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Abstract

This paper presents a simple method for exact online inference and
approximate decision making, applicable to large or partially observable
Markov decision processes. The approach is based on a closed form
Bayesian inference procedure for a class of context models which con-
tains variable order Markov decision processes. The models can be used
for prediction, and thus for decision theoretic planning. The other novel
step of this paper is to use the belief (context distribution) at any given
time as a compact representation of system state, in a manner similar to
predictive state representations. Since the belief update is linear time in
the worst case, this allows for computationally efficient value iteration and
reactive learning algorithms such as Q-learning for this class of models.

1 Introduction

We consider estimation of a class of context models that can approximate ei-
ther large or partially observable Markov decision processes (MDPs). This is
closely related to the context tree weighting algorithm (CTW) for discrete se-
quence prediction (Willems et al., 1995). We present a constructive definition
of a context process, extending the one proposed in (Dimitrakakis, 2010) to the
estimation of variable order MDPs. With a suitable choice of context structure,
the construction is applicable to large or continuous MDPs as well. We intro-
duce two simple algorithms, the weighted context value iteration and weighted
context Q-learning, for decision making in unknown environments with contin-
uous or partially observable state. Finally, we provide preliminary experimental
results on the predictive, state representation and decision making capabilities
of the methods.

We consider discrete-time decision problems in unknown environments, with
a known set of actions A chosen by the decision maker, and a set of observations
Z drawn from some unknown process µ, to be made precise later. At each time
step t ∈ N, the decision maker observes zt ∈ Z, selects an action at ∈ A and
receives a reward rt ∈ R.
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The environment µ is a (partially observable)Markov decision process ((PO)MDP)
with state st ∈ S. The process is defined by the following conditional distribu-
tions: the set of transition and reward distributions

Tµ , {Pµ(st+1 | st = i, at = j) : i ∈ S, j ∈ A}

and
Rµ , {Pµ(rt+1 | st = i, at = j) : i ∈ S, j ∈ A} .

For POMDPs, observations zt are sampled from Oi,j
µ , Pµ(zt+1 | st = i, at = j),

while for MDPs, Z = S and zt = i iff st = i.
The decision maker has a policy π for choosing actions, which indexes a set of

probability measures on actions. Jointly π and µ index a set of probability mea-
sures Pµ,π(zt+1, st+1, rt+1, at | st) on actions, states, rewards and observations.
The agents goals are expressed in terms of the agent’s utility function:

Ut ,

T−t
∑

k=1

γkrt+k, (utility)

where γ ∈ [0, 1] is a discount factor and T is a reward horizon.
The decision maker is usually uncertain about the true MDP µ. We adopt

a subjective decision-theoretic viewpoint (DeGroot, 1970) and assume a set M
of MDPs contains µ, then define a prior probability measure ξ0 on (M,BM),
such that for any M ∈ BM:

ξt+1(M) , ξt(M | zt+1, rt+1, at, zt) (1)

is defined for all t and sequences of st, at, rt. We now must find a policy π
maximising the expected utility under our current belief ξt.

Eξt,π Ut =

∫

M

Eµ,π(Ut)ξt(µ) dµ, (2)

The decision problem can be seen as an MDP whose state space is the
product of S and the set of probability measures on (M,BM). However, since
there is an infinite number of beliefs, approximations are required even under full
observability (Duff, 2002; Wang et al., 2005; Dimitrakakis, 2009). Nevertheless,
such methods are also extensible to the partially observable case (Veness et al.,
2009; Ross et al., 2008).

When dealing with large or partially observable MDPs, even (1) is not closed-
form. Section 2 extends a specific formulation of variable order Markov model
estimation (Dimitrakakis, 2010) to variable order or large MDPs. Section 3
discusses decision-theoretic planning and derives a value iteration (WCVI) and
a Q-learning algorithm (WCQL) for the model, that utilise the context distri-
bution as a representation of system state. Related work is discussed in Sec. 4.
Section 5 experimentally shows that the context model not only can provide
accurate predictions, but that the internal state of the process closely tracks
the state of the system, even though no explicit state estimation is being per-
formed. Experiments with the extremely simple WCQL algorithm demonstrate
the effectiveness of the model for online decision making in unknown POMDPs.
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2 Inference for context MDPs

Context models enable closed-form inference for either discrete variable order
MDPs or for continuous MDPs. This is done by constructing a context tree,
such that for each history xt = (xk)

t
k=1, there exists a set of contexts forming

a chain on the tree. We can then perform a walk which starts at the deepest
context, stops with probability wt

k on the k-th node of the chain (and always
stops at the root node) and generates an observation from the corresponding
model.

More precisely, let X , Z ×A be the action-observation product space, let
X ∗ =

⋃∞

k=0 X
k be the set of all possible histories. Finally, let F be a σ-algebra

on X ∗ and the context set F , F∗ be the set of all sequences of elements in
F . Consider a function C : X ∗ → F , mapping any history xt into a sequence
of contexts ct = C(xt), such that: (a) ct has at most t elments for any t, i.e.
if x ∈ X t, C(x) ∈ F t. (b) C induces a tree, i.e. if x, x′ ∈ X ∗ are such that
Ck(x) = Ck(x

′) then Ck−1(x) = Ck−1(x
′). Each context ctk ∈ F is associated to

a sequence of probability measures:

φtk(zt+1 ∈ Z) = P(zt+1 ∈ Z | ctk, x
t), (3)

defined on some appropriate σ-algebra on Z. We wish to perform online esti-
mation of the marginal predictive distribution:

P(zt+1 | xt) =
∑

k

φtk(zt+1)P(c
t
k | xt). (4)

For a given xt, let Bk denote the event that the next observation will be gener-
ated by one of the contexts in {ct1, . . . , c

t
k}. Then it holds that:

P(zt+1|Bk, x
t) = φtk(zt+1)w

t
k + P(zt+1|Bk−1, x

t)(1− wt
k), (5)

where the weight
wt

k , P(ctk | xt, Bk), (6)

is a stopping probability. To perform inference, we only need to update φ
and the weights. The former depends on the details of the model at each
context. The weights can be updated via a simple recursive procedure, shown
in Theorem 1. In general xt is a concatenation of observation-action pairs, i.e.
(zk, ak) ◦ (zk+1, ak+1). The main question is what the context structure should
be.

Example 1 (MVMDP). If, for any sequence xt ∈ X ∗, ct = C(xt) is such that
ctk+1 ⊂ ck, then the random walk starts from the smallest matching context. If
in addition, X is discrete, the contexts correspond to suffixes of X ∗ and we use
Dirichlet-multinomial models at each context, then we obtain a mixture of vari-
able order Markov decision processes (MVMDP). To see this, consider replacing
each weight w with a sampled value ŵ such that P(ŵ = 1) = 1− P(ŵ = 0) = w.
The resulting model is a VMDP.
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Example 2 (CMDP). One may alternatively consider fully observable but large
spaces. Let us restrict F to an algebra generated by some subsets of X . Let
X(xt) , {c ∈ F : xt ∈ c}, and let C(xt) = (ctk : k = 1, . . .) be such that ck ∈
X(xt) and ctk+1 ⊂ ctk for all k. Now C defines a chain of contexts for each
observation, where each deeper context is a smaller subset of X .1 The result-
ing model is a context MDP (CMDP). Since in many reinforcement learning
problems A is discrete, the main difficulty is how to partition the state space S.
However, once this (admittedly hard) obstacle has been overcome, perhaps with
some heuristics, it is straightforward to update conditional probabilities in the
same manner as for discrete, partially observable problems. We, however, are
not tackling this problem explicitly in this paper.

2.1 Recursive Bayesian inference

We now derive a closed-form recursion for updating the parameters. We use
a superscript t to denote the value of parameters at time t. Thus wt

k and φtk
will denote the weights and the marginal predictive distribution of the k-th
context at time t respectively. Using (5), we can write the marginal predictive
distribution (4) at time t, in terms of wt

k as:

P(zt+1 = j|xt) =

t
∑

k=1

φtk(zt+1 = j)wt
k

t
∏

n=k+1

(1− wt
n).

If there are only n < t contexts in C(xt), then we set wt
k = 0 for all k > n. The

following theorem, which is analogous to Th. 1 in (Dimitrakakis, 2010), gives a
closed-form procedure for updating wt

k:

Theorem 1. The weight parameters wt
k can be updated according to:

wt+1
k = P(ctk|x1:t+1, Bk) =

φtk(zt+1)w
t
k

φtk(zt+1)wt
k + P(zt+1|xt, Bk−1)(1− wt

k)

where k indexes the active contexts C(xt).

Proof. First of all, note that Bt is trivially true at time t, since there are at
most t contexts in C(xt). For Bk with k < t, it is easy to see that the following
recursions hold:

P(Bk−1|x
t) = P(Bk|x

t)(1− wt
k) (7a)

P(zt+1|x
t, Bk) = φk(zt+1)w

t
k + P(zt+1|x

t, Bk−1)(1− wt
k), (7b)

where we used (6) and that P(zt+1 | ctk, x
t, Bk) = P(zt+1 | ctk, x

t) = φtk(zt+1),
as given the k-th context, the next observations do not depend on previous

1This is different from simply discretising the space and using VMDP estimation.
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contexts. Using (6), (7) and Bayes’ theorem, we have:

wt+1
k =

P(zt+1|c
t
k, x

t, Bk)P(c
t
k|x

t, Bk)

P(zt+1|ctk, x
t, Bk)wt

k + P(zt+1|xt, Bk−1)(1− wt
k)

=
φtk(zt+1)w

t
k

φtk(zt+1)wt
k + P(zt+1|xt, Bk−1)(1− wt

k)
.

Example 3. For the MVMDP and discrete Z,A, we use an n-ary (with n =
|Z × A|) tree of suffixes on observation-action histories to generate the con-
texts and Dirichlet-multinomial models for φ to predict next observations. We
use αt

i , (αt
i,j)

K
j=1 to denote the vector of Dirichlet parameters for context

i, at time t. The corresponding marginal probability distribution is given by:
φti(zt+1 = k) = αt

i,k/
∑K

j=1 α
t
i,j, for all k ∈ {1, . . . , Z}. Given a sequence xt, the

parameters each context ci are α
T
i,k = α0

i,k +
∑T

t=1 I {ci ≺ xt ∧ zt+1 = k}, where

{α0
i,k} is a set of non-negative prior parameters. In addition, each context can

include a model for the reward distribution.

Example 4. For the CMDP and continuous Z, we consider a partition tree. In
some cases this can be chosen a priori. For instance if Z = [0, 1]n, a n-ary tree
of cubes forms a “natural” partition tree. In other cases, dynamically created
structure such as cover trees (Beygelzimer et al., 2006) may be useful. The final
question concerns the class of models used for φ. Naively, one would have to do
density estimation at each context, but we do not deal with this problem in this
paper.

3 Action selection

Example 3 mentioned in passing that one could incorporate a reward model. To
do this, we shall simply add a reward distribution P(rt+1 | c) to each context
c ∈ F .2 In the following discussion, we shall assume that we wish to take actions
maximising the expectation of the utility Ut (defined in p. 2). In our model, we
maintain a distribution P(·|xt) over contexts and parameters, with respect to
which this expectation is calculated. It follows by elementary probability, that
the expected utility can be written in terms of the utility of each context:

E(Ut | x
t) =

∑

c

E(Ut | c, x
t)P(c | xt). (8)

We now define Qt(c) , E(Ut | c, x
t), which can be expanded as:

Qt(c) = E(rt+1 | c, xt) + γ
∑

zt+1

P(zt+1 | c, xt)max
at+1

E(Ut+1 | at+1, zt+1, x
t). (9)

2In this section we omit context and weight subscripts to simplify the exposition, unless
necessary.
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The context value function (9) supplies a method to select the optimal (in
a decision-theoretic sense) action and is the analogue of (2). The solution,
however, requires, as in the standard MDP case, the creation of an augmented
Markov decision process. This will take the form of a (pseudo) tree, whose
every node corresponds to a particular history, rewards and actions and a set
of model parameters. Since ususally the horizon T is too large to employ a full
look-ahead, it becomes necessary to only partially construct this tree, via full
expansion to a certain depth (Duff, 2002), sparse sampling (Wang et al., 2005),
Monte Carlo tree search (Veness et al., 2009), or stochastic branch and bound
methods (Dimitrakakis, 2009) and then approximate the value of each node. In
this paper, we shall only look at methods for approximating the values of nodes
by fixing the context parameters.

3.1 Approximate methods

Given xt, we fix the context predictions to φ̂ = φt, so that for any k > 0 and
x ∈ X ∗, P(zt+k, rt+k | c,x) = P(zt+k, rt+k | c) = φ̂(zt+k, rt+k), while we fix
the context weights to ŵ = wt, thus also fixing the conditional distribution
over contexts to P̂(c | x).3 Substituting the above in (8), we obtain a weighted
context value iteration procedure (WCVI):

Q̂t(c) , E(rt+1|c) + γ
∑

zt+1

P̂(zt+1|c)max
at+1

∑

c
′

P̂(c′|xt, at+1, zt+1)Q̂t+1(c
′). (10)

This immediately defines a value iteration procedure, since were are only up-
dating the Qt. If, for all xt, there is some a unique c such that P̂(c | xt) = 1,
then this procedure becomes similar to the one proposed by McCallum (1995)
for suffix trees. A weighted context Q-learning procedure (WCQL) can be ob-
tained through stochastic gradient descent on the squared temporal-diffence
error, shown in Algorithm 1. This leads to an extremely simple method for

Algorithm 1 Weighted context Q-learning with stochastic steepest gradient
descent

1: WCQL(F , ŵ, xt, rt+1, zt+1, Q̂t, η)
2: for c ≺ xt do
3: ζ := P̂(c | xt).

4: Ũt := rt+1 + γmaxa
∑

c
′ Q̂t(c

′)P̂ [c′ | xt ◦ (zt+1, a)]

5: Q̂t+1(c) = Q̂t(c) + ηζ
(

Ũt − Q̂t(c)
)

6: end for

acting in an unknown POMDP. The set of active contexts and their probabities
P(c | xt) are always available due to the inference process, and thus the value
function update only increases computation time by a constant factor.

3We are only fixing the parameters, so we still obtain a different context distribution for
different x.
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4 Related models

The variable order Markov decision process presented in this paper is a direct
extension of the Bayesian variable order Markov model (BVMM) introduced
in (Dimitrakakis, 2010), and which used a similar closed-form recursive update
rule with complexity O (t) at each step t, and thus O

(

T 2
)

for sequences of
length T . This model is most closely related to context tree weighting Willems
et al. (1995) and other methods for learning variable order Markov models (sur-
veyed in Begleiter et al., 2004). Related methods include the infinite Markov
model (IMM), introduced in (Mochihashi and Sumita, 2008), as well as the
stochastic memoizer (Wood et al., 2009), both of which employ sampling. The
IMM is related to the infinite hidden Markov model (Beal et al., 2001), which
has recently been extended to the infinite partially observable Markov decision
process (Doshi-Velez, 2009). Finally, expectation maximization procedures for
learning tree mixtures has been reported in (Meila and Jordan, 2001).

Specifically for POMDPs, predictive approaches have been considered also
byWiewiora (2008), who not only examined predictive state representations (Littman
et al., 2001), but also standard variable order Markov model algorithms. The
CTW algorithm (Willems et al., 1995) has also been extended recently (Ve-
ness et al., 2009) to controlled sequences. This model, just as the context
model presented here, allows decision-theoretic treatment of the problem and
consequently, near-optimal decision making. The particular advantage of the
explicit construction presented herein for reinforcement learning, other than its
increased generality to continuous MDPs, is that the distribution over contexts
can be used to perform approximate decision making without explicit planning.
In this sense, it is also an extension of the approach of McCallum (1995) from
suffix trees to probabilistic context models.

Finally, for continuous state spaces there is a relation to Ernst et al. (2005),
who explored the use of tree representations to perform fitted Q-iteration. The
model presented in this paper could also be used in conjuction with fitted Q-
iteration. However, the main advantage of the presented approach is that we
are no longer restricted to batch settings.

5 Experiments

We performed two types of experiments. Firstly, prediction experiments, where
the online predictive accuracy was estimated over a number of runs. This in-
cluded a small experiment to see whether the distribution over contexts is an
effective representation of the hidden state of a POMDP. Secondly, we used the
state representation generated by the model as a way to implement simple reac-
tive planning algorithms (in this case, Q-learning (Watkins and Dayan, 1992)).
These were evaluated in decision making tasks in a partially observable discrete
environment and a discretised continuous environment.
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5.1 Practical considerations

The context structure as defined in Sec. 2 can be created dynamically as a tree.
In applications, we would need to limit its depth and add mechanisms to avoid
creating a large number of branches. In the reported experiments, a leaf node
was expanded only when it was at a depth smaller than D and when it had been
reached at least once before in the past. The branching factor of the tree is n (see
Ex. 3,4), so for a sequence xt, a model of depth D requires O

(

nmin(T, |X |D)
)

space, as there can be at most T unique contexts, while there are at most |X |D

contexts, each with n+1 parameters. At each step t, (7a) can be calculated with
a forward and backward pass, while for the discrete case, at each active context
ci, a Dirchilet model can be calculated in constant time, while a density can be
calculated in O(log t) time (Hutter, 2005). The cost at time t is O (min(D, t)),
so the total cost after T steps is O

(

min(DT, T 2)
)

, times a log t factor for the
continuous case.

An important question is the choice of prior weights w0. A natural method

is to choosem so that, for all k > 0, P(
∨D

i=k ci) = P(
∨D′

i=k ci) = 2−k for any
D,D′ > k, where ci denotes an context of size i. This ensures that the initial
probability of all contexts beyond a certain depth k is always the same no matter
how much we increase the maximum depth of the tree.

5.2 Mixture of k-order MDPs

As a baseline for comparisons, we used a mixture of over Markov decision pro-
cesses of different orders (henceforth MMDP). Let M = {µk : k = 1, . . . , D}, be
a set of models, such that the model µk is a Markov decision process of order k−
1, that is process for which Pµk

(st+1, rt+1|a1:t, s1:t) = Pµk
(st+1, rt+1|at+1−k:t, st+1−k:t).

We can perform inference on this mixture by maintaining a distribution ψt

over µk ∈ Θ. Each model µk contains all Markov chains of order k for a
discrete observation set Z and is modelled using a product-of-Dirichlets as a
conjugate prior, with parameters

{

αt
i,z : z ∈ Zk

}

, updated according to: αT
i,z =

α0
i,z +

∑T

t=1 I {z ≺ xt ∧ zt+1 = k}, and with (marginal) predictive distribution
Pµt

k

(xt+1 = i|z ≺ xt) = αt
i,z/

∑

j α
t
j,z. The mixture can be updated simply

by ψt+1(µk) , Pµt

k

(xt+1)ψt(µk)/
∑D

i=1 Pµt

i
(xt+1)ψt(µ

t
i). The first problem with

this model is that a large amount of data is required for larger models to start
making globally better predictions smaller ones. The second problem is that
for non-stationary policies, the distribution of observations is non-stationary.
These problems should be significantly alleviated by context models.

5.3 Prediction

We compared the accuracy of the predictions of a MVMDP, an MMDP, as
well as a single k-order MDP on a number of tasks. Each task is an unknown
POMDP µ. There were n = 103 runs performed to a horizon T = 106 for each
µ. For the i-th run, we select a policy π and generate a sequence of observations
zt(i) and actions at1(i) with distribution Pµ,π. For any model ν, with posterior
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predictive distribution Pν(zt+1|x
t) at time t we calculate the average accuracy

at time t.

ut(ν) ,
1

n
Pν(zt+1 = z

(i)
t+1 | x1,t = x

(i)
1,t) (11)

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

ac
cu

ra
cy

t x 1000

MDP
MMDP

MVMDP

(a) Prediction

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8

(b) Similarity

Figure 1: Prediction and state representation. Fig. 1(a) shows redictive accu-
racy on mazes averaged over 103 runs and smoothed over 103 steps. Unless
the order is chosen correctly, the D-order MDP model (MDP) is very slow to
converge. The mixture of MDP orders (MMDP) does achieve good conver-
gence, in some cases matching that of the mixture of variable order Markov
model (MVMDP). However, it exhibits a step-like behaviour, since a model of
higher order needs to be consistently better than other models for a long time
before it switches to it. Fig. 1(b) shows the state similarity matrix of an 8-state
1D-maze problem, obtained by calculating the L1 distance of the MVMDP con-
text distribution at each actual state. Similar states are white, dissimilar states
are darker. Neighbouring states have neighbouring indexes. The closer states
are, the closer their context distributions, with the two endpoint states being
significantly different from all others.

Figure 1 shows results on prediction tasks. In particular, Fig. 1(a) shows
the average accuracy of 103 runs over 106 time steps on a stochastic maze task
with Z = 16 observations, which represent a binary encoding of the occupancy
of neighbouring grid-points by a wall. This task uses no rewards and a fixed
policy.4 In this and other cases, we found the MVMDP and MMDP to be
superior to the MDP, apart from trivial environments where all performances
were equal. For some environments, the MMDP approach was approximately
as good as the MVMDP, but in general, the MVMDP approach performed best
for the largest environments.

In all cases, the MMDP exhibits step-wise performance increases. Each
step corresponds approximately to the time where a model of higher order has
performed better on average than a model of lower order. This behaviour is
well known in Bayesian prediction and could perhaps be rectified with the use

4The policy, with some probability ǫ > 0, or whenever a wall was detected, took a random
action, and otherwise took the same action as in the previous time step.
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of switching-time priors (van Erven et al., 2008). However, even then the MMDP
cannot work well when the policy is not fixed.

5.4 State representation

As a side effect, the model creates an internal representation of the current sys-
tem state. To see this, consider the probability of each context conditioned on
the current history, P(c|xt). This will be zero for inactive contexts, and will
depend on the weights wt

k for all the active contexts. Thus, if the MVMDP con-
tains N contexts, its effective state space will be a simplex in R

N
+ . Figure 1(b)

shows the L1 distance between context distributions between each state for a
corridor task with 8 states.5 To further test the hypothesis that the context
distribution is an approximately sufficient statistic for decision making, we ex-
amined the performance of WCQL in the following experiment.

5.5 Decision making
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(a) Maze task
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(b) Discretised inverted pendulum

Figure 2: Reward per time step, averaged over 103 time runs, for D ∈
{1, 2, 4, 8, 16} for two different tasks.

In this paper we do not examine decision-theoretic planning (examined by
Veness et al. (2009) using the related CTW model). Our main result is an eas-
ily implementable set of value-function-based algorithms (such as WCVI and
WQCL), which use the state representation implicitly defined by the context
distribution. The result is a computationally simple method for acting in par-
tially observable or large environments.

Figure 5.5 shows reward averaged over 103 runs on two tasks with increasing
depthD (see Sec. 5.1) of the context tre. Figure 2(a) shows results for a POMDP

5Briefly, there is a corridor with a finite number of positions. There are two actions, one
for moving left and one for moving right. A leftwards movement is not possible at the leftmost
end of the corridor and likewise, a rightwards movement is impossible at the rightmost end.
With probability 0.01, a random observation zt ∈ {0, 1} is given. Otherwise zt = 0 unless the
action results in hitting a wall, in which case zt = 1.
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maze task, where the observation is zt = 1 when a wall is hit and 0 otherwise.
There are four actions, one for each cardinal direction, but with probability 0.1
they have no effect. Figure 2(b) shows average reward in an inverted pendulum
task with three actions, and a state space S ⊂ R

2 which has been discretised in
25 subsets so that Z = {1, . . . , 25}. In both cases, an increased depth results in
increased long-term performance.

6 Conclusion

We described a class of context models that can be used to perform efficient,
online, closed-form inference for estimating variable order MDPs (the MVMDP
model) and large MDPs (the CMDP model). Both models use the same infer-
ence procedure on contexts, but a different type of context structure and local
context models. We furthermore presented a value iteration algorithm (WCVI)
and a Q-learning algorithm (WCQL) that can be implemented with little over-
head: The context models maintain a simple representation of state, which can
be used to implement classical dynamic programming algorithms. We demon-
strated the MVMDP’s and the WCQL’s capabilities on a number of prediction,
state representation and decision making tasks in unknown POMDPs.

The actual structure used for inference is an extension of (Dimitrakakis,
2010), while the proposed value-based algorithms could be seen as an extension
of the procedure proposed by McCallum (1995) to more general models. The
context tree structure is also close to the BayesTree (Hutter, 2005), which used
a random walk that started from the complete set and branched out to subsets.
For that reason, the latter approach seems more suitable for density estimation.
It seems promising, however, to combine the two approaches for conditional
density estimation, by using a BayesTree for each φk model in a CMDP. Such
an approach should remain tractable and could form the basis for closed-form
non-parametric Bayesian inference in continuous MDPs.

Nevertheless, the crucial problem is how to partition a space when no “nat-
ural” partitioning (such as the tree of suffixes for discrete sequences, or the
binary partition for intervals) exists. This is more pronounced for controlled
processes, because one cannot rely on the statistics of the observations to create
an effective partition. For such problems, entirely new methods may have to be
developed.

The simplicity of the inference also makes application of approximate decision-
theoretic action selection methods (DeGroot, 1970) possible. In the past point-
based methods (Poupart et al., 2006), planning in an augmented-action MDP (Auer
et al., 2008; Asmuth et al., 2009), sparse sampling (Wang et al., 2005), Monte
Carlo tree search (Veness et al., 2009) or stochastic branch and bound (Dimi-
trakakis, 2009) methods have been suggested. It is an open question which of
these, if any, is best for such planning problems.
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