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Abstract

The issues with the use of Approximate Bayesian Computation in Reinforce-
ment Learning is the following. Firstly, that the model set may comprise
simulators which are purely deterministic. Secondly, that there is a depen-
dence between the policy used and the data collected, which necessitate
maintaining a representation of the policy used as well as the data history.
Thirdly, there is the question of the statistics used. Finally, there is the
problem selecting a policy given the data observed so far. In this paper,
we report some progress on using more sophisticated statistics and policy
search algorithms and show that they have significant impact.

1 Introduction

Approximate Bayesian computation (ABC) methods for reinforcement learning (RL) were
first introduced in (Dimitrakakis and Tziortziotis, 2013), with sufficient conditions for ABC
to be a useful approach for reinforcement learning problems and provided some experimental
evidence for its utility. There are, however a number of open problems relating to the use of
ABC methods in RL. The first is that in many cases, the simulators used are deterministic.
In that case, the assumptions given in Dimitrakakis and Tziortziotis (2013) do not hold any
more. The second is the fact that in order to perform the posterior calculation in controlled
systems using ABC, the policy used to generate the data must be remembered. The third
concerns the choice of statistics, which can severely influence how easy it is to distinguish
between different models. Finally, given an approximate posterior distribution computed
over models, the question is how to compute an appropriate near-optimal policy.

Setting. To fix ideas, consider an agent acting in some discrete-time environment µ ∈M,
taking actions at ∈ A and obtaining observations xt ∈ X and scalar rewards rt ∈ R. Let
H = (X ,A,R)∗ be the space of all possible observation histories. The agent uses a policy
π : H → A to take actions and is interested in maximising the utility

U ,
∞∑
t=0

γtrt+1, γ ∈ (0, 1) (1.1)

where γ is a discount factor. We assume that for each µ, there exists an optimal policy
π∗(µ) maximising expected utility Eπµ U .

In the reinforcement learning problem, µ is unknown. Adopting a Bayesian perspective, we
can assume a prior probability distribution ξ on M, encoding the agent’s subjective belief
about which is the most likely model. Then the optimisation problem is

Eπξ U =

∫
M

(
Eπµ U

)
dξ(µ). (1.2)

Solving this gives a policy that optimally trades off obtaining more information about µ
(exploration) and maximising rewards in the short term (exploitation). However, there are
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three important problems. The first is how to selectM and ξ, the second is how to perform
inference and the third is how to find the optimal policy.

Contribution. In this work we shall focus on the case whereM is a set of detailed simu-
lators, which could model reality very well, but whose parameters are uncertain. This nat-
urally lends to ABC inference. The optimisation problem is solved approximately through
a combination of Thompson sampling (Thompson, 1933) and either approximate dynamic
programming (ADP, c.f. Bertsekas, 2005) or Monte-Carlo planning (MCTS, c.f. Kocsis and
Szepesvári, 2006). Our main contribution is the investigation of the properties of how the
choice of statistic and policy search affect the final outcome. We conjecture that more infor-
mative statistics should allow us to more easily distinguish between models, and that more
sophisticated policy search methods, such as Monte-Carlo planning would be less sensitive
to the domain they are tested on.

2 ABC Reinforcement learning.

The basic ABC RL algorithm is composed of two parts. The first, given in Algorithm 1
involves sampling a model from the approximate posterior through rejection sampling.

Algorithm 1 ABC-RL-Sample

input Prior ξ onM, history h ∈ H, threshold ε, statistic f : H →W, policy π, maximum
number of samples Nsam, stopping condition τ .

M̂ = ∅.
for k = 1, . . . , Nsam do
µ(k) ∼ ξ.
h(k) ∼ Pπ

µ(k)

if
∥∥f(h)− f(h(k))

∥∥ < ε then

M̂ := M̂ ∪
{
µ(k)

}
.

end if
if τ then

break
end if

end for
return M̂

Given a posterior sampling mechanism, we can now perform Thompson sampling, given in
Algorithm 2. This involves finding a policy that is optimal for the given sampled model.
However, this is not trivial for general models, as approximations must be used.

Algorithm 2 ABC-RL Thompson sampling

parameters M, ξ, h, π, f

τ = {|M̂ | = 1}
µ̂ = ABC-RL-Sample(M, ξ, h, π, f, τ)
return π̂ ≈ arg maxπ E

π
µ̂ U

Sufficient conditions for deterministic models. When the model is deterministic,
we still need a way to guarantee that ABC behaves reasonably well. First, we recall the
assumption and theorem proved in (Dimitrakakis and Tziortziotis, 2013).

Assumption 1. For a given policy π, for any µ, and histories x, h ∈ H, there exists L > 0
such that

∣∣ln [Pπµ(h)/Pπµ(x)
]∣∣ ≤ L‖f(h)− f(x)‖.

Theorem 1. Under a policy π and statistic f satisfying Assumption 1, the approximate
posterior distribution ξε(· | h) satisfies:

D (ξ(· | h) ‖ ξε(· | h)) ≤ ln |Ahε |+ 2Lε, (2.1)
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where Ahε , { z ∈ H | ‖f(z)− f(h)‖ ≤ ε } is the ε-ball around the observed history h with
respect to the statistical distance and |Ahε | denotes its size.

If some models are deterministic, we need some different assumptions, as Pπµ becomes a delta
function and the log likelihood ratio becomes unbounded. Then in fact the statistic’s value
uniquely determined by the policy and the model. Let that be fπµ .

Assumption 2. Let µ∗ be the model from which the data is generated. For any f : H →W,
∃L,U > 0 such that Lε ≤ ξ

({
µ ∈M

∣∣ ∥∥fπµ − fπµ∗

∥∥ ≤ ε}) ≤ Uε.
Under these conditions, it is trivial to show that the KL divergence is bounded.

Remark 1. Under Assumption 2, the approximate posterior satisfies:

D (ξ(· | h) ‖ ξε(· | h)) ≤ ln
Uε

ξ(µ∗)
(2.2)

Proof. For the discrete M case, we can write

D (ξ(· | h) ‖ ξε(· | h)) =
∑
M

ln
ξ(µ | h)

ξε(µ | h)
ξ(µ | h) = − ln ξε(µ

∗ | h) ≤ ln
Uε

ξ(µ∗)
.

While the above assumptions gives us some formal guarantees about the quality of the
posterior approximation, it is hard to interpret them. In practice, one must strive to simply
select sufficiently informative statistics.

Choice of statistics. One simple choice, used in (Dimitrakakis and Tziortziotis, 2013),

is the utility of a history h = (xh,t, ah,t, rh,t)
Tτ
t=1, f(h) = U(h) =

∑
t rh,t. We call this the

U -statistic.

The U -statistic could be insufficient to distinguish between different models. A natural
candidate is the discounted set of features f(h) = φ(h) =

∑
t γ

tφ(xt), where φ maps from X
to some vector space. For the case where the model is a finite Markov decision process and
φ is an indicator vector, we can construct the discounted state occupancy matrix (Eπµ φ |
x0 = i)i = (I − γ Pπµ)−1, which can be used to calculate the value function of any policy π.
In the general case, this link does not exist, but it is nevertheless suggestive for constructing
statistics.

In particular we define the Φ-statistic as follows. First, if X ⊂ Rn, we select some k ∈ N
and generate a Gaussian k×n matrix Φ, as commonly used in compressed sensing (Donoho,
2006). Then our statistic becomes f(h) =

∑
t Φxh,t. We expect such statistics to be much

more informative and to be generally robust.

Choice of policy optimisation. A final question is what policy optimisation method to
use after a model has been sampled from the approximate posterior. While (Dimitrakakis
and Tziortziotis, 2013) employed ADP1, selection of appropriate parameters and issues with
convergence made it problematic for general deployment. In this paper, we investigate the
use of Monte Carlo tree search, and in particular the variant employed in (Hester and
Stone, 2013), which combines upper confidence bounds with value function approximation
in a discretised space.

Experimental results We performed some experiments to investigate whether there is
a particular advantage from using a more sophisticated policy search method or more in-
formative statistics. As this is only a preliminary investigation, we used fixed settings for

1While the paper reports experiments with LSPI, we had also experimented with fitted value
iteration, which turn out not to be very robust either.
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all algorithmic hyper-parameters.2 In all cases, the experiments were performed by first
generating 10 trajectories from a uniform random policy. These were then used to either
directly find a policy via LSPI, or to first sample a model from the posterior, and then
perform LSPI or UCT on the sampled model. From the results shown in Table 1, it is clear

Domain LSPI ABC/LSPI-U ABC/UCT-U ABC/LSPI-Φ ABC/UCT-Φ
Acrobot -99 -100 -97 -100 -97

Cart-Pole 25 41 87 51 78
Mountain Car -71 -56 -47 -47 -50

Pendulum -0.9 -0.3 0 -0.06 0
Puddle -360 -142 -133 -237 -108

Table 1: Average utility achieved from 10 randomly generated trajectories.

that in general Φ-statistics are an improvement over the simple U -statistic. In addition,
UCT appears to be generally more robust than LSPI, especially when Φ-statistics are used.

3 Conclusion.

The use of ABC methods in reinforcement learning is promising, as it allows us to use arbi-
trary simulator models for inference. These tie in rather well with simulation-based methods
for policy optimisation. However, there are a number of challenges, such as the theoretical
guarantees of ABC-RL, the choice of appropriate statistics, and the policy optimisation
method.

In this paper, we provided some possible sufficient conditions for ensuring that ABC is a
reasonable approach also for deterministic models. This is an assumption on the relation
between the prior and the statistic use, and so it is hard to verify. In practice, we use
the cumulative discounted feature Φ-statistic, which allows us to better identify models.
Combined with UCT, this frequently results in very good policies from only small amounts
of data. Major open questions are how to make such approaches more efficient, and how to
automatically select the statistic, especially given the online nature of RL.

Acknowledgements. Thanks to Joel Veness for suggesting replacing ADP with MCTS
and to Mahdi Milani Fard for suggesting the link to compressed sensing.
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