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Setup

◮ Observations x ∈ X and y ∈ Y.

◮ Sequences x t , (xk : k = 1, . . . , t), xk ∈ X ,
y t , (yk : k = 1, . . . , t), yk ∈ Y.

◮ The set of all sequences X ∗ ,
⋃

k
X k .

◮ Problem: online estimation of P(yt+1 | x
t+1, y t).

Main idea
Use contextual independence to break down problem.

Applications

◮ (Conditional) density estimation

◮ Regression

◮ Clustering

◮ Classification



Density estimation
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Figure: The generating density



Histogram-based methods
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Figure: 103 samples

Problem: How to choose the number of bins.
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Histogram-based methods
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Kernel-based methods
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Figure: 103 samples

Problem: How to choose the bandwidth.



Kernel-based methods
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Figure: 103 samples

Problem: How to choose the bandwidth.



Kernel-based methods
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Figure: 103 samples

Problem: How to choose the bandwidth.



Kernel-based methods
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Problem: How to choose the bandwidth.



High-probability bounds

Lemma (Hoeffding’s inequality)

If Xi ∈ [0, 1], are independently distributed and Sn = 1
n

∑

n

i=1 Xi :

P (|Sn − E Sn| > ǫ) < 2e−nǫ2 . (1)

High probability histograms

◮ k observations in X , acceptable error probability δ.

◮ We partition X into k1/3 sets each containing at least k2/3.

◮ We use this partition as the basis for an empirical measure q.

◮ With probability at least 1− δ, the error of the empirical
measure is uniformly bounded by

√

ln 2
δk

1/3

2k2/3
=

√

ln 2
δ +

1
3
ln k

2k2/3
= Õ(k1/3)



Histogram-based methods
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Figure: 103 samples

◮ Problem (minor): Requires sorting.

◮ Advantage: It is prior-free.
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◮ Problem (minor): Requires sorting.

◮ Advantage: It is prior-free.



Histogram-based methods
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◮ Advantage: It is prior-free.



Histogram-based methods
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◮ Problem (minor): Requires sorting.

◮ Advantage: It is prior-free.



Context models
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Figure: A cover set S = {c1, c2, c3, c4, c5}.

◮ Let S be a cover of X ∗.



Context models

◮ Let S be a cover of X ∗.

◮ For each c ∈ S , define a model

P(xt+1 | x
t , c).

◮ We may now estimate

P(xt+1 | x
t) =

∑

c

P(xt+1 | x
t , c)P(c | x t).



Context models

◮ Let S be a cover of X ∗.

◮ For each c ∈ S , define a model

P(xt+1 | x
t , c).

◮ We may now estimate

P(xt+1 | x
t) =

∑

c

P(xt+1 | x
t , c)P(c | x t).

Issues

◮ What should the structure of S be?

◮ How can we estimate P(c | x t)?



Example: binary partition tree

X = [1, 0]

0 1

c t1

c t2

c t3

xt



A random walk on trees

c t
k−1

c t
k

c t
k+1

w t

k+1

w t

k

Intution

◮ For every x t , obtain a sequence c t1, . . . , c
t

D
, D ≤ t.

◮ Mix the prediction of c t
k
with the predictions of c t1, . . . , c

t

k−1.

◮ For each x t , start from the deepest matching context c t
D
and

walk up. When at level k , stop w.p. w t

k
.



The update

◮ Let Bk be the event that we stop at 1, . . . , k . Then define:

w t

k , P(c tk | Bk , x
t) (p. of stopping at level k)

φtk(xt+1) , P(xt+1 | x
t , c tk) (prediction of k-th context)
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The update

◮ Let Bk be the event that we stop at 1, . . . , k . Then define:

w t

k , P(c tk | Bk , x
t) (p. of stopping at level k)

φtk(xt+1) , P(xt+1 | x
t , c tk) (prediction of k-th context)

◮ We obtain the following recursion:

P(xt+1 | x
t ,Bk) = φtk(xt+1)w

t

k + P(xt+1 | x
t ,Bk−1)(1− w t

k)

w t+1
k

=
φt
k
(xt+1)w

t

k

P(xt+1 | x t ,Bk)
(2)



Application to density estimation

◮ First use of stopping: Hutter 2005, BayesTree

◮ Extension to sampling trees: Wong and Ma, 2010, Optional
Pólya tree.



A context tree estimator
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A context tree estimator
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Inference on sequences of covers

Local mixtures
A collection C t

k
at each level k , s.t. x t ∈ c ∀c ∈ C t

k
.

P(xt+1 | Bk , x
t) = ψt

k(xt+1)w
t

k + (1−w t

k)P(xt+1 | Bk−1, x
t), (3)

where
ψt

k(xt+1) , P(xt+1 | c ∈ C t

k , x
t) (4)

is the prediction at level k . If we stop, we select the i-th context
from C t

k
, with probability:

v tk,i , P(c = i | c ∈ C t

k , x
t). (5)

◮ Further generalisations possible at increased computation cost.

◮ Relaxes the requirement to define a partition tree.

◮ The problem of generating suitable covers remains.



Generating the covers

◮ It is better to use a data-driven process.

◮ In our case, X ⊂ Rn, so we used a KD-tree.

◮ Cover trees are also possible.



Indirect conditional density estimation

Naive approach

◮ Estimate the joint distribution P(x , y).

◮ Explicitly calculate the conditional

P(y | x) =
P(x , y)

P(x)
=

P(x , y)
∫

Y
P(x , y) dµ(y)



Context-based Conditional density estimation

Consider x ∈ X , y ∈ Y and modelling the conditional density
f (y |x) = f (x , y)/f (x).

Modelling a density at each context

For any cover we X , we use local models:

φc(y | x) , f (y | c , x),

where the dependence on x may be dropped. We then have:

f (y | x) =
∑

c

P(c | x)φc(y | x)

For example the density φc(y | x) can be modelled by a tree
defined on the same covers, a Gaussian, or a mixture of both.



Density estimation
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KD-tree partition on R2.



Density estimation

50

100

150

200

250

50 100 150 200 250

Figure: 104 samples

KD-tree partition on R2.



Density estimation

50

100

150

200

250

50 100 150 200 250

Figure: 105 samples

KD-tree partition on R2.
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KD-tree partition on R2.



Conditional density estimation
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KD-tree partition on X , mixture of KD-tree density estimates and
Normal-Wishart estimates for Y.
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Conditional density estimation
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KD-tree partition on X , mixture of KD-tree density estimates and
Normal-Wishart estimates for Y.



Classification

Consider observations x ∈ X and class labels y ∈ Y.

Using a classifier at each context

For any cover we X , we use a local classifier:

φc(y | x) , f (y | c , x),

where the dependence on x may be dropped. We then have:

f (y | x) =
∑

c

P(c | x)φc(y | x).

The classifier can be a linear, nearest-neighbour, a mixture ...



Conclusion

Results

◮ Incremental, fast, closed-form Bayesian inference.

◮ Automatically adjusts to amount of available data.

◮ Has close to state-of-the-art performance.

◮ Very general setting.

Extensions

◮ Application to reinforcement learning.

Open problems

◮ Finite-sample bounds.

◮ Smoothing.
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