, 1

MAP, see inference,maximum a posteriori

margins, 18

Markov decision process, 13, 13, 54, 77, 115

MFCC,

textbf22

mixed strategy, 115

mixture model, 24, 29, 83, 102, 119

conditional, 14, 53

decoding, 33

static, 14

switching, 14

mixture models, 5, 14–19

mixture of experts, 3, 19

ML, see inference, maximum likelihood

Monte Carlo, 10, 15, 36, 55, 56, 58, 82, 103, 104,

108, 109, 112

morphological feature, 21

morphology, 20, 21

multi-stream, 5, 24, 29, 33–37, 39–41, 45, 48, 119

product, 24

state-locked, 24

n-armed bandit problem, see bandit problems

n-best list, 23

optimistic stochastic exploration, 106

optimistic stochastic exploration, 78, 79, 80, 82, 99,

101, 107–109, 132

partially observable Markov decision process, 115

particle filter, 3, 99, 102–103, 104–106, 109

particle filtering, see particle filter

particle filters, 15

payoff, see reward

phoneme classification, 5, 35

phoneme model, 29

phonemes, 21, 32

pole balancing, 92

pole-balancing task, 108

policy, 12–14, 54, 55, 57, 60, 62, 64, 69, 72, 83, 87,

95

stationary, 12

policy-gradient methods, 96

population-based method, 5

Q-learning, 55, 57, 62, 63, 65, 66, 73, 74, 92, 105

random sample, 16

reinforcement learning, 2–6, 14, 43, 53–60, 61, 62,

64, 71, 73, 77, 80–87, 90, 92, 100, 104, 111

replacing eligibility traces, see eligibility traces, re-

placing

134 INDEX

return, 11, 13, 14, 54–56, 60, 71, 74, 75, 81–83, 86–

88, 91, 99, 122

reward, iii, 6, 11–13, 54

reward distribution, 12, 13, 54, 71, 77, 91, 100, 104,

115

sampling-greedy, 78, 79, 82, 90, 97, 101, 103, 109

sequence classification, 5, 7–10, 29, 65

sequence learning, 2, 3, 7–14, 29, 111

sequence recognition, 2, 4, 5, 8, 9, 32, 53, 119

sequential decision making, see decision making, se-

quential

simulation, 92

softmax, 59, 62–64, 66, 69, 89, 93

speech recognition, iii, 2–6, 15, 20, 21, 21–25, 29–

31, 42, 43, 48, 111, 112, 123, 124

decoding, 23

multi-stream, see multi-stream

multi-stream decoding, see multi-stream

state-locked, 34

single-stream decoding, 34

static learning, 2

statistical significance, 31, 123–124

supervised learning, 5, 7–9

switching models, see mixture model, switching

temporal difference, 55, 63

temporal difference error, 56, 57, 66, 116

temporal-difference error, 57

tri-phones, 47

two-proportion z-test, 31, 123

unbiased estimator, 16

uncertainty, iii, 1, 3–6, 15, 39, 54, 60, 71, 73, 74, 76,

80, 81, 83, 90, 93, 95, 97–100, 104, 109,

111, 112

utility, 11, 12, 73, 87, 91, 116

value function, 55, 55, 74, 87, 88, 116

state, 55

state-action, 55

value-based reinforcement learning, 55

variance clamping

Gaussian mixture model, 31

gradient estimates, 85

variance threshold, 85, 92, 93, 97

Viterbi

decoding, 23

training, see embedded training, Viterbi

Viterbi algorithm, 22, 23, 34, 120

VPI, 73, 81, 82, 99, 107, 109, 112

word error rate, 3, 5, 6, 15, 24, 29–31, 35–37, 39–42,

46–48, 50, 124

z-test

two proportion, see two-proportion z-test

Glossary

basis model: one of a set of models comprising an ensemble model, 3

exploitation: try to maximise the expected return according to our current knowledge of the environ-

ment, 54

exploration: using resources in order to improve our knowledge of the environment, 54

morphology:the form and structure(of an utterance), 20

return: a functional, usually a weighted sum, of future rewards, 54

reward: a single scalar value rt observed at time t. It is sometimes referred to as payoff in the literature.,

11

stationary policy: a probability distribution over actions that does not change with time, 12

utility: the quantity to be maximised in a given decision making problem, 11

value function: a function mapping states or state-action pairs to expected returns given a policy, 55

135

136 INDEX

Bibliography

Chuck. W. Anderson and Zhaohui Hong. Reinforcement learning with modular neural net-

works for control. In Proceedings of NNACIP’94, the IEEE International Workshop on

Neural Networks Applied to Control and Image Processing, pages 90–93, 1994. URL

citeseer.nj.nec.com/anderson94reinforcement.html.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle fil-

ters for online nonlinear/non-gaussianbayesian tracking. Signal Processing, IEEE Transac-

tions on, 50:174–188, February 2002. ISSN 1053-587X. doi: 10.1109/78.978374. URL

http://ieeexplore.ieee.org/iel5/78/21093/00978374.pdf. A condensed version is available at

http://citeseer.ist.psu.edu/maskell01tutorial.html.

Marios Athineos, Hynek Hermansky, and Daniel P.W. Ellis. LP-TRAP: Linear predictive temporal

patterns. In International Conference on Spoken Language Processing (ICSLP), 2004. IDIAP RR

04-59.

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Machine Learning Research,

3(Nov):397–422, 2002. A preliminary version has appeared in Proc. of the 41th Annual Symposium on

Foundations of Computer Science.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed bandit problem. Machine

Learning, 47(2/3):235–256, 2002. A preliminary version has appeared in Proc. of the 15th International

Conference on Machine Learning.

Peter Auer. Models for trading exploration and exploitation using upper confidence bounds. In PASCAL

workshop on principled methods of trading exploration and exploitation. PASCAL Network, 2005.

L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer. A new algorithm for the estimation of hidden

Markov model parameters. In IEEE Inernational Conference on Acoustics, Speech and Signal Processig,

ICASSP, pages 493–496, 1988.

Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging,

boosting, and variants. Machine Learning, 36:105, 1999.

137

138 BIBLIOGRAPHY

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical

analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41:164–171,

1970.

Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in POMDP’s via direct gradient ascent. In

Proc. 17th International Conf. on Machine Learning, pages 41–48. Morgan Kaufmann, San Francisco,

CA, 2000. URL citeseer.nj.nec.com/baxter00reinforcement.html.

Richard Ernest Bellman. A problem in the sequential design of experiments. Sankhya, 16:221–229, 1957a.

Richard Ernest Bellman. Dynamic Programming. Princeton University Press, 1957b. Republished by

Dover in 2004.

José M. Bernardo. Expected information as expected utility. In The Annals of Statistics, volume 7, pages

686–690. Institute of Mathematical Statistics, 1979.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2001.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

M. Bisani and H. Ney. Bootstrap estimates for confidence intervals in asr performance evaluation. In

Proceedings IEEE International Conference on coustics, Speech, and Signal Processing, (ICASSP’04,

volume 1 of Proceedings of the IEEE, pages 409–412, 2004.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases.

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. URL

citeseer.nj.nec.com/breiman96bagging.html.

John Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David Smith, and Rich Wash-

ington. Planning under continuous time and uncertainty: A challenge for ai. In Proceedings of the

Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI-02), pages 77–84. Morgan Kauf-

mann, San Francisco, CA, 2002.

Barry W. Brown and James Lovato. RANLIB.C: Library of C routines for random number generation.

Part of the NETLIB package, 1994. http://www.netlib.no/netlib/random/.

George Casella, Stephen Fienberg, and Ingram Olkin, editors. Monte Carlo Statistical Methods. Springer

Texts in Statistics. Springer-Verlag, 1999.

R. C. H. Cheng. Generating beta variates with nonintegral shape parameters. Communications of the

ACM, 21:317–322, 1978.

BIBLIOGRAPHY 139

R. A. Cole, K. Roginski, and M. Fanty. The OGI numbers database. Technical report, Oregon Graduate

Institute, 1995.

Ronan Collobert and Samy Bengio. Links between perceptrons, MLPs and SVMs. In ICML, page 23,

2004. URL http://doi.acm.org/10.1145/1015330.1015415.

G. Cook and A. Robinson. Boosting the performance of connectionist large vocabulary speech

recognition. In Proc. ICSLP ’96, volume 3, pages 1305–1308, Philadelphia, PA, 1996. URL

citeseer.nj.nec.com/cook96boosting.html.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the lambert W function.

Advances in Computational Mathematics, 5:329–359, 1996.

Nathaniel D. Daw, John P. O’Doherty, Peter Dayan, Ben Symour, and Raymond J. Dolan. Cortical

substrates for exploratory decisions in humans. Nature, 441:876–879, June 2006.

Richard Dearden, Nir Friedman, and Stuart J. Russell. Bayesian Q-learning. In AAAI/IAAI, pages

761–768, 1998. URL citeseer.ist.psu.edu/dearden98bayesian.html.

Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration. In Kathryn B.

Laskey and Henri Prade, editors, Proceedings of the 15th Conference on Uncertainty in Artificial In-

telligence (UAI-99), pages 150–159, San Francisco, CA, July 30–August 1 1999. Morgan Kaufmann,

San Francisco, CA.

Morris H. DeGroot. Optimal Statistical Decisions. John Wiley & Sons, 1970. Republished in 2004.

Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of

decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):1, 2000.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised classification learning

algorithms. Neural Computation, 10(7):1895–1923, 1998.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995. URL

citeseer.ist.psu.edu/dietterich95solving.html.

Christos Dimitrakakis. Nearly optimal exploration-exploitation decision thresholds. In Int. Conf. on

Artificial Neural Networks (ICANN), 2006. IDIAP-RR 06-12.

Christos Dimitrakakis and Samy Bengio. Online policy adaptation for ensemble classifiers. In 12th

European Symposium on Artificial Neural Networks, ESANN 04, 2004a.

Christos Dimitrakakis and Samy Bengio. Boosting HMMs with an application to speech recognition. In

IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP, 2004b. IDIAP-

RR 03-41.

140 BIBLIOGRAPHY

Christos Dimitrakakis and Samy Bengio. Boosting word error rates. In IEEE International Conference

on Acoustic, Speech, and Signal Processing, ICASSP, 2005a. IDIAP-RR 04-49.

Christos Dimitrakakis and Samy Bengio. Online policy adaptation for ensemble classifiers. Neurocom-

puting, 64:211–221, 2005b.

Christos Dimitrakakis and Samy Bengio. Gradient-based estimates of return distributions. In PASCAL

workshop on principled methods of trading exploration and exploitation. PASCAL Network, 2005c.

Mathew Magimai Doss. Using Auxiliary Sources of Knowledge for Automatic Speech Recognition. PhD

thesis, École Polytechnique Fédérale de Lausanne, Computer Science Department, Lausanne, Switzer-

land, 2005. thesis #3263 (IDIAP-RR 05-90).

Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors. Sequential Monte Carlo Methods in Practice.

Springer-Verlag, 2001.

Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap, volume 57 of Monographs on

Statistics & Applied Probability. Chapmann & Hall, November 1993. ISBN 0412042312.

Eyeal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions for the

multi-armed and reinforcement learning problems. Journal of Machine Learning Research, 2006. to

appear.

J.G. Fiscus. A post-processing system to yield reduced error word rates: Recognizer output voting error

reduction (ROVER). In IEEE Workshop on Automatic Speech Recognition and Understanding, pages

347–354, 1997.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of

Statistics, 29(5):1189–1232, 2001.

C. J. Gittins. Multi-armed Bandit Allocation Indices. John Wiley & Sons, New Jersey, US, 1989.

Zakkula Govindarajulu. Sequential Statistics. World Scientific Publishing, 2004.

Asela Gunawardana and William Byrne. Convergence theorems for generalized alternating minimization

procedures. Journal of Machine Learning Research, 6:2049–2073, 2005.

Hynek Hermansky and Sangita Sharma. TRAPs - classifiers of temporal patterns. In Proceedings of

International Conference on Speech and Language Processing (ICSLP’98), 1998.

Ronald A. Howard. Information value theory. IEEE Transactions on Systems, Science and Cybernetucs,

2(1):22–26, 1966.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative

dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

BIBLIOGRAPHY 141

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural

Computation, 3(1):79–87, 1991.

Johnny Mariéthoz and Samy Bengio. A new speech recognition baseline system for Numbers 95 version

1.3 based on Torch. IDIAP-RR 04-16, IDIAP, 2004.

Michael I. Jordan, editor. Learning in Graphical Models. Adaptive Computation and Machine Learning

series. MIT Press, 1999. URL http://mitpress.mit.edu/promotions/books/JORLPS99.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural

Computation, 6(2):181–214, 1994.

Leslie Pack Kaelbling. Learning in Embedded Systems. PhD thesis, ept of Computer Science, Stanford,

1990.

Grigoris I. Karakoulas. Probabilistic exploration in planning while learning. In Eleventh Annual Con-

ference on Uncertainty in Artificial Intelligence (UAI-95), pages 352–361. Morgan Kaufmann, San

Francisco, CA, 1995.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. In Proc.

15th International Conf. on Machine Learning, pages 260–268. Morgan Kaufmann, San Francisco, CA,

1998. URL citeseer.ist.psu.edu/kearns98nearoptimal.html.

Hamed Ketabdar, Hervé Bourlard, and Samy Bengio. Hierarchical multi-stream posterior based speech

recognition system. IDIAP-RR 25, IDIAP, 2005a.

Hamed Ketabdar, Jithendra Vepa, Samy Bengio, and Hervé Bourlard. Developing and enhancing poste-

rior based speech recognition systems. In Proceedings of Interspeech, Lisbon, Portugal, 2005b. IDIAP-

RR 05-23.

Guillaume Lathoud, Mathew Magimai.-Doss, Bertrand Mesot, and Hervé Bourlard. Unsupervised Spec-

tral Subtraction for Noise-Robust ASR. In Proceedings of the 2005 IEEE ASRU Workshop, San Juan,

Puerto Rico, December 2005. IDIAP RR 05-42.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet

Physics Doklady, 10(8):707–710, February 1966. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

R. Duncan Luce and Howard Raiffa. Games and Decisions. John Wiley and Sons, 1957. Republished by

Dover in 1989.

David J. C. MacKay. Information Theory, Probability and Neural Networks. Draft Version, 1997. URL

http://wol.ra.phy.cam.ac.uk/mackay/itprnn/.

Omid Madani, Danie J. Lizotte, and Russel Greiner. The budgeted multi-armed bandit problem. In

Learning Theory: 17th Annual Conference on earning Theory, COLT 2004, volume 3120 of Lecture

Notes in Computer Science, pages 643–645. Springer-Verlag, 2004a.

142 BIBLIOGRAPHY

Omid Madani, Danie J. Lizotte, and Russel Greiner. Active model selection. In Proceedings of the

20th Conference on Uncertainty in Artificial Intelligence, pages 357–365, Banff, Canada, 2004b. AUAI

Press, Arlington, Virginia.

Shiee Mannor and John N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit

problem. Journal of Machine Learning Research, 5:623–648, 2004.

Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through explicit optimiza-

tion of margins. Machine Learning, 38(3):243, 2000.

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions. Wiley-

Interscience, New York, 1997.

Ron Meir and Gunnar Rätch. An introduction to boosting and leveraging. In Advanced Lectures on

Machine Learning, LNCS, pages 119–184. Springer-Verlag, 2003.

Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environments: Local measures and Back-

Propagation of uncertainty. Machine Learning, 35:117, 1999.

Carsten Meyer and Hauke Schramm. Boosting hmm acoustic models in large vocabulary speech recogni-

tion. Speech Communication, 48:532–548, 2006.

Hemant Misra and Hervé Bourlard. Spectral Entropy Feature in Full-Combination Multi-Stream for

Robust ASR. In Proceedings of ISCA European Conference on Speech Communication and Technology

(Eurospeech), Lisbon, Portugal, September 2005. IDIAP-RR 2005 10.

Hemant Misra, Hervé Bourlard, and Vivek Tyagi. New entropy based combination rules in HMM/ANN

multi-stream ASR. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Hong Kong, April 2003. IDIAP-RR 2002 31.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with less

data and less time. Machine Learning, 13:103, 1993.

A. Morris, A. Hagen, H. Glotin, and H. Bourlard. Multi-stream adaptive evidence combination for noise

robust ASR. Speech Communication, pages 25–40, 2001.

Andrew C. Morris, Viktoria Maier, and Phil Green. From WER and RIL to MER and WIL. In Proceedings

of International Conference on Spoken Language Processing (ICSLP 2004), 2004.

Bambang Parmanto, Paul W. Munro, and Howard R. Doyle. Improving committee diagnosis with resam-

pling techniques. In David S. Touretzky, Michael Mozer, and Michael E. Hasselmo, editors, Advances

in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 882–888. MIT

Press, 1995. ISBN 0-262-20107-0. URL http://nips.djvuzone.org/djvu/nips08/0882.djvu.

Ioannis Partalas, Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Ensemble pruning using

reinforcement learning. In Grigoris Antoniou, George Potamias, Costas Spyropoulos, and Dimitris

BIBLIOGRAPHY 143

Plexousakis, editors, Proceedings of the 4th Hellenic Conference on Artificial Intelligence, SETN 06,

Lecture Notes in Artificial Intelligence 3955, pages 301–310, Heraklion, Crete, Greece, May 2006.

Springer-Verlag.

Alexander Pouget, Peter Dayan, and Richard S. Zemel. Inference and computation with population

codes. Annual Review Neuroscience, 3:381–410, 2003.

Doina Precup, Richard S. Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation.

In Proceedings of the 17th International Conference on Machine Learning, pages 759–766. Morgan

Kaufmann, San Francisco, CA, 2000.

Lawrence R. Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition. PTR Prentice-Hall,

Inc., 1993.

G. Raetsch, T. Onoda, and K.-R. Mueller. Soft margins for adaboost. Machine Learning, 42(3):287,

2001.

Stuart I. Reynolds. The curse of optimism. In Proceedings of the Fifth European Workshop on Reinforce-

ment Learning, Utrecht, The Netherlands, October 2001a.

Stuart I. Reynolds. Optimistic initial q-values and the max operator. In First UK Workshop on Compu-

tational Intelligence (UKCI‘01), Edinburgh, Scotland, September 2001b.

Stuart Ian Reynolds. Reinforcement Learning with Exploration. PhD thesis, School of Computer Science,

The University of Birmingham, Birmingham B15 2TT, UK, December 2002.

Saharon Rosset, Ji Zhu, and Trevor Hastie. Margin maximizing loss functions. In Advances

in Neural Information Processing Systems: Proceedings of the 2003 Conference, 2003. URL

http://books.nips.cc/papers/files/nips16/NIPS2003 LT22.pdf.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical Report

CUEF/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.

Yutaka Sakaguchi and Mitsuo Takano. Reliability of internal prediction/estimation and its application. I.

adaptive action selection reflecting reliability of value function. Neural Networks, 17(7):935–952, 2004.

Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions.

Machine Learning, 37(3):297, 1999.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: a new

explanation for the effectiveness of voting methods. Annals of statistics, 26(5):1651–1686, 1998.

Hauke Schramm and Xavier L. Aubert. Efficient integration of multiple pronunciations in a large vocabu-

lary decoder. In Proceedings of the International Conference on Acoustic, Speech and Signal Porocessing

(ICASSP-00), volume 3, pages 143–146, 2006.

144 BIBLIOGRAPHY

Holger Schwenk. Using boosting to improve a hybrid HMM/neural network speech recogniser. In Proc.

ICASSP ’99, pages 1009–1012, 1999. URL citeseer.nj.nec.com/schwenk99using.html.

Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural Computation, 12(8):1869–1887,

2000.

A. Smola, P. Bartlett, B. Sch olkopf, and D. Schuurmans. Advances in large margin classifiers, 2000.

Ron Sun and C. L. Giles, editors. Sequence Learning: Paradigms, Al-

gorithms, and Applications. Springer-Verlag: LNAI 1828, 2001. URL

http://www.springer.de/cgi-bin/search book.pl?isbn=3-540-41597-1.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning,

pages 216–224, 1990.

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine Learning, 3:9,

1988.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse

coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information

Processing Systems: Proceedings of the 1995 Conference, pages 1038–1044. MIT Press, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.

Marc Toussaint. A neural model for multi-expert architectures. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN 2002), 2002.

Robert Tibshirani Trevor Hastie and Jerome Friedman. The elements of statistical learning: data mining,

inference and prediction. Springer-Verlag, 2001.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.

IEEE Transactions on Information Theory, pages 260–269, 1967.

Abraham Wald. Sequential Analysis. John Wiley & Sons, 1947. Republished by Dover in 2004.

Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning. Machine Learning, 8:279,

1992.

Richard Weber. On the Gittins index for multiairmed bandits. The Annals of Applied Probability, 2(4):

1024–1033, 1992.

J. Wyatt. Exploration control in reinforcement learning using optimistic model selection. In A. Danyluk

and C. Brodley, editors, Proceedings of the Eighteenth International Conference on Machine Learning,

2001.

BIBLIOGRAPHY 145

Richard S. Zemel and Toniann Pitassi. A gradient-based boosting algorithm for regression problems.

In Advances in Neural Information Processing Systems: Proceedings of the 2000 Conference, pages

696–702, 2000. URL citeseer.nj.nec.com/zemel01gradientbased.html.

Rong Zhang and Alexander I. Rudnicky. Comparative study of boosting and non-boosting training for

constructing ensembles of acoustic models. In Proceedings of Eurospeech-2003, pages 1885–1888, 2003.

Rong Zhang and Alexander I. Rudnicky. A frame level boosting training scheme for acoustic modeling.

In Proceedings of ICSLP 2004, pages 417–420, 2004a.

Rong Zhang and Alexander I. Rudnicky. Apply n-best list re-ranking to acoustic model combinations of

boosting training. In Proceedings of ICSLP 2004, pages 1949–1952, 2004b.

Yi Zhang, Samuel Burer, and W. Nick Street. Ensemble pruning via semi-definite programming. Journal

of Machine Learning Research, 7:1315–1338, Jul 2006.

Mark Zlochin, Mauro Birattari, Nicolas Meuleau, and Marco Dorigo. Model-based search for combina-

torial optimization: A critical survey. Annals of Operations Research, 131:373–395, 2004.

Geoffrey Zweig and Mukund Padmanabhan. Boosting gaussian mixtures in an LVCSR

system. In IEEE International Conference on Acoustic, Speech, and Signal Pro-

cessing, ICASSP, August 2000. URL http://citeseer.ist.psu.edu/428040.html;

http://www.research.ibm.com/voicemail/postscript/icassp2000a.ps.

146 BIBLIOGRAPHY

Curriculum Vitae

147

Christos Dimitrakakis

Permanent address: 4 Agias Sofias, Drama 66100, Greece Phone: +41764971039

Current address: 4 Rue de Simplon, Martigny 1920, Switzerland email: dimitrak@idiap.ch

Date of Birth: 26 August 1975 Nationality : Greek

Education

2003 – Docteur dès Sciences (anticipated 2006).

The Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Thesis title: Ensembles for Sequence Learning .

1997–1998 Master of Science in Telecommunications and Information Systems.

Department of Electronic Systems Engineering, University of Essex, Colchester, UK.

Thesis title: Genetic Programming for Network Topology Design.

1993–1997 Bachelor of Engineering in Electronic Systems Engineering,

University of Manchester, Manchester, UK.

Professional Experience

2001– IDIAP Research Institute, Martigny, Switzerland.

Machine Learning Group, Research Assistant

2000 – 2001 ATMEL, Patras, Greece

Software/firmware developer & technical manager

1999 – 2000 Military service, Greece

Aug 1998 –

1999

Freelance programmer, UK

Other Experience

2002– Participation in TORCS, The Open Racing Car Simulator project.

Software developer (simulation, control, sound)

Languages
English (fluent), French (passable), Greek (native).

Computer Experience

Operating Systems: Linux, UNIX, Windows, AmigaOS

Languages: C, C++, Java, Assembly (various), Octave

Publications

Book Chapters and Theses

C. Dimitrakakis, (1998). Genetic programming for network topology design, MSc Thesis, Electronic

Systems Engineering, University of Essex, UK.

Journal Publications

Christos Dimitrakakis and Samy Bengio, (2005). Online policy adaptation for ensemble classifiers

Neurocomputing, 64:211–221, 2005.

Conference and Workshop Publications

Christos Dimitrakakis (2006). Nearly optimal exploration-exploitation decision thresholds. In Interna-

tional Conference on Artificial Neural Networks (ICANN 2006), Athens, Greece.

Christos Dimitrakakis and Samy Bengio, (2005). Gradient-based estimates of return distributions. In

Pascal Workshop on Principled Methods of Trading Exploration and Exploitation, London, UK.

Christos Dimitrakakis and Samy Bengio, (2005). Boosting word error rates. In Proceedings of the 2005

IEEE International Conference on Acoustic Speech Signal Processing (ICASSP 2005), Philadelphia, USA.

Christos Dimitrakakis and Samy Bengio, (2004). Online policy adaptation for ensemble classifiers 12th

European Symposium on Artificial Neural Networks (ESANN 04), Bruges, Belgium.

Christos Dimitrakakis and Samy Bengio, (2004). Boosting HMMs with an application to speech recog-

nition. In Proceedings of the 2004 IEEE International Conference on Acoustic Speech Signal Processing

(ICASSP 2004), Quebec, Canada.

Technical Reports

Christos Dimitrakakis (2006). Online statistical estimation for vehicle control : A tutorial IDIAP-RR

06-13, IDIAP, Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2006). A note on exploration-exploitation decision thresholds.

IDIAP-RR 06-12, IDIAP, Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2005). Gradient estimates of return. IDIAP-RR 05-28, IDIAP,

Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2004). Estimates of parameter distributions for optimal action

selection. IDIAP-RR 04-72, IDIAP, Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2004). Boosting word error rates. IDIAP-RR 04-49, IDIAP,

Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2003). Online Policy Adaptation for Ensemble Classifiers.

IDIAP-RR 03-69, IDIAP, Martigny, Switzerland.

Christos Dimitrakakis and Samy Bengio (2003). Boosting HMMs with an application to speech recog-

nition. IDIAP-RR 03-41, IDIAP, Martigny, Switzerland.

Not peer-reviewed

Christos Dimitrakakis (1999). Reinforcement learning with continuous action values.

http://www.idiap.ch/∼dimitrak/papers/RLContAction.ps.gz

