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Abstract

We present a simple, effective generalisation
of variable order Markov models to full on-
line Bayesian estimation. The mechanism
used is close to that employed in context tree
weighting. The main contribution is the ad-
dition of a prior, conditioned on context, on
the Markov order. The resulting construction
uses a simple recursion and can be updated
efficiently. This allows the model to make
predictions using more complex contexts, as
more data is acquired, if necessary. In addi-
tion, our model can be alternatively seen as
a mixture of tree experts. Experimental re-
sults show that the predictive model exhibits
consistently good performance in a variety of
domains.

We consider Bayesian estimation of variable order
Markov models (see Begleiter et al., 2004, for an
overview). Such models create a tree of partitions,
where the disjoint sets of every partition correspond
to different contexts. We can associate a sub-model or
expert with each context in order to make predictions.
The main contribution of this paper is a conditional
prior on the Markov order—or equivalently the con-
text depth. This is based on a recursive construction
that estimates, for each context at a certain depth k,
whether it makes better predictions than the predic-
tions of contexts at depths smaller than k. This sim-
ple model defines a mixture of variable order Marko
models and its parameters can be updated in closed
form in time O (D) for trees of depth D with each
new observation. For unbounded length contexts, the
complexity of the algorithm is O

(

T 2
)

for an input se-
quence of length T . Furthermore, it exhibits robust
performance in a variety of tasks. Finally, the model
is easily extensible to controlled processes.
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The following section presents our setup for the se-
quence prediction problem and introduces notation.
Section 2 defines the proposed Bayesian variable or-
der Markov model (henceforth BVMM) and derives a
closed form sequential update for the model param-
eters. Section 3 gives a brief overview of other tree
based models, as well as a standard Markov chain
mixture, and discusses their relation to BVMMs. Ex-
perimental comparisons between various models are
given in Section 4, on a number of sequential predic-
tion problems. The paper concludes with Section 5,
which also discusses extensions and applications to re-
inforcement learning.

1 INTRODUCTION

We consider sequences of observations x1, x2, . . ., with
xt ∈ X . We assume the existence of a suitable σ-
algebra BX such that (X ,BX ) is measurable. In par-
ticular, most of the following development assumes a
finite X . Subsequences are denoted by xk:t for k ≤ t
and the concatenations of sequences are denoted by
· ◦ ·. For example xk:t+1 = xk:t ◦ xt+1. In addition, let
X 0 , ∅, Xn , ×nX , X ∗

k ,
⋃∞

n=k X
n and X ∗ , X ∗

0 .
We use bold symbols for arbitrary-length sequences x

and we denote the length of any x ∈ X ∗ by ℓ (x).

Suffixes. We call x a suffix of x′, and write x ≺ x′

iff ℓ (x) ≤ ℓ (x′) and xℓ(x)+1−i = x′
ℓ(x′)+1−i for all i ∈

{1, . . . , ℓ (x)}. Finally, we write x ∩ x′ to denote the
largest common suffix of x,x′ ∈ X ∗. If x and x′ have
no common suffix then x∩x′ = 0 and 0◦x = x◦0 = x

for any x ∈ X ∗.

Definition 1. A suffix set S on X is a set of sequences
c ∈ X ∗. S is proper iff c∩c′ = 0 for all c, c′ ∈ S. We
call S complete iff, ∀x ∈ X ∗, ∃c ∈ S such that c ≺ x.

We consider a complete, but not proper, suffix set S,
which may be infinite, constructed via a tree T =
(V, E), of depth D, with nodes V and edges E . The
set of nodes V =

{

vi : i = 0, 1, . . . , |X |D
}

is such that
the node vi ∈ V corresponds to a unique sequence
ci ∈ X ∗. Specifically, the root node v0 corresponds to
c0 = 0, the empty sequence. All inner nodes have |X |
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children, such that if vj is the k-th child of node vi,
then cj = k ◦ vi. Thus, there are t + 1 suffixes in S for
each sequence x1:t ∈ X t and the tree can be viewed
as a tree of partitions of X ∗

D. Indeed, the suffixes par-
tition X ∗

D into sets Xi , {c ∈ X ∗ : ci ≺ c}, such that
Pk , {Xi : ℓ (ci) = k, ci ∈ S} is the partition induced
by the set of nodes at depth k of the tree.

Context models. The general idea of such models
is to associate an expert µi with a context ci, such
that, for a given observation history, only certain ex-
perts will have matching contexts. For the problem of
sequence prediction, the context ci is the suffix at the
node vi of the tree and the expert µi defines a proba-
bility measure P(· | µi) on (X ,BX ) that predicts the
next observations.

Given any sequence x1:t, only a subset of experts
M(x1:t) , (µi : ci ≺ x1:t) will have contexts that are
suffixes of x1:t. For any active expert µk ∈ M(x1:t),
we shall use:

pt
k(x) , P(xt+1 = x | µk, x1:t) (1)

to denote the (marginal) posterior probability of pos-
sible next observations xt+1, according to expert µk,
given the history of previous t observations.

Example 1. When X = {1, . . . ,K}, we can use a
Dirichlet distribution Dir (αt

k) over multinomial param-
eters for each µk, where αt

k , (αt
k,j)

K
j=1 is the vector

of Dirichlet parameters for expert k at time t. The
corresponding marginal probability distribution is:

pt
k(xt+1 = x) =

αt
k,x

∑K
j=1 αt

k,j

, (2)

for all k ∈ {1, . . . ,K}. Given a sequence x1:T , the
parameters of the expert at each context are

αT
i,k = α0

i,k +
T

∑

t=1

I {ci ≺ x1:t ∧ xt+1 = k} , (3)

where
{

α0
i,k

}

is a set of prior parameters, typically set

to values in [0, 1].

For any conditional probability distribution P(µ|x1:t)
over the set of active experts M(x1:t), we obtain the
marginal probability of the next observations:

P(xt+1|x1:t) =
∑

µk∈M(x1:t)

pt
k(xt+1) P(µk|x1:t). (4)

This natural idea is used in the context tree weight-
ing algorithm (Willems et al., 1995), which employs
Dirichlet models for µ. It however only considers a
fixed P(µ|x1:t). We shall introduce a simple construc-
tion that allows us to update both P(µ|x1:t) and the
experts µ efficiently.

2 BAYESIAN VARIABLE ORDER

MARKOV MODELS

We first define variable order Markov models as a set of
experts on a suffix tree. Subsequently, we define a mix-
ture of such models, associated with a set of weights
and we give a procedure for updating the weights given
new observations.

Definition 2. A Variable order Markov Model
(VMM) over X ∗ is composed of:

1. A complete suffix set S = {ci : i = 1, . . . , N}.

2. A set of experts M = {µi : i = 1, . . . , N},
indexing a set of probability distributions:
{P(xt+1 | µi) : µi ∈ M}. For the discrete case in
particular, each expert µi ∈ M defines a multi-
nomial distribution with parameters τi ∈ [0, 1]|X |

s.t. ‖τi‖1 = 1 and P(xt+1 = j | µi) = τi,j.

There is a one-to-one correspondence between each
context ci and each expert µi. For any history x1:t ∈
X t, the we use the surjection I : X ∗ → {1, . . . , N} to
denote the index I(t) , max {i : ci ≺ x1:t} of the only
active expert (i.e. the active expert is the one with
the largest matching suffix). The distribution of next
observations is:

P(xt+1 | x1:t) , P(xt+1 | µI(t)) (5)

To obtain a distribution of VMMs that can be updated
in closed form, we define the following structure.

Definition 3 (BVMM). A Bayesian variable order
Markov model over X ∗ is composed of:

1. A suffix tree T = (V, E), of depth D with a set of
nodes V = {vi : i = 0, 1, . . . , N}, with N = XD,
and a set of edges E.

2. A complete suffix set S = {ci : i = 0, 1, . . . , N}.

3. A set of models M = {µi : i = 0, 1, . . . , N}. For

discrete X , these are Dir (αi) with αi ∈ R
|X |
+ .

4. A set of weights W =
{wi ∈ [0, 1] : i = 0, 1, . . . , N}.

There is a one-to-one correspondence between each
node vi, a suffix ci, an expert µi and a weight wi. For
any observations x1:t ∈ X t, the set of active experts
is M(x1:t) , (µI(0,t), . . . , µI(t,t)), where I : X ∗ × N →
{0, . . . , N} is a surjection such that cI(0,t) = 0 and
cI(k+1,t) = xt−k ◦ cI(k,t).

In order to generate a new observation xt+1, given
x1:t, we define the auxiliary indicator variable st =
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(st,0 . . . , st,t), such that: xt+1 ∼ P(xt+1 | x1:t, µI(k,t))
if st,k = 1. The following properties hold for s:

P(st,t = 1 | x1:t) = wI(t,t),

P(st,k = 1 | st,k+1 = 0, x1:t) = wI(k,t),

P(st,k = 1 | ∃j > k : sj = 1) = 0,

w0 = 1.

The probability of the data being generated by the k-th
model, according to the ordering implied by x1:t, is:

P(st,k = 1 | x1:t) = wI(k,t)

t
∏

j=k+1

(1 − wI(j,t)), (6)

where
∏t

j=t+1(1−wI(j,t)) = 1 for notational simplicity.

Intuitively, s can be seen as a stopping variable. Given
an observation x1:t, we form the chain of active experts
M(x1:t). Starting from the last model, µI(min(t,D),t),
and for every model µI(k,t) ∈ M(x1:t), we stop with
probability wI(k,t) and generate xt+1 ∼ pI(k,t)(xt+1).
Otherwise, we move to µI(k−1,t). If k = 0, the next
observation is generated from the root model µ0.

Remark 1. By construction,
∑

k P(st,k = 1) = 1, for
any set of weights

{

wI(k,T ) ≥ 0 : k > 0
}

.

Proof. The proof proceeds by induction. Without loss
of generality, we only consider t ≤ D, since we can set
wt = 0 for t > D. When t = 0,

∑t
k=0 P(st,k) = w0 = 1

by definition, where we used P(st,k) ≡ P(st,k = 1) for
compactness. For other t:

t+1
∑

k=0

P(st,k|x1:t) =

t+1
∑

k=0

wI(k,t)

t+1
∏

n=k+1

(1 − wI(n,T ))

= (1 − wI(t+1,T ))

t
∑

k=0

P(st,k) + wI(t+1,T ),

which obviously equals 1 if
∑t

k=0 P(st,k) = 1.

Remark 2. A BVMM of depth D defines a distribu-
tion over VMMs.

Proof. W and S define a distribution over complete
context sets of maximum suffix length D. To see this,
let us construct a random context set Ŝ. Since w0 =
1, Ŝ is always complete and the probability of each
context being in Ŝ can be derived via (6) as:

P(ci ∈ Ŝ) ∝ wi

∏

j:ci≺cj

(1 − wj). (7)

Finally, for all ci ∈ Ŝ, generate multinomial param-
eters τi ∼ Dir (αi). These two sets are sufficient for
specifying a VMM.

2.1 Update procedure

We now consider a recursive procedure for updating
the parameters of a BVMM. For this reason, we use
a superscript t to refer to the value of parameters at
time t. Furthermore, we need a way to refer to the
observations being generated an expert in a particular
subset. This leads us to the following construction,
which is central in the remaining development: Let
Bk , I {∃i ≤ k : st,k = 1} denote the event that the
data is generated by one of the experts with context
size at most k, i.e. that µ ∈

{

µI(0,t), . . . , µI(k,t)

}

. This
allows us to interpret the weights as the posterior of
the k-th model (where k indexes the active context
experts M(x1:t)), given the observation history x1:t

and the fact that the model order is not larger than k:

wt
I(k,t) = P(µI(k,t) | x1:t, Bk). (8)

Using (6), we can write the marginal predictive dis-
tribution (4) of our model at time t, in terms of the
weights:

P(xt+1=x|x1:t) =

t
∑

k=0

pt
I(k,t)(x)wt

I(k,t)

t
∏

n=k+1

(1 − wt
I(n,t)).

The following theorem gives a procedure for updating
W in closed form.

Theorem 1. The weight parameters W of any BVMM
can be recursively updated in closed form according to:

wt+1
I(k,t) , P(µI(k,t)|x1:t+1, Bk) (9)

=
pt

I(k,t)(xt+1)w
t
I(k,t)

pt
I(k,t)(xt+1)wt

I(k,t) + P(xt+1|x1:t, Bk−1)(1 − wt
I(k,t))

Proof. First of all, note that Bt is trivially true at time
t. For Bk with k < t, it is easy to see that the following
recursions hold:

P(Bk−1|x1:t) = P(Bk|x1:t)(1 − wt
I(k,t)) (10a)

P(xt+1|x1:t, Bk) = pt
I(k,t)(xt+1)w

t
I(k,t) (10b)

+ P(xt+1|x1:t, Bk−1)(1 − wt
I(k,t)),

where we used (8) and that P(xt+1|µI(k,t), x1:t, Bk) =
P(xt+1|µI(k,t), x1:t) = pt

I(k,t)(xt+1), as given the k-th
expert, the next observations do not depend on previ-
ous experts. Using (10) and Bayes’ theorem, we have:

wt+1
I(k,t) , P(µI(k,t)|x1:t+1, Bk)

=
P(xt+1|µI(k,t), x1:t, Bk) P(µI(k,t)|x1:t, Bk)

P(xt+1|x1:t, Bk)

=
pt

I(k,t)(xt+1)w
t
I(k,t)

pt
I(k,t)(xt+1)wt

I(k,t) + P(xt+1|x1:t, Bk−1)(1 − wt
I(k,t))
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Updating pt
k(x) is easy if µk is Dirichlet with parame-

ters αk , {αk,i : i = 1, . . . , |X |}, as described in Ex-
ample 1. Finally, note that due to Remark 1, the
weights always define a proper posterior probability
distribution over the experts and additionally, a dis-
tribution over VMMs due to Remark 2.

Remark 3. At each step t, the update complexity
is O (min{D, t}), so the complexity for a sequence of
length T is O

(

min{T 2, TD}
)

.

3 RELATED MODELS

This section gives a brief overview of models related to
BVMMs. Of these, the closest models are the follow-
ing: (a) The Bayesian Markov chain mixture, which
uses a standard prior over Markov order. (b) Dirichlet
process models, which employ sampling. (c) The con-
text tree weighting algorithm (Willems et al., 1995),
which has fixed weights. We shall now discuss the re-
lated models in more detail.

Bayesian Markov chain mixture. A simpler type
of Bayesian model for sequence prediction is a mix-
ture over Markov chains (henceforth BMCM). Let
a set of experts {µk : k = 0, . . . ,D}, and a multino-
mial prior distribution with parameters φ0 = (φ0

k)D
k=0.

Each expert µk is a distribution over the parameters
of Markov chains of order k for a discrete observa-
tion set X . In particular, we consider a product-
of-Dirichlets conjugate prior, with parameters αt

k ,
{

αt
k,z : z ∈ X k

}

, updated according to αT
k,z = α0

k,z +
∑T

t=1 I {z ≺ x1:t ∧ xt+1 = k} and with (marginal) pre-

dictive distribution pt
k(xt+1 = i|z ≺ x1:t) =

αt
i,z

P

j
αt

j,z

.

The mixture is updated via Bayes’ rule:

φt+1
k ,

pt
k(xt+1)φ

t
k

∑D
j=0 pt

j(xt+1)φt
j

(11)

This model is simpler than a BVMM. In fact, it can
be seen as a BVMM with the weights of all contexts
at a certain depth k being equal. Thus, a potential
problem is that a large amount of data is required for
the µk+1 to start making globally better predictions
than µk. Intuitively, we could do better by switching
to larger order models for some contexts only. This
can be achieved if we allow our belief over model or-
der to depend on the history, something taken care of
automatically in BVMMs.

Other variable length Markov chains models.

One closely related model is the context tree weight-
ing (henceforth CTW) algorithm (Willems et al.,
1995). CTW employs smooth maximum likelihood
estimation at each context and so is equivalent to

BVMMs with respect to the adaptation of the ex-
perts µ, when those are Dirichlet-multinomial. While
CTW uses a closed-form update, the weights used in
CTW are fixed. The prediction by partial match-
ing (PPM) algorithm (Cleary and Witten, 1984), in-
cludes a closed-form weight update, which is however
ad-hoc (Begleiter et al., 2004, p.392). Other variants
are examined in (Begleiter et al., 2004) which in ad-
dition supplies an experimental comparison between
methods. A final related model is Variable length
Markov chains (Bühlmann and Wyner, 1999) (hence-
forth VMC), which however utilises growing and sub-
sequent pruning of the context tree. It is thus a batch
(offline) algorithm.

Tree experts. A tree expert is a collection of a finite
number of experts, with each expert being a predictive
tree, whose nodes are of two types: leaf nodes (which
have no children) and inner nodes (which all have n
children). Decisions at inner nodes concern only which
child to proceed to, while the decisions at leaf nodes
concern a prediction of the next observation. A VMM
can be seen as a particular type of tree expert and
a BVMM as a mixture of tree experts. A low regret
prediction algorithm for such models is given in (Cesa-
Bianchi and Lugosi, 2006, ch. 5.3).

Dirichlet process models. An important class of
priors over distriutions are Polya trees (Ferguson,
1974). Just as in BVMMs, a distribution is defined
over a partition tree. However, there is only one
set of parameters for each node, which relates to the
child node which will be next visited. This allows
closed form updates, but lacks the additional expres-
siveness possible with BVMMs. Dirichlet processes
are also used in the infinite hidden Markov model

(IHMM, Beal et al., 2001) and the infinite Markov

model (IMM, Mochihashi and Sumita, 2008). In par-
ticular, the IMM uses a similar structure, with the
difference that a Beta prior on the stopping variable
s is used. Inference in both of these models requires
sampling instead. Thus, as long as one is only in-
terested in prediction, rather than state estimation,
BVMMs amount to a significant improvement over
I(H)MMs in terms of computation. However, another
approach close to the BVMM is the stochastic mem-

oizer (SM), proposed by Wood et al. (2009), which,
although it also employs sampling, it is much more
efficient in terms of computation.

Other models. In a different setting, learning mix-
tures of trees has been explored using EM in (Meila
and Jordan, 2001), with a similar construction to the
BVMM and the IMM, while (Friedman and Koller,
2003) extended the work to the more general problem
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of learning network structure, for which they employed
Markov chain Monte Carlo approaches. Finally, there
are some parallels with the autoregressive literature,
where the prediction problem is the same, but X ⊂ R

n,
such as the work of Mena and Walker (2005), which
utilised a Dirichlet process mixture latent variable.

4 EXPERIMENTS

We evaluated the method on a number of sequence
prediction domains.1 The objective was to compare its
performance against commonly used approaches in the
target domain. Our evaluation criterion was the total
error made by each algorithm in online prediction.

For comparative purposes, we employed two domains.
The first was stochastically generated hidden Markov
models, for which there exist approximate inference
methods in the target model class. The second domain
was fixed sequences of text and gene data.

4.1 HIDDEN MARKOV MODEL

In this domain, data is generated from a hidden
Markov model (hence forth HMM) ν∗, with a dis-
crete set of states s ∈ S and observations x ∈ X .
Experiments were performed for |S| ∈ {2, 4, 8} and
|X | ∈ {2, 4, 8}. There were 100 runs performed for
each choice of X ,S. For each run, a HMM was stochas-
tically generated in order to ensure that: (a) There
would be some stationarity in every state, so as to
make sequences more predictable. (b) States would be
sufficiently differentiable from each other.

For the n-th run of each experiment, a HMM ν∗
n

with transition and observation matrices P and Q,
such that Pij , ν∗

n(st+1 = j|st = i) and Qij ,

ν∗
n(xt = j|st = i), was used to generate the obser-

vation sequence x1:t by setting s0 = 1 and sampling
st+1 ∼ ν∗

n(st+1|st), and xt ∼ ν∗
n(xt|st). In order to en-

sure that the HMMs had the desired structure, the ma-
trices were generated as follows. First, a stationarity
parameter β was generated uniformly in the interval
[ 12 , 1). The entries of P were set to Pij = p̂ij/

∑

k p̂ik,
with p̂i,j = I {i = j}β+exp(zi,j), with zi,j ∼ Uni(0, 1).
The entries of Q were set to Qij = q̂ij/

∑

k q̂ik, with
q̂i,j = I {i = j} + ζi,j , with ζi,j ∼ Uni(0, 1/10).

For each run, we calculated the cumulative loss ℓ of
each model ν assigning probabilities νt(xt+1) to out-
comes given the history x1:t, generated by ν∗

n.

ℓT (ν) ,

T
∑

t=1

I

{

xt+1 6= arg max
i∈X

νt(xt+1 = i)

}

. (12)

1Code available at http://code.google.com/p/beliefbox/

In this case, we interested in the expected loss E ℓt(ν).
We compared the following models: (a) The HMM

oracle model, which is a HMM with the same parame-
ters as the true HMM ν, and uses the observations x1:t

to form a belief over st and predict the next observa-
tions. (b) The HMM particle filter model, which is
a grid filter (see Doucet et al., 2001) with np particles
on the parameter space. We additionally employed
a variant which resampled grid points when particle
weights dropped below the threshold (np)

−1/2. (c) The
HMM EM model, which performs expectation max-
imisation on all the data to estimate a model, which it
then uses to predict (it thus should have a performance
very close to that of the oracle). In addition, we used
an incremental EM variant; this simply performs one
iteration of expectation maximisation for each new ob-
servation, starting from the result of the previous iter-
ation.(d) The BMCM. (e) The BVMM. We utilised
a prior α0

i = 1
2 for the Dirichlet models, w0

k = 2−k for
the BVMM, and φ0

k ∝ 2−k for the BMCM. For the
HMM algorithms, the initial parameters were sampled
from the distribution used to generate ν∗. For the
particle filters, np = 128 particles were used.

Figure 1 shows the run-average regret of each model
ν with respect to the HMM oracle ν∗, ρT (ν) ,
1

100

∑100
n=1 (ℓT (νn) − ℓT (ν∗

n)). Naturally, the EM ap-
proach almost always has the best performance, as it
makes predictions after it has been trained on the com-
plete sequence. The naive incremental EM method
sometimes matches full EM, but both have problems
with local optima. The particle filter methods per-
formed well for a small number of states and obser-
vations only. Both the BMCM and the BVMM per-
formance track the performance of the other methods
well, even though they are not in the correct model
class. In particular, BMCM is consistently close to or
better than the best HMM estimation method. This is
perhaps due to the stationarity and easy identifiability
of the states for this particular set of hidden Markov
models. The BVMM exhibits slower convergence, but
it eventually catches up (Figure 1b) and sometimes
matches BMCM (Figures 1c, 1d).

4.2 FIXED SEQUENCES

We performed experiments on a number of fixed se-
quences x1:T . In this case, for each model ν making
predictions νt, we measure the average log loss:

L(ν | x1:T ) ,
1

T

T
∑

t=0

log2 νt(xt+1). (13)

We performed experiments on the large and calgary
corpuses2, where we compared the following three

2http://corpus.canterbury.ac.nz/
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(a) D = 8, |S| = 8, |X | = 8
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(b) D = 8, |S| = 4, |X | = 2
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(c) D = 8, |S| = 2, |X | = 2
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Figure 1: The average regret ρT of different models with respect to the HMM oracle. BMCM is a Markov chain
mixture, while BVMM is the proposed model, both with depth D. HMM EM is an HMM trained with EM
on all data, while HMM IEM uses an incremental EM method, HMM GF is a grid filter and HMM GFR

is a grid filter with replacement.

models: (a) The PPM algorithm (Cleary and Witten,
1984), and in particular, the PPM-C variant which is
known to have particularly good performance in such
tasks (see Begleiter et al., 2004), (b) the BMCM,
(c) the BVMM, with experts using the generalisa-
tion of the Dirichlet for large alphabets, similar to that
used in PPM. The BVMM used a prior w0

k = 2−k and
for the BMCM a matching prior φ0

k ∝ 2−k. To limit
memory use for very large sequences, the context tree
was grown dynamically, adding leaves only to contexts
with at least two observations.

Figure 2 shows the log loss of these algorithms for in-
creasing maximum depth D. The BMCM is usually
underfitting, making no use of depths higher than 3.
The BVMM approach does not appear to overfit for
those choices when depth increases. The PPM ap-

proach may have a slight overall advantage, as long
as it is tuned appropriately. The unique behaviour of
the E. Coli dataset (Fig. 2c), is particularly interest-
ing. PPM shows a sharp reduction in performance,
while BMCM has a pronounced increase in perfor-
mance around depth 20, which the BVMM fails to
replicate. This may be due to the fact that weights of
contexts at each depth are independent of each other,
but this is something that will require future investi-
gation.

A summary of the results on the calgary corpus is
shown in Table 1, which in addition shows results for
CTW and SM3. Both the CTW and SM algorithm en-
joy an advantage of 0.15−0.25 bits/symbol on average

3Results obtained from (Gasthaus et al., 2010)
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Figure 2: Results for four datasets from the calgary and large corpuses, chosen to show representative behaviours
for all methods BMCM, BVMM and PPM. Each graph shows the mean log loss L for varying D.

BMCM BVMM PPM SM3 CTW3

mean 3.41 2.46 2.54 2.12 2.24
w. m. 2.93 2.14 2.39 1.89 1.99

Table 1: Calgary corpus result summary. The mean
and weighted mean bits/symbol of each method on the
14 files tested in (Gasthaus et al., 2010) are shown.

compared to BVMM, and in fact, they performed bet-
ter in each and every one of these datasets. Thus, the
BVMM, although close to the state of the art, cannot
be recommended for compression in this form.

Additional experiments (not shown) indicated that the
BMCM and BVMM are robust to the choice of prior
weights, with a slight drop-off in performance at higher
depths if large weights were chosen. This implies that
adjusting the weights of the trees in a manner that

depends on the data is actually effective.

5 CONCLUSION

We have introduced a Bayesian version of variable or-
der Markov models, that can be efficiently updated in
closed form. This is possible due to a recursive con-
struction. Furthermore, we outlined its relations to
other models such as the context tree weighting algo-
rithm, and its equivalence to a mixture of tree experts.

In future theoretical work, we shall further investigate
links between BVMMs and other similar models. It
would also be particularly interesting to derive perfor-
mance bounds on the predictions of BVMMs.

The experimental results indicate that BVMMs have a
consistently good predictive performance, while at the
same time being relatively insensitive to the choice of
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prior. It seems reasonable to conclude that BVMMs
should be a robust choice when little is known about
the data and when the problem is mainly prediction,
rather than tracking of a hidden state, or when low
computational complexity is an issue.

Extensions. In the above development, we only con-
sidered finite X . A naive extension to countable X is
straightforward, but robustness may require additional
machinery. The model can be further extended so that
the weights of each context are not independent, in
the manner of SM. This may result in improved per-
formance, especially as evidenced by the results in the
E. Coli dataset. Finally, the model can be extended to
controlled processes. In particular, it may be an effec-
tive Bayesian model for near-optimal decision making
in unknown partially observable Markov decision pro-
cesses (i.e. Ross et al., 2008). Since BVMMs are able to
provide good predictions, as well as easily computable
closed-form posteriors, they are an excellent candidate
for planning under uncertainty in such domains (Dim-
itrakakis, 2009, 2010). It is of the author’s opinion
that this is a better application for such models than
sequence prediction.

Acknowledgements

Part of this work was performed while at the univer-
sity of Leoben. Many thanks to P. Auer and R. Ortner
who have helped with the preparation of this paper,
as well as to P. Grünwald, F. Oliehoek and N. Vlassis
for comments and discussions and the anonymous re-
viewers for their extremely detailed suggestions. This
work was partially supported by the ICIS project, un-
der the Dutch Ministry of Economic Affairs, grant nr:
BSIK03024.

References

Matthew J. Beal, Zoubin Ghahramani, and Carl Ed-
ward Rasmussen. The infinite hidden Markov
model. In Thomas G. Dietterich, Suzanna Becker,
and Zoubin Ghahramani, editors, NIPS, pages 577–
584. MIT Press, 2001.

Ron Begleiter, Ran El-Yaniv, and Golan Yona. On pre-
diction using variable order Markov models. Journal
of Artificial Intelligence Research, pages 385–421,
2004.
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