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Abstract. Supervised learning deals with the inference of a distribution
over an output or label space Y conditioned on points in an observation
space X , given a training dataset D of pairs in X ×Y. However, in a lot
of applications of interest, acquisition of large amounts of observations is
easy, while the process of generating labels is time-consuming or costly.
One way to deal with this problem is active learning, where points to
be labelled are selected with the aim of creating a model with better
performance than that of an model trained on an equal number of ran-
domly sampled points. In this paper, we instead propose to deal with the
labelling cost directly: The learning goal is defined as the minimisation
of a cost which is a function of the expected model performance and
the total cost of the labels used. This allows the development of general
strategies and specific algorithms for (a) optimal stopping, where the
expected cost dictates whether label acquisition should continue (b) em-
pirical evaluation, where the cost is used as a performance metric for a
given combination of inference, stopping and sampling methods. Though
the main focus of the paper is optimal stopping, we also aim to provide
the background for further developments and discussion in the related
field of active learning.

1 Introduction

Much of classical machine learning deals with the case where we wish to learn a
target concept in the form of a function f : X → Y, when all we have is a finite
set of examples D = {(xi, yi)}

n
i=1. However, in many practical settings, it turns

out that for each example i in the set only the observations xi are available, while
the availability of observations yi is restricted in the sense that either (a) they
are only observable for a subset of the examples (b) further observations may
only be acquired at a cost. In this paper we deal with the second case, where
we can actually obtain labels for any i ∈ D, but doing so incurs a cost. Active
learning algorithms (i.e. [1, 2]) deal indirectly with this by selecting examples
which are expected to increase accuracy the most. However, the basic question
of whether new examples should be queried at all is seldom addressed.

This paper deals with the labelling cost explicitly. We introduce a cost func-
tion that represents the trade-off between final performance (in terms of general-
isation error) and querying costs (in terms of the number of labels queried). This



is used in two ways. Firstly, as the basis for creating cost-dependent stopping
rules. Secondly, as the basis of a comparison metric for learning algorithms and
associated stopping algorithms.

To expound further, we decide when to stop by estimating the expected per-
formance gain from querying additional examples and comparing it with the cost
of acquiring more labels. One of the main contributions is the development of
methods for achieving this in a Bayesian framework. While due to the nature of
the problem there is potential for misspecification, we nevertheless show exper-
imentally that the stopping times we obtain are close to the optimal stopping
times.

We also use the trade-off in order to address the lack of a principled method
for comparing different active learning algorithms under conditions similar to
real-world usage. For such a comparison a method for choosing stopping times
independently of the test set is needed. Combining stopping rules with active
learning algorithms allows us to objectively compare active learning algorithms
for a range of different labelling costs.

The paper is organised as follows. Section 1.1 introduces the proposed cost
function for when labels are costly, while Section 1.2 discusses related work. Sec-
tion 2 derives a Bayesian stopping method that utilises the proposed cost func-
tion. Some experimental results illustrating the proposed evaluation methodol-
ogy and demonstrating the use of the introduced stopping method are presented
in Section 3. The proposed methods are not flawless, however. For example, the
algorithm-independent stopping rule requires the use of i.i.d. examples, which
may interfere with its coupling to an active learning algorithm. We conclude
with a discussion on the applicability, merits and deficiencies of the proposed
approach to optimal stopping and of principled testing for active learning.

1.1 Combining Classification Error and Labelling Cost

There are many applications where raw data is plentiful, but labelling is time
consuming or expensive. Classic examples are speech and image recognition,
where it is easy to acquire hours of recordings, but for which transcription and
labelling are laborious and costly. For this reason, we are interested in querying
labels from a given dataset such that we find the optimal balance between the
cost of labelling and the classification error of the hypothesis inferred from the
labelled examples. This arises naturally from the following cost function.

Let some algorithm F which queries labels for data from some unlabelled
dataset D, incurring a cost γ ∈ [0,∞) for each query. If the algorithm stops
after querying labels of examples d1, d2, . . . , dt, with di ∈ [1, |D|].it will suffer a
total cost of γt, plus a cost depending on the generalisation error. Let f(t) be
the hypothesis obtained after having observed t examples and corresponding to
the generalisation error E[R|f(t)] be the generalisation error of the hypothesis.
Then, we define the total cost for this specific hypothesis as

E[Cγ |f(t)] = E[R|f(t)] + γt. (1)



We may use this cost as a way to compare learning and stopping algorithms, by
calculating the expectation of Cγ conditioned on different algorithm combina-
tions, rather than on a specific hypothesis.

In addition, this cost function can serve as a formal framework for active
learning. Given a particular dataset D, the optimal subset of examples to be
used for training will be D∗ = arg mini E(R|F,Di) + γ|Di|. The ideal, but unre-
alisable, active learner in this framework would just use labels of the subset D∗

for training.
Thus, these notions of optimality can in principle be used both for deriving

stopping and sampling algorithms and for comparing them. Suitable metrics of
expected real-world performance will be discussed in the next section. Stopping
methods will be described in Section 2.

1.2 Related Work

In the active learning literature, the notion of an objective function for trading
off classification error and labelling cost has not yet been adopted. However, a
number of both qualitative and quantitative metrics were proposed in order to
compare active learning algorithms. Some of the latter are defined as summary
statistics over some subset T of the possible stopping times. This is problematic
as it could easily be the case that there exists T1, T2 with T1 ⊂ T2, such that
when comparing algorithms over T1 we get a different result than when we
are comparing them over a larger set T2. Thus, such measures are not easy to
interpret since the choice of T remains essentially arbitrary. Two examples are
(a) the percentage reduction in error, where the percentage reduction in error
of one algorithm over another is averaged over the whole learning curve [3, 4]
and (b) the average number of times one algorithm is significantly better than
the other during an arbitrary initial number of queries, which was used in [5].
Another metric is the data utilisation ratio used in [5, 4, 6], which is the amount
of data required to reach some specific error rate. Note that the selection of the
appropriate error rate is essentially arbitrary; in both cases the concept of the
target error rate is utilised, which is the average test error when almost all the
training set has been used.

Our setting is more straightforward, since we can use (1) as the basis for
a performance measure. Note that we are not strictly interested in comparing
hypotheses f , but algorithms F . In particular, we can calculate the expected
cost given a learning algorithm F and an associated stopping algorithm QF (γ),
which is used to select the stopping time T . From this follows that the expected
cost of F when coupled with QF (γ) is

ve(γ, F,QF ) ≡ E[Cγ |F,QF (γ)] =
∑

t

(E[R|f(t)] + γt)P[T = t | F,QF (γ)] (2)

By keeping one of the algorithms fixed, we can vary the other in order to
obtain objective estimates of their performance difference. In addition, we may
want to calculate the expected performance of algorithms for a range of values



of γ, rather than a single value, in a manner similar to what [7] proposed as an
alternative to ROC curves. This will require a stopping method QF (γ) which
will ideally stop querying at a point that minimises E(Cγ).

The stopping problem is not usually mentioned in the active learning liter-
ature and there are only a few cases where it is explicitly considered. One such
case is [2], where it is suggested to stop querying when no example lies within
the SVM margin. The method is used indirectly in [8], where if this event oc-
curs the algorithm tests the current hypothesis1, queries labels for a new set of
unlabelled examples2 and finally stops if the error measured there is below a
given threshold; similarly, [9] introduced a bounds-based stopping criterion that
relies on an allowed error rate. These are reasonable methods, but there exists
no formal way of incorporating the cost function considered here within them.
For our purpose we need to calculate the expected reduction in classification
error when querying new examples and compare it with the labelling cost. This
fits nicely within the statistical framework of optimal stopping problems.

2 Stopping Algorithms

An optimal stopping problem under uncertainty is generally formulated as fol-
lows. At each point in time t, the experimenter needs to make a decision a ∈ A,
for which there is a loss function L(a|w) defined for all w ∈ Ω, where Ω is the
set of all possible universes. The experimenter’s uncertainty about which w ∈ Ω
is true is expressed via the distribution P(w|ξt), where ξt represents his belief
at time t. The Bayes risk of taking an action at time t can then be written as
ρ0(ξt) = mina

∑

w L(a,w)P(w|ξt). Now, consider that instead of making an im-
mediate decision, he has the opportunity to take k more observations Dk from
a sample space Sk, at a cost of γ per observation, thus allowing him to update
his belief to P(w|ξt+k) ≡ P(w|Dk, ξt). What the experimenter must do in order
to choose between immediately making a decision a and continuing sampling, is
to compare the risk of making a decision now with the cost of making k obser-
vations plus the risk of making a decision after k timesteps, when the extra data
would enable a more informed choice. In other words, one should stop and make
an immediate decision if the following holds for all k:

ρ0(ξt) ≤ γk +

∫

Sk

p(Dk =s|ξt)min
a

[

∑

w

L(a,w)P(w|Dk =s, ξt)

]

ds. (3)

We can use the same formalism in our setting. In one respect, the problem is
simpler, as the only decision to be made is when to stop and then we just use
the currently obtained hypothesis. The difficulty lies in estimating the expected
error. Unfortunately, the metrics used in active learning methods for selecting

1 i.e. a classifier for a classification task
2 Though this is not really an i.i.d. sample from the original distribution except when
|D| − t is large.



new examples (see [5] for a review) do not generally include calculations of the
expected performance gain due to querying additional examples.

There are two possibilities for estimating this performance gain. The first is
an algorithm-independent method, described in detail in Sec. 2.1, which uses a
set of convergence curves, arising from theoretical convergence properties. We
employ a Bayesian framework to infer the probability of each convergence curve
through observations of the error on the next randomly chosen example to be
labelled. The second method, outlined in Sec. 4, relies upon a classifier with a
probabilistic expression of its uncertainty about the class of unlabelled examples,
but is much more computationally expensive.

2.1 When no Model is Perfect: Bayesian Model Selection

The presented Bayesian formalism for optimal sequential decisions follows [10].
We require maintaining a belief ξt in the form of a probability distribution over
the set of possible universes w ∈ Ω. Furthermore, we require the existence of
a well-defined cost for each w. Then we can write the Bayes risk as in the left
side of (3), but ignoring the minimisation over A as there is only one possible
decision to be made after stopping,

ρ0(ξt) = E(Rt | ξt) =
∑

w∈Ω

E(Rt | w)P(w | ξt), (4)

which can be extended to continuous measures without difficulty. We will write
the expected risk according to our belief at time t for the optimal procedure
taking at most k more samples as

ρk+1(ξt) = min {ρ0(ξt),E[ρk(ξt+1) | ξt] + γ} . (5)

This implies that at any point in time t, we should ignore the cost for the t
samples we have paid for and are only interested in whether we should take
additional samples. The general form of the stopping algorithm is defined in
Alg. 1. Note that the horizon K is a necessary restriction for computability. A
larger value of K leads to potentially better decisions, as when K → ∞, the
bounded horizon optimal decision approaches that of the optimal decision in the
unbounded horizon setting, as shown for example in Chapter 12 of [10]. Even
with finite K > 1, however, the computational complexity is considerable, since
we will have to additionally keep track of how our future beliefs P(w | ξt+k) will
evolve for all k ≤ K.

2.2 The OBSV Algorithm

In this paper we consider a specific one-step bounded stopping algorithm that
uses independent validation examples for observing the empirical error estimate
rt, which we dub OBSV and is shown in detail in Alg. 2. The algorithm considers
hypotheses w ∈ Ω which model how the generalisation error rt of the learning



Algorithm 1 A general bounded stopping algorithm using Bayesian inference.

Given a dataset D and any learning algorithm F , an initial belief P(w | ξ0) and
a method for updating it, and additionally a known query cost γ, and a horizon
K,

1: for t = 1, 2, . . . do

2: Use F to query a new example i ∈ D and obtain f(t).
3: Observe the empirical error estimate vt for f(t).
4: Calculate P(w | ξt) = P(w | vt, ξt−1)
5: if @ k ∈ [1, K] : ρk(ξt) < ρ0(ξt) then

6: Exit.
7: end if

8: end for

algorithm changes with time. We assume that the initial error is r0 and that the
algorithm always converges to some unknown r∞ ≡ limt→∞ rt. Furthermore, we
need some observations vt that will allow us to update our beliefs over Ω. The
remainder of this section discusses the algorithm in more detail.

Steps 1-5, 11-12. Initialisation and Observations We begin by splitting
the training set D in two parts: DA, which will be sampled without replacement
by the active learning algorithm (if there is one) and DR, which will be uniformly

sampled without replacement. This condition is necessary in order to obtain i.i.d.
samples for the inference procedure outlined in the next section. However, if we
only sample randomly, and we are not using an active learning algorithm then
we do not need to split the data and we can set DA = ∅.

At each timestep t, we will use a sample from DR to update p(w). If we then
expect to reduce our future error sufficiently, we will query an example from
DA using F and subsequently update the classifier f with both examples. Thus,
not only are the observations used for inference independent and identically
distributed, but we are also able to use them to update the classifier f .

Step 6. Updating the Belief We model the learning algorithm as a process
which asymptotically converges from an initial error r0 to the unknown final
error r∞. Each model w will be a convergence estimate, a model of how the
error converges from the initial to the final error rate. More precisely, each w
corresponds to a function hw : N → [0, 1] that models how close we are to
convergence at time t. The predicted error at time t according to w, given the
initial error r0 and the final error r∞, will be

gw(t | r0, r∞) = r0hw(t) + r∞[1 − hw(t)]. (6)

We find it reasonable to assume that p(w, r0, r∞) = p(w)p(r0)p(r∞), i.e. that
the convergence rates do not depend upon the initial and final errors.

We may now use these predictions together with some observations to update
p(w, r∞|ξ). More specifically, if P[rt = gw(t | r0, r∞) | r0, r∞, w] = 1 and we take



mt independent observations zt = (zt(1), zt(2), . . . , zt(mt)) of the error with
mean vt, the likelihood will be given by the Bernoulli density

p(zt | w, r0, r∞) =
(

gw(t | r0, r∞)vt [1 − gw(t | r0, r∞)]1−vt

)mt

. (7)

Then it is simple to obtain a posterior density for both w and r∞,

p(w | zt) =
p(w)

p(zt)

∫ 1

0

p(zt | w, r0, r∞ = u) p(r∞ = u | w) du (8a)

p(r∞ | zt) =
p(r∞)

p(zt)

∫

Ω

p(zt | w, r0, r∞) p(w | r∞) dw. (8b)

Starting with a prior distribution p(w | ξ0) and p(r∞ | ξ0), we may sequen-
tially update our belief using (8) as follows:

p(w | ξt+1) ≡ p(w | zt, ξt) (9a)

p(r∞ | ξt+1) ≡ p(r∞ | zt, ξt). (9b)

The realised convergence for a particular training data set may differ sub-
stantially from the expected convergence: the average convergence curve will be
smooth, while any specific instantiation of it will not be. More formally, the re-

alised error given a specific training dataset is qt ≡ E[Rt | Dt], where Dt ∼ Dt,
while the expected error given the data distribution is rt ≡ E[Rt] =

∫

St E[Rt |
Dt]P(Dt) dDt. The smooth convergence curves that we model would then cor-
respond to models for rt.

Fortunately, in our case we can estimate a distribution over rt without having
to also estimate a distribution for qt, as this is integrated out for observations
z ∈ {0, 1}

p(z | qt) = qz
t (1 − qt)

1−z (10a)

p(z | rt) =

∫ 1

0

p(z | qt)p(qt = u | rt) du = rz
t (1 − rt)

1−z. (10b)

Step 5. Deciding whether to Stop We may now use the distribution over
the models to predict the error should we choose to add k more examples. This
is simply

E[Rt+k | ξt] =

∫ 1

0

∫

Ω

gw(t + k | r0, r∞)p(w | ξt)p(r∞ | ξt) dw dr∞.

The calculation required for step 8 of OBSV follows trivially.

Specifics of the Model What remains unspecified is the set of convergence
curves that will be employed. We shall make use of curves related to common
theoretical convergence results. It is worthwhile to keep in mind that we simply



Algorithm 2 OBSV, a specific instantiation of the bounded stopping algorithm.

Given a dataset D with examples in Nc classes and any learning algorithm F , initial
beliefs P(w | ξ0) and P(r∞ | ξ0) and a method for updating them, and additionally
a known query cost γ for discovering the class label yi ∈ [1, . . . , n] of example i ∈
D,

1: Split D into DA, DR.
2: r0 = 1− 1/Nc.
3: Initialise the classifier f .
4: for t = 1, 2, . . . do

5: Sample i ∈ DR without replacement and observe f(xi), yi to calculate vt.
6: Calculate P(w, r∞ | ξt) ≡ P(w, r∞ | vt, ξt−1).
7: If DA 6= ∅, set k = 2, otherwise k = 1.
8: if E[Rt+k | ξt] + kγ < E[Rt | ξt] then

9: Exit.
10: end if

11: If DA 6= ∅, use F to query a new example j ∈ DA without replacement, DT ←
DT ∪ j.

12: DT ← DT ∪ i, f ← F (DT ).
13: end for

aim to find the combination of the available estimates that gives the best pre-
dictions. While none of the estimates might be particularly accurate, we expect
to obtain reasonable stopping times when they are optimally combined in the
manner described in the previous section. Ultimately, we expect to end up with
a fairly narrow distribution over the possible convergence curves.

One of the weakest convergence results [11] is for sample complexity of order
O(1/ε2t ), which corresponds to the convergence curve

hq(t) =

√

κ

t + κ
, κ ≥ 1 (11)

Another common type is for sample complexity of order O(1/εt), which corre-
sponds to the curve

hg(t) =
λ

t + λ
, λ ≥ 1 (12)

A final possibility is that the error decreases exponentially fast. This is the-
oretically possible in some cases, as was proven in [9]. The resulting sample
complexity of order O(log(1/εt)) corresponds to the convergence curve

hexp(t) = βt, β ∈ (0, 1). (13)

Since we do not know what appropriate values of the constants β, λ and κ,
are, we will model this uncertainty as an additional distribution over them, i.e.
p(β | ξt). This would be updated together with the rest of our belief distribution
and could be done in some cases analytically. In this paper however we consider
approximating the continuous densities by a sufficiently large set of models, one
for each possible value of the unknown constants.
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Fig. 1. Illustration of the estimated error on a 10-class problem with a cost per label
of γ = 0.001. On the vertical axis, rt is the history of the predicted generalisation
error, i.e E[rt | ξt−1], while Rt is the generalisation error measured on a test-set
of size 10,000 and Ct is the corresponding actual cost. Finally, Rw and E[Ct] are the
final estimated convergence and cost curves given all the observations. The stopping
time is indicated by S, which equals 0.5 whenever Alg. 2 decides to stop and t is the
number of iterations.

As a simple illustration, we examined the performance of the estimation and
the stopping criterion in a simple classification problem with data of 10 classes,
each with an equivariant Gaussian distribution in an 8-dimensional space. Each
unknown point was simply classified as having the label closest to the empirical
mean of the observations for each class. Examples were always chosen randomly.

As can be seen in Fig. 1, at the initial stages the estimates are inaccurate.
This is because of two reasons: (a) The distribution over convergence rates is
initially dominated by the prior. As more data is accumulated, there is better
evidence for what the final error will be. (b) As we mentioned in the discus-
sion of step 6, the realised convergence curve is much more random than the
expected convergence curve which is actually modelled. However, as the number
of examples approaches infinity, the expected and realised errors converge. The
stopping time for Alg. 2 (indicated by S) is nevertheless relatively close to the
optimal stopping time, as Ct appears to be minimised near 200. The following
section presents a more extensive evaluation of this stopping algorithm.



3 Experimental Evaluation

The main purpose of this section is to evaluate the performance of the OBSV
stopping algorithm. This is done by examining its cost and stopping time when
compared to the optimal stopping time. Another aim of the experimental evalu-
ation was to see whether mixed sampling strategies have an advantage compared
to random sampling strategies with respect to the cost, when the stopping time
is decided using a stopping algorithm that takes into account the labelling cost.
Following [7], we plot performance curves for a range of values of γ, utilising
multiple runs of cross-validation in order to assess the sensitivity of the results
to the data. For each run, we split the data into a training set D and test set DE ,
the training set itself being split into random and mixed sampling sets whenever
appropriate.

More specifically, we compare the OBSV algorithm with the oracle stopping
time. The latter is defined simply as the stopping time minimising the cost as this
is measured on the independent test set for that particular run. We also compare
random sampling with mixed sampling. In random sampling, we simply query
unlabelled examples without replacement. For the mixed sampling procedure, we
actively query an additional label for the example from DA closest to the decision
boundary of the current classifier, also without replacement. This strategy relies
on the assumption that those labels are most informative [6], [4], [5] and thus
convergence will be faster. Stopping times and cost ratio curves are shown for
a set of γ values, for costs as defined in (2). These values of γ are also used as
input to the stopping algorithm. The ratios are used both to compare stopping
algorithms (OBSV versus the oracle) and sampling strategies (random sampling,
where DA = ∅, and mixed sampling, with |DA| = |DR|). Average test error
curves are also plotted for reference.

For the experiments we used two data sets from the UCI repository3: the
Wisconsin breast cancer data set (wdbc) with 569 examples and the spambase
database (spam) with 4601 examples. We evaluated wdbc and spam using 5 and
3 randomised runs of 3-fold stratified cross-validation respectively. The classifier
used was AdaBoost [12] with 100 decision stumps as base hypotheses. Hence we
obtain a total of 15 runs for wdbc and 9 for spam. We ran experiments for values
of γ ∈ {9 · 10−k, 8 · 10−k, . . . , 1 · 10−k}, with k = 1, . . . , 7, and γ = 0. For every
algorithm and each value of γ we obtain a different stopping time tγ for each
run. We then calculate ve(γ, F, tγ) as given in (2) on the corresponding test set
of the run. By examining the averages and extreme values over all runs we are
able to estimate the sensitivity of the results to the data.

The results comparing the oracle with OBSV for the random sampling strat-
egy4 are shown in Fig. 2. In Fig. 2(a), 2(b) it can be seen that the stopping times
of OBSV and the oracle increase at a similar rate. However, although OBSV is
reasonably close, on average it regularly stops earlier. This may be due to a num-
ber of reasons. For example, due to the prior, OBSV stops immediately when

3 http://mlearn.ics.uci.edu/MLRepository.html
4 The corresponding average test errors can be seen in Fig. 4(a), 4(b).



γ > 3 · 10−2. At the other extreme, when γ → 0 the cost becomes the test er-
ror and therefore the oracle always stops at latest at the minimum test error5.
This is due to the stochastic nature of the realised error curve, which cannot
be modelled; there, the perfect information that the oracle enjoys accounts for
most of the performance difference. As shown in Fig. 2(c), 2(d), the extra cost
induced by using OBSV instead of the oracle is bounded from above for most of
the runs by factors of 2 to 5 for wdbc and around 0.5 for spam. The rather higher
difference on wdbc is partially a result of the small dataset. Since we can only
measure an error in quanta of 1/|DE |, any actual performance gain lower than
this will be unobservable. This explains why the number of examples queried by
the oracle becomes constant for a value of γ smaller than this threshold. Finally,
this fact also partially explains the greater variation of the oracle’s stopping
time in the smaller dataset. We expect that with larger test sets, the oracle’s
behaviour would be smoother.

The corresponding comparison for the mixed sampling strategies is shown
in Fig. 4(a), 4(b). We again observe the stopping times to increase at a similar
rate, and OBSV to stop earlier on average than the oracle for most values of γ
(Fig. 3(a), 3(b)). Note that the oracle selects the minimum test error at around
180 labels from wdbc and 1300 labels from spam, which for both data sets is only
about a half of the number of labels the random strategy needs. OBSV tracks
these stopping times closely. Over all, the fact that in both mixed and random
sampling, the stopping times of OBSV and the oracle are usually well within the
extreme value ranges, indicates a satisfactory performance.

Finally we compare the two sampling strategies directly as shown in Fig. 4,
using the practical OBSV algorithm. As one might expect from the fact that
the mixed strategy converges faster to a low error level, OBSV stops earlier
or around the same time using the mixed strategy than it does for the random
(Fig. 4(c), 4(d)). Those two facts together indicate that OBSV works as intended,
since it stops earlier when convergence is faster. The results also show that when
using OBSV as a stopping criterion mixed sampling is equal to or better than
random sampling [Fig. 4(e), 4(f)]. However the differences are mostly not very
significant.

4 Discussion

This paper discussed the interplay between a well-defined cost function, stopping
algorithms and objective evaluation criteria and their relation to active learning.
Specifically, we have argued that (a) learning when labels are costly is essentially
a stopping problem (b) it is possible to use optimal stopping procedures based
on a suitable cost function (c) the goal of active learning algorithms could also
be represented by this cost function, (d) metrics on this cost function should be
used to evaluate performance and finally that, (e) the stopping problem cannot
be separately considered from either the cost function or the evaluation. To our
current knowledge, these issues have not yet been sufficiently addressed.

5 This is obtained after about 260 labels on wdbc and 2400 labels on spam
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Fig. 2. Results for random sampling on the wdbc (left column) and the spam data
(right column) as obtained from the 15 (wdbc) and 9 (spam) runs of AdaBoost with 100
decision stumps. The first row (a), (b), plots the average stopping times from OBSV
and the oracle as a function of the labelling cost γ. For each γ the extreme values
from all runs are denoted by the dashed lines. The second row, (c), (d), shows the
corresponding average ratio in ve over all runs between OBSV and the oracle, where
for each γ the 3rd (wdbc) / 2nd (spam) extreme values from all runs are denoted by
the dashed lines. Note a zero value on a logarithmic scale is denoted by a cross or by
a triangle. Note for wdbc and smaller values of γ the average ratio in ve sometimes
exceeds the denoted extreme values due to a zero test error occurred in one run.

For this reason, we have proposed a suitable cost function and presented a
practical stopping algorithm which aims to be optimal with respect to this cost.
Experiments with this algorithm for a specific prior show that it suffers only
small loss compared to the optimal stopping time and is certainly a step forward
from ad-hoc stopping rules.

On the other hand, while the presented stopping algorithm is an adequate
first step, its combination with active learning is not perfectly straightforward
since the balance between active and uniform sampling is a hyperparameter
which is not obvious how to set.6 An alternative is to use model-specific stopping
methods. This could be done if we restrict ourselves to probabilistic classifiers, as
for example in [1]; in this way we may be able to simultaneously perform optimal
example selection and stopping. If such a classifier is not available for the problem

6 In this paper, the active and uniform sampling rates were equal.
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Fig. 3. Results for mixed sampling on the wdbc (left column) and the spam data
(right column) as obtained from the 15 (wdbc) and 9 (spam) runs of AdaBoost with 100
decision stumps. The first row (a), (b), plots the average stopping times from OBSV
and the oracle as a function of the labelling cost γ. For each γ the extreme values
from all runs are denoted by the dashed lines. The second row, (c), (d), shows the
corresponding average ratio in ve over all runs between OBSV and the oracle, where
for each γ the 3rd (wdbc) / 2nd (spam) extreme values from all runs are denoted by the
dashed lines. Note a zero value on a logarithmic scale is denoted by a cross.

at hand, then judicious use of frequentist techniques such as bootstrapping [13]
may provide a sufficiently good alternative for estimating probabilities. Such an
approach was advocated by [14] in order to optimally select examples; however
in our case we could extend this to optimal stopping. Briefly, this can be done
as follows. Let our belief at time t be ξt, such that for any point x ∈ X , we have
a distribution over Y, P(y | x, ξt). We may now calculate this over the whole
dataset to estimate the realised generalisation error as the expected error given

the empirical data distribution and our classifier

ED(vt | ξt) =
1

|D|

∑

i∈D

[1 − arg max
y

P(yi = y | xi, ξt)]. (14)

We can now calculate (14) for each one of the different possible labels. So we
calculate the expected error on the empirical data distribution if we create a new



classifier from ξt by adding example i as

ED(vt | xi, ξt) =
∑

y∈Y

P(yi = y | xi, ξt)ED(vt | xi, yi = y, ξt) (15)

Note that P(yi = y | xi, ξt) is just the probability of example i having label y ac-
cording to our current belief, ξt. Furthermore, ED(vt | xi, yi = y, ξt) results from
calculating (14) using the classifier resulting from ξt and the added example i
with label y. Then ED(vt, ξt)−ED(vt | xi, ξt) will be the expected gain from us-
ing i to train. The (subjectively) optimal 1-step stopping algorithm is as follows:
Let i∗ = arg mini ED(vt | xi, ξt). Stop if ED(vt | ξt) − ED(vt | xi∗ , ξt) < γ.

A particular difficulty in the presented framework, and to some extent also
in the field of active learning, is the choice of hyperparameters for the classifiers
themselves. For Bayesian models it is possible to select those that maximise
the marginal likelihood.7 One could alternatively maintain a set of models with
different hyperparameter choices and separate convergence estimates. In that
case, training would stop when there were no models for which the expected gain
was larger than the cost of acquiring another label. Even this strategy, however,
is problematic in the active learning framework, where each model may choose to
query a different example’s label. Thus, the question of hyperparameter selection
remains open and we hope to address it in future work.

On another note, we hope that the presented exposition will at the very
least increase awareness of optimal stopping and evaluation issues in the active
learning community, lead to commonly agreed standards for the evaluation of
active learning algorithms, or even encourage the development of example se-
lection methods incorporating the notions of optimality suggested in this paper.
Perhaps the most interesting result for active learning practitioners is the very
narrow advantage of mixed sampling when a realistic algorithm is used for the
stopping times. While this might only have been an artifact of the particular
combinations of stopping and sampling algorithm and the datasets used, we
believe that it is a matter which should be given some further attention.
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7 Other approaches require the use of techniques such as cross-validation, which creates
further complications.
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Fig. 4. Results comparing random (RAND) and mixed (MIX) sampling on the wdbc

(left column) and the spam data (right column) as obtained from the 15 (wdbc) and
9 (spam) runs of AdaBoost with 100 decision stumps. The first row (a), (b), shows
the test error of each sampling strategy averaged over all runs. The second row (a),
(b), plots the average stopping times from OBSV and the oracle as a function of the
labelling cost γ. For each γ the extreme values from all runs are denoted by the dashed
lines. The third row, (c), (d), shows the corresponding average ratio in ve over all runs
between OBSV and the oracle, where for each γ the 3rd (wdbc) / 2nd (spam) extreme
values from all runs are denoted by the dashed lines. Note a zero value on a logarithmic
scale is denoted by a cross.
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