

Large-Scale Content Extraction from
Heterogeneous Sources

Master’s Thesis in
Engineering Mathematics and
Computational Science

DANIEL LANGKILDE

Department of Computer Science
Chalmers University of Technology
Gothenburg, Sweden 2014

Abstract

In this thesis report we describe a novel approach to large scale content extraction
from heterogenous web sources. This task is a very important step in a range of web
crawling, indexing and data mining tasks. The described approach makes calculations
on the Document Object Model (DOM) in order to uncover which nodes contain relevant
content, and which do not. We set out with the hypothesis that the DOM tree can be
modeled as a hidden Markov tree model where the hidden state of each node indicates
if its relevant content or not. Using Gibbs samling we uncover the hidden states of the
node, and show that competative performance can be achieved using this approach.

Acknowledgments

I would like to thank my academic supervisor Christos Dimitrakakis who introduced me
to the theory of Gibbs sampling, which lays the foundation for the extraction method
proposed in this thesis. Without his patient supervision my attempt to implement the
suggested method would never had succeeded. I would also like to express my deep
gratitude to Staffan Truvé who introduced me to the task of information retrieval and
posed the question that this thesis attempts to address. I would also like to thank Mr.
Truvé for the opportunity to apply my work at Recorded Future. Many thanks also to
my peers at Chalmers and Recorded Future for their kind advice and to my girlfriend
for her patience. Finally, thanks to our puppy Alice, who kept me company during the
first month of this project.

Daniel Langkilde, Gothenburg, June 10th, 2015

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Context and Goals . 4

2 Bakground 5
2.1 Representation of Web pages . 5
2.2 Markov Models . 6
2.3 Gibbs Sampling . 10

3 Method 12
3.1 Data Set . 12
3.2 Model of Input Data . 13

4 Results 28

5 Conclusions and Discussion 30
5.1 Comparison with baseline . 30
5.2 Comparison with Boilerpipe . 30
5.3 Quality of Training Data . 31
5.4 Challenges . 31
5.5 General Drawbacks with Hidden Markov Tree Models 31

6 Future Work 32

i

1

Introduction

W
ith the rapid growth of published material available online there is an
ever increasing need of efficient content extraction methods. Unfortunately
web pages are designed for human readers, accessing web pages through
browsers, rather than for computers reading the data automatically. The

task is further complicated by the large amount of non-relevant information on a web
page. Modern web pages contain a multitude of information besides the actual con-
tent, such as navigation menus, user comments, advertising, related documents, legal
disclaimers etc. Estimates by Gibson et al. [7] showed that in 2005 40-50% of material
on the web was of a template nature, and at the time growing as a fraction of total
content by 6-8% per year.

Figure 1.1: Example of relevant
content marked with red.

We define content extraction as the task of ex-
tracting relevant content, for example a news ar-
ticle or blog post, from a web source specified by
a URL address. The content extracted should be
relevant in the sense that it belongs to the main
article or blog post on the web page. For example,
when viewing a news article on an online news site,
a lot of information that is not part of the actual
article is visible, such as related news, snapshots
from other articles, advertisements etc. An exam-
ple of this is shown in figure 1.1.

1.1 Related Work

The problem of accurately extracting relevant content from web pages is important for
several different tasks such as web crawling, indexing, data mining, readability tools etc.
If too much redundant information is included when mining a web page there is risk of
topic drift when classifying and categorizing the page. Such redundant information also
increases the index size of search engines. Little research on content extraction exists
from before the late 1990’s, but since the founding of search engines such as Lycos (1994),
AltaVista (1995) and Google (1998) the amount of research available has exploded.

1

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Most commonly the structure of the web page is analyzed based on its Document
Object Model (DOM). The DOM is a convention for representing objects in HTML doc-
uments. One formulation of the content extraction task is that of extracting templates,
i.e. the common content that appears in the same form on multiple pages from a site.
This formulation was first introduced by Bar-Yossef and Rajagopalan in 2002 [5] as a
way to reduce redundant, repetitive information when classifying and categorizing sites.
They proposed a technique based on a segmentation of the DOM tree and selection of
nodes using properties such as the number of links in the node.

Yi et al. [12] and Yi [13] phrase the problem as the task of removing noisy features,
i.e. features that contain information which harms mining. They sample pages from
the same site in order to build a Site Style Tree (SST). Baluja [4] employs decision
tree learning and entropy reduction for template detection at DOM level. The method
suggested by Baluja relies on information from the rendered page, such as the bounding
box for HTML elements, along with the DOM. Others have employed methods using
visual segmentation based on appearance [6] and exploiting term entropies [8].

The redundant information is sometimes referred to as boilerplate material. Kohlschüt-
ter [10] performs a quantitative segmentation of text based on token density revealing
two fuzzy classes of text covering content and boilerplate respectively. Based on this
conclusion Kohlschütter et al. [11] have devised a method for removal of boilerplate text
based on shallow text features such as number of words, average word length, number
of full stops etc. The algorithm is provided as an open-source package called Boilerpipe
[9]. Boilerpipe employs a number of rule based regular expressions in addition to the
shallow text analysis. Currently Boilerpipe appears to be the only open-source content
extraction package maintained regularly.

Apple’s browser Safari has a built in function for cleaning up articles and presenting
them in a more reader friendly way, known as the Safari Reader. Although Safari Reader
is a proprietary algorithm it is known to be built upon the Readability project by Arc90
[3]. The Readability algorithm is essentially a collection of rules and heuristics. Accord-
ing to a comparison by Kohlschütter [2] the Boilerpipe ArticleExtractor outperforms the
Safari Reader, see figure 1.2. The comparision is performed on the L3S-GN1 dataset and
measures recall, precision, and the F-measure as the harmonic mean of the two. Recall is
defined as the probability that actual content was labeled content, while precision is the
probability that non-content is labeled content. The measures are defined at token-level,
which means that a node with little text will matter less if it is mislabeled.

2

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Figure 1.2: Comparision: Boilerpipe (red), Safari (blue), baseline - keep everything (black).
Measures recall and precision presented using the F1-measure, i.e. harmonic mean of the two.
Recall is defined as the probability that actual content was labeled content, while precision is the
probability that non-content is labeled content. The measures are defined at token-level, which
means that a node with few words will matter less if it is mislabeled. µ is the average recall
while m is the average precision of the different algorithms.

3

1.2. CONTEXT AND GOALS CHAPTER 1. INTRODUCTION

1.2 Context and Goals

The content extraction task we attempt to solve is part of a product provided by
Recorded Future [1] called the Temporal Analytics EngineTM . The purpose of the
Temporal Analytics EngineTM is to provide a forecasting and analysis tool by scan-
ning web sources. As shown in figure 1.3 the content extraction step provides input
for further analysis. The goal of the complete analysis is to extract information about
named entities and their planned activities, referred to as events. The quality of the
content extraction step greatly impacts the accuracy of the end result. Recorded Future
currently use Boilerpipe as their primary content extraction tool for full-page harvest-
ing. Although Boilerpipe performs well on certain sources it often breaks or returns
erroneous information. Also, it does not provide sufficient detail in its classification of
content. When a URL is passed to the content extraction method the ideal would be for
it to return information from the source categorized as either of the following categories:

• Headline

• Fulltext - The text body of an article, blogpost or similar

• Supplemental - General meta data about the document such as author, pub-
lishing time, publishing place, related material, fact boxes, tables, image captions
etc.

• Comments - User comments on the article

• Not content - Everything else

We will henceforth refer to the above categories as the available types. The category a
specific node belongs to is referred to as its type.

Figure 1.3: Context of content extraction task

4

2

Bakground

After studying the publications mentioned in section 1.1 we conclude that the most
common approaches to content extraction take into account some combination of the
DOM, the properties of the rendering of the page, and text features. Before detailing
our conclusions regarding which information to take into account we will review the
concept of the Document Object Model (DOM) and introduce those of hidden Markov
tree models and Gibbs sampling.

2.1 Representation of Web pages

Web pages as they are perceived by humans accessing them using a browser are the
result of their source HyperText Markup Language (HTML) code and Cascading Style
Sheets (CSS) being rendered by the browser. The HTML source provides a structured
representation of the web page that forms the basis of the Document Object Model
(DOM). The DOM is a tree data structure consisting of all the HTML elements found
in the source.

Figure 2.1: Example of a small portion of a DOM tree data structure

The DOM tree of a web page originates in a root node, the <html> tag, and branches
down, each node labeled with their respective HTML tag. A small sample of such a tree
can be seen in figure 2.1. Each node in the DOM tree, except the root, has one unique
parent node. Each node can also have a number of child nodes. Any node with children

5

2.2. MARKOV MODELS CHAPTER 2. BAKGROUND

is referred to as an internal node. Any node that does not have children is referred to as
a leaf node. Typically, but not exclusively, leaf nodes are those that contain text. The
connection between two nodes is referred to as a link or edge. The height of a node is
the longest downward path to a leaf from that node. The height of the root is the height
of the tree. The depth of a node is the length of the path from the node to its root.
The distance between two nodes is measured by shortest number of edges that need to
be traversed in order to get from one node to the other.

2.1.1 Rendering of Web Pages

A web browser renders a web page using a layout engine such as Blink (Chrome, Opera),
Trident (Internet Explorer), Gecko (Firefox) or WebKit (Safari). The layout engine takes
the marked up content (such as HTML, XML, etc.) and the formatting information (such
as CSS, XSL, etc.) and displays the formatted content on the screen. We will make use
of the properties of the rendering of web pages. We do this by assigning each node of the
DOM the coordinates of its bounding box in the rendering using an open-source package
called CSSBox. CSSBox is essentially a light-weight browser written in Java. We will
not go into the details of web page rendering as it is beyond the scope of this report,
but we note that CSSBox does not support JavaScript rendering. Possible solutions to
this issue are discussed in section 6 .

2.2 Markov Models

This section is to be regarded as a very basic introduction to Markov models in general,
and particularly hidden Markov tree models. A Markov process is a stochastic process
that satisfies the Markov property. The Markov property for discrete time chains can
be described as

Pr(Xt+1 = sj | X0 = sk, . . . , Xt = si) = Pr(Xt+1 = sj | Xt = si). (2.1)

In a general sense this means that a process satisfies the Markov property if one can
make predictions for the next step based only on the current state of the process.

A Markov chain refers to a sequence of random variables (X0, . . . , Xn) generated
by a Markov process. In a regular Markov chain the state of each variable is directly
visible to the observer and therefore the transition probabilities are the only parameters.
In a hidden Markov model (HMM) the state of the variables are not directly visible,
but instead the observer sees some type of output dependent on the hidden state. Each
state has a probability distribution over the possible output types.

Figure 2.2: An illustration of a general hidden Markov model. x(t) is the state of the hidden
variable at time t, while y(t) is the state of the visible output at time t.

6

2.2. MARKOV MODELS CHAPTER 2. BAKGROUND

Assume we have a general HMM where the random variable x(t) is the hidden state at
time t and the random variable y(t) is the observable output at time t, as shown in figure
2.2. Further assume that the state space of the hidden variable is a finite, discrete set
such that x(t) ∈ {x1, . . . ,xN} is modeled as a categorical distribution. The parameters
of a hidden Markov model are of two types, transition and emission probabilities. The
transition probabilities govern the way the hidden state at time t is chosen given the
hidden state at time t − 1, while the emission probabilities govern the distribution of
the observed variable at a particular time given the state of the hidden variable at that
time.

Next we will formulate a description of a basic hidden Markov model extended to a
tree data structure in a Bayesian setting. However, before we can do that, we need to
introduce some theory concerning Bayesian inference.

2.2.1 Bayesian Inference

There are two dominant interpretations of probability theory, the Frequentist and the
Bayesian. Bayesian reasoning starts with some prior assumption about the probability
of an event, and then updates that belief as more observations are made. In order to
give a formal description of Bayesian inference we need to define a set of variables.

• x - a general data point

• θ - the parameter of the data point’s distribution, i.e. x ∼ Pr(x | θ)

• α - the hyperparameter of the parameter, i.e. θ ∼ Pr(θ | α)

• X - a set of n observed data points, i.e. x1, . . . ,xn

• x̃ - a new data point whose distribution is to be predicted

The prior distribution is defined by the parameters of the data points distribution
before any data is observed, i.e Pr(θ | α). One interpretation is that α describes our
hypothesis about the behaviour of the data. The posterior distribution is the distribution
after data has been observed. The posterior distribution is calculated using Bayes’
rule:

Pr(θ | X,α) =
Pr(X | θ, α)Pr(θ | α)

Pr(X | α)
∝ Pr(X | θ)Pr(θ | α) (2.2)

Pr(X | θ) is called the likelihood. One way to understand this is when its viewed as
a function of the parameter, L(θ; X) = Pr(X | θ), i.e. the likelihood of seeing X given
θ. The marginal likelihood is the distribution of the observed data marginalized over
the parameters, i.e.

Pr(X | α) =

∫
θ
Pr(X | θ)Pr(θ | α)dθ (2.3)

Bayes’ rule is readily derived from the basic principles of conditional probability, i.e.
that

Pr(X | θ) = Pr(X ∩ θ)Pr(θ) (2.4)

7

2.2. MARKOV MODELS CHAPTER 2. BAKGROUND

where

Pr(X ∩ θ) =
Pr(X)Pr(X ∩ θ)

Pr(X)
(2.5)

and

Pr(θ | X) =
Pr(θ ∩X)

Pr(X)
(2.6)

If the posterior distribution Pr(θ | X,α) is in the same family of distributions as
the prior distribution Pr(θ | α) then the prior and posterior distributions are called
conjugate distributions, and the prior is called a conjugate prior for the likelihood
function. A family of distributions that is conjugate to itself is called self-conjugate. The
form of the conjugate prior can generally be determined by inspection of the probability
density function of a distribution.

To illustrate, lets look at a simple coin tossing example. For a succession of n coin
tosses the probability of getting k heads will be given by the binomial distribution as

k | n,θ ∼ Binomial(θ, n) (2.7)

where θ is an unknown variable to be learned.
If we let χk,n denote the set of all successions of n throws that contain exactly k

heads, then the binomial likelihood can be derived as

Pr(k | θ) =
∑

x∈χk,n

Pr(x | θ, n) =
∑

x∈χk,n

θk(1− θ)n−k =

(
n

k

)
θk(1− θ)n−k (2.8)

Assume that we want to estimate the probability of success for the coin. A common
choice of prior for binomial distributions is the beta distribution. It will eventually be
clear why, so bear with me. Using this we get that the prior distribution of θ is

Pr(θ | α, β) ∝ θα−1(1− θ)β−1 (2.9)

Since this density is required to integrate to 1 we may write:

Pr(θ | α, β) =
θα−1(1− θ)β−1∫ 1

0 u
α−1(1− u)β−1du

=
1

B(α,β)
θα−1(1− θ)β−1 (2.10)

where B(α, β) is the beta distribution. Eq (2.10) exploits the fact that B(α, β) =
Γ(α)Γ(β)
Γ(α+β) . It will now be clear why the beta distribution is used as a prior for binomial

data. Our posterior distribution over θ is given by:

Pr(θ | n,k,α,β) =
Pr(k | n,θ)P (θ | n,α,β)

Pr(k | n,α,β)

∝ Pr(k | n,θ)P (θ | n,α,β)

= Pr(k | n,θ)P (θ | α,β)

=

(
n

k

)
θk(1− θ)n−k × Γ(α)Γ(β)

Γ(α+ β)
θα−1(1− θ)β−1

∝ θk(1− θ)n−k × θα−1(1− θ)β−1

= θk+α−1(1− θ)n−k+β−1

(2.11)

8

2.2. MARKOV MODELS CHAPTER 2. BAKGROUND

This is exactly the same function as in (2.9). That is, our posterior is also a beta
distribution. More generally put, the posterior is proportional to the prior times the
likelihood function. The conclusion is that if

k | n,θ ∼ Binomial(θ, n)

θ | α,β ∼ Beta(α, β)
(2.12)

then
θ | k,n,α,β ∼ Beta(α+ k,β + n− k) (2.13)

Using our newfound knowledge of Bayesian inference we now return to the description
of a hidden Markov tree model in a Bayesian setting.

2.2.2 Hidden Markov Tree Model

We will begin our description by extending the type of hidden Markov model introduced
in section 2.2 to the type of tree data structures described in section 2.1. The idea
behind hidden Markov tree models is that every node of the tree has a hidden and an
observable variable, labeled Y and X respectively in figure 2.3. Similar to a discrete
time hidden Markov model, such as the one depicted in figure 2.2, where the hidden
state x(t+ 1) depends on x(t), we assume that the hidden state of each node in the tree
depends on the state of its observation and the hidden state of its parent. This means
that Y2 depends on X2 and Y1 in figure 2.3.

Figure 2.3: Illustration of nodes in a tree data structure with hidden states (Y) and observable
variables (X).

Lets imagine a tree with n nodes, the hidden state of node k labeled Yk. The vector
describing all hidden states simultaneously is denoted Y = {Y1, . . . ,Yn}. Assume the hid-
den state is from a finite, discrete set such that Yk = Y n ∈ {Y 1, . . . ,Y m}. The observable
variable for node k is labeled Xk. Assume that there is some fixed, known parameter
θ governing transmission and emission probabilities. If we know X = {X1, . . . , Xn}, we

9

2.3. GIBBS SAMPLING CHAPTER 2. BAKGROUND

can calculate the probability distribution of the hidden state of a particular node k over
all possible hidden states as

Pr(Yk = Y i | Xk, θ, α) =
Pr(Xk | Y i, θ, α)Pr(Y i | θ, α)∑m

j=1 Pr(X,Y
j | θ, α)

(2.14)

such that m∑
i=1

Pr(Yk = Y i | Xk, θ, α) = 1 (2.15)

If we instead of having a fixed θ only know the distribution of it, we can compute
the probability distribution of the hidden state using the fact that

Pr(Y | X, α) =

∫
θ
Pr(Y | X, θ, α)dPr(θ | α) (2.16)

where dP (θ | α) = Pr(θ | α) and α is the hyperparameter of θ. Finally, assume we
know all (X,Y) = {(X1,Y1), . . . ,(Xn,Yn)} but not θ. In this case we can estimate the
probability distribution of θ as

Pr(θ | X,Y, α) =
Pr(X,Y | θ, α)Pr(θ | α)

Pr(X,Y | α)
=
Pr(X | Y, θ, α)Pr(Y | θ, α)Pr(θ | α)

P (X,Y | α)
(2.17)

If we train a model, i.e. estimate θ, then we can proceed to determine the probability
that a node k has hidden state Yk using

Pr(Yk | Xk,X\k,Y\k, α) =

∫
θ
P (Yk | Xk, θ, α)dP (θ | X\k,Y\k, α) (2.18)

You may notice that this means that we condition the probability distribution of the
hidden state for node k on the hidden state of all other nodes. In order to solve equation
(2.18) we need the results from equation (2.17). Eq. (2.18) is not computationally
tractable, i.e. it cannot be computed in closed form or using explicit numerical methods.
There are a variety of different techniques that can be utilized instead, such as the
forward-backward algorithm. Rather than using the forward-backward algorithm will
make use of something called Gibbs sampling. Gibbs sampling is the final concept we
need to introduce before describing the suggested content extraction algorithm.

2.3 Gibbs Sampling

Gibbs sampling is a form of Markov chain Monte Carlo (MCMC) method. Generally, the
point of MCMC methods is that they make it possible to avoid computing the marginal
likelihood explicitly. The idea behind Gibbs sampling is that given a multivariate dis-
tribution it is simpler to sample from a conditional distribution than to integrate over a
joint distribution. The Gibbs sampling algorithm generates an instance from the distri-
bution of each variable in the joint distribution in turn, conditional on the current values

10

2.3. GIBBS SAMPLING CHAPTER 2. BAKGROUND

of the other variables. It can be shown that the sequence of samples constitutes a Markov
chain, and the stationary distribution of that Markov chain is just the sought-after joint
distribution.

Putting it in a more mathematical way, lets say we have a hidden Markov tree with n
nodes each labeled N1 . . . Nn. The probability of a particular node Nk begin of particular
type Yk is given by Eq. (2.18). Our goal is to obtain a sample Y = (Y1 . . . Yn) from the
joint distribution function Pr(Y1, . . . Yk). For reasons that will be clear in the outline of
the algorithm we denote the ith sample as Yi = (Y i

1 . . . Y
i
n).

Outline of Gibbs Sampling Algorithm

The implementation of a Gibbs sampler for hidden Markov tree proceeds as follows:

• Step 0: Random initial state - Assign each node of the tree data structure a
random hidden state.

• Step 1: Sample the conditional distribution - For every iteration i, for each
node N i

k sample the conditional distribution Pr(Y i
k | Y i

1 , . . . , Y
i
k−1, Y

i−1
k+1 , . . . , Y

i−1
n).

Put another way we sample the probability distribution for the type of node Nk at
time i conditioned on the hidden state of all other nodes using their most recently
sampled hidden states. After sampling we update the hidden state of node Nk.

• Step 2: Update our posteriors - After we have update the hidden states of all
nodes we temporarily add the resulting tree data to our calculation of posteriors.
These are then replaced in the next iteration, i.e. the data set does not grow.

• Step 3: Repeat step 1-2 until convergence. Its complicated to define con-
vergence but usually the best way to determine if the sampler has converged is to
run two samplers in parallel. After some initial burn in time the results of both
samplers are compared. When they are similar for a long enough time conver-
gence is determined to be reached. The Gibbs sampler only has one deterministic
convergence state which means that both samplers, although stochastic in nature,
will converge in the same state. In our implementation we have set the number
of iterations to 30, averaging the result over the last 10 iterations, rather than
comparing the state of two converging chains.

11

3

Method

Armed with the concepts introduced in chapter 2 we now return to the task of designing
our content extraction method. Technically content extraction in this context is equal
to classification of the nodes of a DOM tree. The content extraction method might as
well be called a DOM tree node classifier. In the field of machine learning classification
is considered a form of supervised learning, i.e. it requires a training set of labeled
examples. Its easy enough to create annotated data by labeling nodes of DOM trees by
hand. When designing a classification algorithm it is important to have a good model
describing the properties and behavior of the input data. Based on the model we can
evaluate each input and assign it the correct label.

3.1 Data Set

Through out the design and testing process we will rely on an annotated data set created
by Kohlschutter et. al. [?] called L3S-GN1. The data set originally consisted of
621 articles from 408 different sources collected during the first half of 2008. Since its
creation some of the articles have disappeared from the web, and currently 599 articles
are accessible. For each article in the data set there is the source URL along with two
files; the original HTML file and an annotated HTML file. In the annotated files each
node is labeled as one of the following types:

1. Headline
2. Full text
3. Supplemental
4. Related content
5. Comments
6. Not content

The text corpus in the dataset follows Zipf’s law and is of such size and variety that it
is considered sufficient for evaluation.

12

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

3.2 Model of Input Data

We notice in section 1.1 that three sources of features are popular; the DOM, the prop-
erties of the rendering of the page and text features. Inspired by a common technique
in the field of natural language processing called part-of-speech tagging we hypothesize
that the problem can be viewed as a sequence labeling problem, i.e. that the context
of the node in the DOM tree matters when determining its type. The most common
statistical models in use for sequence labeling make the assumption that the sequence
satisfies the Markov property (remember Eq. (2.1)).

Based on this reasoning we hypothesize that the DOM can be modeled as a hidden
Markov tree model where the hidden state of each node is the type of that node (i.e. if its
headline, fulltext, supplemental etc.) and the observable variable is a vector composed
of features of the node in question. The features are based on information from the
DOM tree, the rendering and the text in the node. We will now develop a more formal,
mathematical description of such a model specifying the features we will make use of.

First we address the question of which features of the input data to consider. Assume
a tree of n nodes, {N1, . . . ,Nn}, each with one of m possible types. Lets define the set
of all nodes with type k as Nk = {N1

k , . . . ,N
i
k} such that the nodes of the entire tree

form the set C = {N1 ∪ · · · ∪ Nk}. Each subset of C is pairwise disjoint since each node
must have one and only one type. The best choice of features would be such that given
a random node N j we maximize the probability of placing it in the correct set Nk.

The following features have been evaluated as candidates:

1. HTML tag - fig. 3.1

2. Number of children - fig. 3.2

3. Type of children - fig. 3.3

4. HTML tag of children - fig. 3.4

5. Number of siblings - fig. 3.5

6. Type of siblings - fig. 3.6

7. HTML tag of siblings - fig. 3.7

8. Type of parent - fig. 3.8

9. HTML tag of parent - fig. 3.9

10. Number of words in node - fig. 3.10

11. Number of full stops - fig. ??

12. Node offset from top of page rendering - fig. 3.11

13. Node offset from left edge of page rendering - fig. 3.12

14. Node width in rendering - fig. 3.13

15. Node height in rendering - fig. 3.14

13

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

Before we detail our selection of features to include we will give a few examples of
how a feature is used in the model. Let us begin with an example of how we can use
the number of children of a node as a feature. Figure 3.2 shows the distribution of the
number of children for nodes labeled headline, fulltext and supplemental respectively.
As we can see each of the content types have similar propensity to have children, while
nodes labeled Not content appear to have a higher probability of having children.

For this example we assume that the number of children is the only feature we take
into account in our model. In that case the hidden state of a node is given as Yk =
Y n ∈ {headline, fulltext, supplemental} while the observable variable Xk is the number
of children. We want to estimate the emission probability connecting the observable
variable to the hidden state. By inspection of fig. 3.2 we see that the number of children
of node k, Ck, for each type could be described by a geometric distribution. This
obviously isn’t a perfect match, but sufficient to capture the difference, and suitable for
a demonstration. Described mathematically we can say that

Ck ∼ Geometric(p(Yk)) (3.1)

Using Bayesian inference we can estimate the probability distribution of the pa-
rameter for the geometric distribution of each node type. We do this using conjugate
priors. The conjugate prior of the geometric distribution is the beta distribution and its
hyperparameters are α and β such that

p(Yk) ∼ Beta(αYk + n, βYk +

n∑
i=1

xi) (3.2)

Using an uninformed prior we then simply count the number of children for each node
of each type, entering the values into Eq. (3.2). To calculate the probability that a
node Nk is of a specific type Yk given its number of children Ck we use the estimate in
equation (3.2) and plug that into

Pr(Yk | Ck) = (1− p)Ck−1p (3.3)

Next we look at the type of parent as a feature. The possible hidden and observable
variable of node k are now both the set of all occurring node types. We are now trying
to estimate the transition probability from one hidden state to the next. The transition
probability takes the form of a multinomial distribution. A multinomial distribution is
defined by a set of event outcomes and their respective probability. For n independent
trials, each of which results in one of the possible event outcomes, the multinomial
distribution gives the probability of any particular combination of numbers of times
each event outcome occurs. Put mathematically

Pr(Yk | Y parent
k) ∼ Multinomial(q(Y parent

k) (3.4)

The conjugate prior of the multinomial distribution is the Dirichlet distribution such
that

14

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

q(Y parent
k) ∼ Dirichlet(γ +

n∑
i=1

xi) (3.5)

where the γ ∈ Rn is a vector describing our prior knowledge of the number of occurrences
of each possible outcome. Ultimately the probability of a node Nk being of a specific
type Yk given that its parent is Y parent

k is calculated using

Pr(Yk | Y parent
k) =

n!

Y1! · · ·Yk!
qY11 · · · q

Yk
k (3.6)

Following this same treatment we can use any feature of the data as long as it has a
suitable conjugate pair of distributions for priors and posteriors.

In figure 3.1 - 3.14 we have computed the distribution of each of the parameters
presented earlier for the dataset at hand. Several methods are available to evaluate
the best set of features to select. We have chosen choose features by inspecting the
graphs, rather than implement a clustering algorithm, but we suggest this as a future
improvement in section 6. It is our informal experience that selecting good features is
very time consuming for industry applications. Generally you want to leverage your
intuition about which features matter, while at the same time check that your training
data covers the feature space in a meaningful way. If you engineer features that are
not sufficiently represented in the training data, they are useless. Since we only wish to
prove the concept of this method we have chosen to include all features at this point.
The graphs are included to help the reader appreciate the value of the features from
visual inspection.

15

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

a

div

h1h2
li

other

p
td

Not content
a

div

h1

h2

li

other

ptd
Headline

a

div

h1h2li

other p

td
Fulltext

a

div

h1h2li

other

p

td
Supplemental

Figure 3.1: Distribution of tag of nodes.

16

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10
x 10

4 Not content

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

Headline

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000

Fulltext

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

Supplemental

Figure 3.2: Distribution of number of children.

17

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

Not content Headline

Fulltext Supplemental

Figure 3.3: Distribution of type of children. Blue: Not content, Red: Fulltext, Green: Headline,
Magenta: Supplemental.

18

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

a

div

other

p

Not content

a

div

other

p
Headline

a

div

other

p
Fulltext

a

div

other

p

Supplemental

Figure 3.4: Distribution of tag of children.

19

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

4 Not content

0 10 20 30 40 50
0

100

200

300

400

Headline

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Fulltext

0 10 20 30 40 50
0

200

400

600

800

1000

Supplemental

Figure 3.5: Distribution of number of siblings. Blue: Not content, Red: Fulltext, Green:
Headline, Magenta: Supplemental.

20

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

Not content Headline

Fulltext Supplemental

Figure 3.6: Distribution of type of siblings. Blue: Not content, Red: Fulltext, Green: Headline,
Magenta: Supplemental.

21

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

a

div

li

other

p
Not content

a

div

li

other

p

Headline

a

div

li
other

p

Fulltext
a

div

li
other

p

Supplemental

Figure 3.7: Distribution of tag of siblings.

22

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

Not content Headline

Fulltext Supplemental

Figure 3.8: Distribution of type of parent nodes. Blue: Not content, Red: Fulltext, Green:
Headline, Magenta: Supplemental.

23

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

a

div

h1h2

li
other

p

td

Not content
a

div
h1
h2
li

other

p

td

Headline

a

div li
other

p

td

Fulltext
a

div

h1h2li

other

p

td

Supplemental

Figure 3.9: Distribution of tag of parent nodes.

24

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

0 10 20 30 40 50 60
0

2

4

6

8

10
x 10

4 Not content

0 10 20 30 40 50 60
0

50

100

150

Headline

0 10 20 30 40 50 60
0

100

200

300

Fulltext

0 10 20 30 40 50 60
0

200

400

600

Supplemental

Figure 3.10: Distribution of number of words in each node.

0 1000 2000 3000 4000
0

2000

4000

6000

8000

10000

Not content

0 1000 2000 3000 4000
0

20

40

60

80

Headline

0 1000 2000 3000 4000
0

50

100

150

200

250

300

350

Fulltext

0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

Supplemental

Figure 3.11: Distribution of node offset from top.

25

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

4 Not content

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Headline

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

Fulltext

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Supplemental

Figure 3.12: Distribution of node offset from left.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
x 10

4 Not content

0 200 400 600 800 1000 1200
0

50

100

150

200

250

Headline

0 200 400 600 800 1000 1200
0

1000

2000

3000

Fulltext

0 200 400 600 800 1000 1200
0

100

200

300

400

Supplemental

Figure 3.13: Distribution of width of rendering of nodes.
Max width of rendering is 1366 px.

26

3.2. MODEL OF INPUT DATA CHAPTER 3. METHOD

0 50 100 150 200
0

2

4

6
x 10

4 Not content

0 50 100 150 200
0

50

100

150

200

Headline

0 50 100 150 200
0

500

1000

1500

2000

Fulltext

0 50 100 150 200
0

200

400

600

800

1000

Supplemental

Figure 3.14: Distribution of height of rendering of nodes.

27

4

Results
The dataset is divided into two parts, a training set and a validation set. In order to test
on all the documents we randomize the selection of training and validation data for each
run. After fitting the model parameters to the training dataset evaluation is performed
by running the Gibbs sampler on each of the documents in the validation dataset. For
each document the hidden state of each node is estimated. Finally the estimated states
are compared to the actual states.

Two measures build the foundation for our results; recall and precision. We define
recall as the probability that we correctly label a token as the right type. This means
that if we correctly label a node containing ten tokens, we count that as ten correct
labels. Recall is defined as the probability that a token which we estimate to be content
is actually content. The reason for presenting our results on token level is to enable
comparison with Boilerpipe. We also make use of the F1-measure defined as

F1 = 2 · precision · recall

precision + recall
(4.1)

For each document we compute the F1-measure. In our presentation of the results
we then order the documents ranging from highest F1-measure to lowest, same as in
figure 1.2. Kohlschütter et. al. presented their results computed on token level, rather
than node level. We compute and present results for both. For the purposes of content
extraction it makes sense to use results on token level, since nodes with little or no text
have less importance for the quality of output.

In order to compare the effect of different configurations of the method and the
performance on different types of nodes we present results for:

• Complete analysis Recall and precision measure based on exact type match for
all available types.

• Only maintext Recall and precision measure considering only maintext nodes.
Everything else is ignored.

• Keep every node with >10 words Recall and precision measure only differen-
tiate between content and not content. Significantly easier than a measure based
on exact type match. This difference is since a naive classifier based on the number
of words in a node can only give a binary answer.

• Keep all text Same as for the results with >10 words kept.

28

CHAPTER 4. RESULTS

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1−measure

Maintext

Keep all text

>10 words

Complete analysis

Figure 4.1: All types

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Maintext

Keep all text

>10 words

Complete analysis

(a) Recall

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

Maintext

Keep all text

>10 words

Complete analysis

(b) Precision

29

5

Conclusions and Discussion

We can conclude from the results that there is potential to improve state of the art for
content extraction through the introduction of a hidden Markov tree model. However,
its difficult to ascertain for sure until all methods compared can be made to run on the
exact same data set with the exact same set of pre- and postprocessing machinery.

5.1 Comparison with baseline

We present two different baselines; keeping all text and keeping text from all nodes
with more than ten words. It turns out that for a binary classification between content
and not content keeping all text from nodes with more than ten words proves to be
rather efficient when evaluated on the token level. Looking at fig. 3.10 we see that this
makes sense since most full text has more than ten words and therefore will be correctly
classified. Since that also makes up the wast majority of the total number of tokens the
results will appear quite good. But as we can see a lot of the headline and supplemental
material, as well as a not insignificant amount of full text, will be missed. For the
purpose of a multicategory classification with high demand for recall and precision this
clearly would not be a good algorithm, although it may look similar at first glance of
fig. 4.2b. Same with the even worse method keeping all text.

5.2 Comparison with Boilerpipe

Judging from fig. 1.2 it may seem like Boilerpipe outperforms our suggested method.
This may however not be the case since Boilerpipe runs a postprocessing step that cleans
up certain common mistakes. The most common error in output from our suggested
method is mislabled user comments at the bottom of an article. This text is usually
presented in a manner similar to the main text of the article. This could be taken care
of with rule based postprocessing. This is not implemented in the method from which
we have gathered our results. We suggest development of an evaluation environment
ensuring equal conditions as a future work.

As we can see in figure 1.2 Kohlschütter [2] chooses to benchmark Boilerpipe against
other algorithms on token level. The choice of comparing at token level results in smaller

30

5.3. QUALITY OF TRAINING DATACHAPTER 5. CONCLUSIONS AND DISCUSSION

chunks of text being misclassified having smaller impact. This may be reasonable for
some applications, but not for the context in which our method is meant to be used. Its
enough to get one sentence with a critical entity-event relationship that is misclassified
as content to get a strange signal. Therefore it would make more sense to compare the
algorithms on node level. We suggest this as a future investigation. From our own in-
spection it appears that our algorithm outperforms in this case, but further investigation
is needed to establish this with certainty.

5.3 Quality of Training Data

The training data set used for our evaluation is from 2008. This means that the standards
employed in it are outdated. The reason we chose to still use it is to enable comparison
with Boilerpipe. In order to use this method in a production environment better training
data is required. A benefit of the method suggested is that for sources where high
precision and recall is critical a particular model can be trained, for use on only that
specific source.

5.4 Challenges

As mentioned the largest difficulties lie in finding smaller chunks of information such as
supplemental information and related content. These nodes are much more similar and
may be difficult if not impossible to distinguish from each other and Not content-nodes,
regardless of feature vector. A potential way to overcome this could be to establish a
context of the article using the fulltext, since that is much easier to find. Based on the
established context, related and supplemental nodes can be distinguished depending on
their similarity to the main text.

5.5 General Drawbacks with Hidden Markov Tree Models

A drawback with introducing the hidden Markov tree model is that they are computa-
tionally expensive and slow to converge. Especially when relying on information from
the rendered page, which is expensive to harvest. We have not taken the computational
expense into account in this project, but suggest it as a topic for future work, see 6. This
thesis instead serves as a proof of concept regarding the introduction of hidden Markov
tree models.

31

6

Future Work

A challenge in every project is to limit the scope and set clear parameters for success.
Through the process of designing our content extraction method, several ideas for im-
provements have been stumbled upon. As investigate all of them would make the project
impossible to finish we provide a list of ideas for improvements to be investigated in the
future:

Optimization of selection of features

The selection of features of the data based on which the computations are performed
have significant impact on the quality of the output. The fewer the number of features,
the faster the extraction method returns a result. However, without enough features it
will fail to recognize subtle differences between node states. It should be possible to write
an algorithm to cluster the feature vectors of all nodes based on different combinations of
features. By doing this it should be possible to determine the smallest set of features that
creates distinct clusters of data, i.e. make it possible to differentiate between different
type nodes.

Ruleset for special cases

Looking at the most common sources of errors we conclude that there is the possibility
of introducing a set of rules that perform a sanity check on the output. For example
nodes with certain html tags can be pruned away by default.

Optimization of algorithm

There is a lot to be done to reduce the run time of the Gibbs sampler. Presently
the most computationally expensive part of the algorithm is instantiating the Dirichlet
and Beta generators. Due to the design of the random generators in use they have to
be instantiated for each set of input parameters. This makes for fast computation of
successive samples from the same distribution, but slow computation of a single sample
for distributions with different parameters.

32

CHAPTER 6. FUTURE WORK

Better datasets

Key to every machine learning based method is a large, high quality training data set.
The data set used in this project is outdated, and therefore not representative of the
structure of modern web pages. To create suitable datasets an annotation tool would be
useful. Such a tool could be developed using JavaScript.

Better Layout Engine Implementation

The layout engine in use, CSSBox, is not capable of handling for example JavaScript
rendered code. The is a good candidate substitution for this in the form of PhantomJS,
which should be evaluated. Also, since standards for webdevelopment are prone to
change quickly its important to use some package that is maintained and kept up to
speed with current developments.

Make more use of the Recorded Future entity extractors

The presence of certain entities, i.e. organizations, journalists or individuals, in a string
would be a useful feature to include in the data model. Especially when combined with
a context based model. If for example the full text refers to a certain set of entities and
events, any related or supplemental information is likely to be related to those entities.
An even stronger relationship is likely present between the headline and full text.

33

Bibliography

[1] Recorded future. www.recordedfuture.com.

[2] Boilerpipe benchmark against safari. https://code.google.com/p/boilerpipe/

wiki/Benchmarks, November 2010.

[3] Readability. http://blog.arc90.com/2010/06/07/safari-5-another-step-

towards-better-reading-on-the-web/, June 2010.

[4] Shumeet Baluja. Browsing on small screens: Recasting web-page segmentation into
an efficient machine learning framework. WWW, 2006.

[5] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and
its applications. In Proceedings of the 11th International Conference on World Wide
Web, WWW ’02, pages 580–591, New York, NY, USA, 2002. ACM.

[6] Deng Cai, Deng Cai, Shipeng Yu, Ji-rong Wen, Wei-ying Ma, Deng Cai, Shipeng Yu,
Ji-rong Wen, and Wei-ying” Ma. Vips: a vision-based page segmentation algorithm.
Microsoft Research, 2003.

[7] David Gibson and David Gibson. The volume and evolution of web page templates.
WWW, ACM 1-59593-051-5/05/0005., 2005.

[8] Hung-Yu Kao, Jan-Ming Ho, and Ming-Syan Chen. Wisdom: Web intrapage infor-
mative structure mining based on document object model. IEEE Trans. on Knowl.
and Data Eng., 17(5):614–627, May 2005.

[9] Christian Kohlschutter. Boilerpipe source. http://aiweb.techfak.uni-

bielefeld.de/content/bworld-robot-control-software/.

[10] Christian Kohlschutter. A densitometric analysis of web template content. In Pro-
ceedings of the 18th International Conference on World Wide Web, WWW ’09,
pages 1165–1166, New York, NY, USA, 2009. ACM.

[11] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate de-
tection using shallow text features. In Proceedings of the Third ACM International

34

www.recordedfuture.com
https://code.google.com/p/boilerpipe/wiki/Benchmarks
https://code.google.com/p/boilerpipe/wiki/Benchmarks
http://blog.arc90.com/2010/06/07/safari-5-another-step-towards-better-reading-on-the-web/
http://blog.arc90.com/2010/06/07/safari-5-another-step-towards-better-reading-on-the-web/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on Web Search and Data Mining, WSDM ’10, pages 441–450, New York,
NY, USA, 2010. ACM.

[12] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for
data mining. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’03, pages 296–305, New York,
NY, USA, 2003. ACM.

[13] Lan Yi and Lan Yi. Web page cleaning for web mining through feature weighting. IN
INTL. JOINT CONF. ON ARTIFICIAL INTELLIGENCE (IJCAI, pages 43–50,
2003.

35

	Introduction
	Related Work
	Context and Goals

	Bakground
	Representation of Web pages
	Markov Models
	Gibbs Sampling

	Method
	Data Set
	Model of Input Data

	Results
	Conclusions and Discussion
	Comparison with baseline
	Comparison with Boilerpipe
	Quality of Training Data
	Challenges
	General Drawbacks with Hidden Markov Tree Models

	Future Work

