Context models on sequences of covers

Non-parametric closed-form Bayesian estimation of
(conditional) measures

Christos Dimitrakakis

FIAS, J.W. Goethe University

March 20, 2012



Setup

» Observations x € X and y € ).

» Sequences xt = (x, : k=1,...,t), xx € &,
yEE(yk=1,...,t), yk €.

» The set of all sequences X* £ J, XX

» Problem: online estimation of P(y;y1 | xt+1, y?).

Main idea

Use contextual independence to break down problem.
Applications

» (Conditional) density estimation
> Regression
» Clustering

» Classification



Density estimation

Figure: The generating density



Histogram-based methods

Figure: 103 samples

Problem: How to choose the number of bins.
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Kernel-based methods
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Problem: How to choose the bandwidth.



High-probability bounds
Lemma (Hoeffding's inequality)
If X; € [0,1], are independently distributed and S, = 237 | X;:

P(|Sy —ESy| > €) < 2. (1)

High probability histograms
» k observations in X, acceptable error probability 4.
» We partition X into k'/3 sets each containing at least k2/3.
» We use this partition as the basis for an empirical measure q.

» With probability at least 1 — d, the error of the empirical
measure is uniformly bounded by

In%kl/:*& _ In%—{—%lnk _ ©(k1/3)
2k2/3 2k2/3




Histogram-based methods
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Figure: 103 samples

» Problem (minor): Requires sorting.
» Advantage: It is prior-free.




Histogram-based methods
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Figure: 10* samples

» Problem (minor): Requires sorting.
» Advantage: It is prior-free.




Histogram-based methods
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Figure: 10° samples

» Problem (minor): Requires sorting.
» Advantage: It is prior-free.



Histogram-based methods
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» Problem (minor): Requires sorting.

» Advantage: It is prior-free.




Context models
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Figure: A cover set S = {¢1, ¢, ¢3,Ca, G5}

» Let S be a cover of X*.



Context models

» Let S be a cover of X'*.

» For each ¢ € S, define a model
P(xe11 | x5, ©).
» We may now estimate

P(xer1 | xF) =Y P(xera | X', ¢) Pc | xF).



Context models

» Let S be a cover of X*.

» For each ¢ € S5, define a model
P(xe41 | X, ©).
» We may now estimate

P(xes1 | xP) ZPXHHX c)P(c | x*).

[ssues

» What should the structure of S be?

» How can we estimate P(c | x*)?



Example: binary partition tree

X =[1,0]




A random walk on trees
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Intution
» For every x*, obtain a sequence cf,...,c}, D <t.
» Mix the prediction of cf with the predictions of ¢f,..., cf_;.

» For each x!, start from the deepest matching context cf, and
walk up. When at level k, stop w.p. wj.



The update

> Let By be the event that we stop at 1,..., k. Then define:
wi 2 P(cf | By, x") (p. of stopping at level k)

B (xe41) = P(xeq1 | x5, cf)  (prediction of k-th context)
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The update

> Let By be the event that we stop at 1,..., k. Then define:
wi 2 P(cf | By, x") (p. of stopping at level k)

B (xe41) = P(xeq1 | x5, cf)  (prediction of k-th context)

» We obtain the following recursion:

P(xes1 | X7, Bi) = G (xe1)wy + Plxess | x°, Be—1)(1 — wy)

witl — ¢/t<(xt+1)Wlf (2)
x P(xty1 | xt, By)




Application to density estimation

> First use of stopping: Hutter 2005, BayesTree

» Extension to sampling trees: Wong and Ma, 2010, Optional
Pdlya tree.



A context tree estimator

Figure: 10% samples
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A context tree estimator

Figure: 10% samples



Inference on sequences of covers

Local mixtures
A collection Cf at each level k, s.t. x* € ¢ Vc € C[.

P(xt41 | Bies x*) = i (xep1)wy 4+ (1 — w) P(xeq1 | Be—1,x5), (3)
where
Vik(xer1) £ P(xes1 | ¢ € G, xF) (4)

is the prediction at level k. If we stop, we select the i-th context
from Cf, with probability:

Vi 2P(c=i|ce CLxY. (5)
» Further generalisations possible at increased computation cost.
» Relaxes the requirement to define a partition tree.

» The problem of generating suitable covers remains.



Generating the covers

> |t is better to use a data-driven process.
» In our case, X C R", so we used a KD-tree.

» Cover trees are also possible.



Indirect conditional density estimation

Naive approach

» Estimate the joint distribution P(x, y).

> Explicitly calculate the conditional

Py [ x) =



Context-based Conditional density estimation

Consider x € X,y € Y and modelling the conditional density
Flylx) = f(x, y)/f(x).

Modelling a density at each context

For any cover we X', we use local models:

dely | x) & fy | ¢,x),

where the dependence on x may be dropped. We then have:

fly|x) = ZIP’C|X¢C(y|X)

For example the density ¢.(y | x) can be modelled by a tree
defined on the same covers, a Gaussian, or a mixture of both.



Density estimation

Figure: 103 samples

KD-tree partition on R?.



Density estimation
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Conditional density estimation

Figure: 103 samples

KD-tree partition on X', mixture of KD-tree density estimates and
Normal-Wishart estimates for ).
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Conditional density estimation

Figure: 10° samples
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Classification

Consider observations x € X and class labels y € V.

Using a classifier at each context
For any cover we X', we use a local classifier:

dely [ x) = f(y | ¢ x),

where the dependence on x may be dropped. We then have:
flylx)= ZPC|X¢C()”X)

The classifier can be a linear, nearest-neighbour, a mixture ...



Conclusion

Results

v

Incremental, fast, closed-form Bayesian inference.

v

Automatically adjusts to amount of available data.

v

Has close to state-of-the-art performance.

» Very general setting.

Extensions

» Application to reinforcement learning.

Open problems

» Finite-sample bounds.

» Smoothing.
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