
Abstract

This tutorial examines simple physical models of vehicle dynamics and
overviews methods for parameter estimation and control. Firstly, tech-
niques for the estimation of parameters that deal with constraints are
detailed. Secondly, methods for controlling the system are explained.

1

Online statistical estimation for vehicle

control: A tutorial

Christos Dimitrakakis

July 23, 2009

2

Contents

1 Introduction 4

2 Modelling the car 5

2.1 The parameters . 5
2.2 The model . 6

3 Parameter estimation and inverse control 6

3.1 Minimisation with gradient descent. 7
3.2 Application of gradient descent. 9
3.3 Control using estimates . 11
3.4 Estimation of constrained parameters 12

3.4.1 Projections . 13
3.4.2 Penalty and barrier methods 14
3.4.3 Lagrange multipliers 15

3.5 Bayesian methods . 16
3.5.1 The prior as a penalty term 17
3.5.2 The prior as a projection 17

4 Control and optimisation 18

4.1 Braking example . 18
4.2 Trajectory optimisation . 19

4.2.1 Trajectory representation 19
4.2.2 The cost function . 20
4.2.3 The gradient . 20
4.2.4 Results . 22

4.3 Improving the trajectory cost function 23
4.3.1 Problem statement 23
4.3.2 Handling the inequality constraints 24
4.3.3 Calculating the derivatives 24

5 Stochastic control 25

5.1 Control with an unknown model, but known cost 25
5.2 Control with a known model, but unknown cost 26
5.3 Control with unknown model and cost 26

A Notation 26

B Spline curve acceleration estimation 27

B.1 In one dimension . 27
B.2 Multi-dimensional splines 28

C Invariant cost function 28

C.1 Movement on a circle of fixed radius 28
C.2 Dynamic programming time calculation 29

3

1 Introduction

Statistical estimation can be used to estimate unknown quantities given
a model for the world, when there some noise or uncertainty is admitted
into the measurements or process. One of the first examples of the use
statistical methods was the estimation of planetary movements in the so-
lar system. This involved the following problem: while the trajectory of
a planet can be found exactly by solving a system of equations given only
a small number of observations, the observations were noisy: fitting dif-
ferent sets of observations would give different trajectories. The solution
was to find a single set of parameters that made the equations induced
by the application of the planetary laws of motio approximately match all
our observations. In general, this principle can be stated as follows: given
a parametric model and some observations, find the parameters that best
explain the observations. The field is ultimately an application of statis-
tics, whose techniques are used everywhere from physical modelling to
artificial intelligence.

The purpose of this paper is to give a tutorial on model estimation and
its application to vehicle control. A number of motivating examples will
be used throughout the text, with particular emphasis on the relatively
simple problems of estimating the physical properties of a braking model
and the necessary controls for executing braking manoeuvres.

We first give an overview of a parametrised braking/acceleration model
and we outline how it can be employed in a lapped race framework. Such
a framework is particularly interesting because it allows for taking re-
peated measurements around the track. Furthermore, it admits a simple
parametrised model for properties of the track surface. We specify the
given quantities and parameters of the model and explain how they can
be used to build an accurate prediction of the acceleration that results
from the application of car controls. Subsequent sections are more general
in scope, however the initial model parametrisation is used throughout.

Section 3 outlines how to perform parameter estimation and how to
use the estimated parameters to solve the control problem when an in-
verse solution available in closed form. This section begins by viewing the
problem of parameter estimation as an optimisation problem and provid-
ing gradient-based optimisation techniques for solving it. Subsequently it
touches upon more advanced estimation topics, such as the estimation of
parameters with constraints or with a given prior probability distribution
and it explores the relations between the two.

Section 3 deals with the case where given a model, it is possible to
solve for the optimal control and the task is to determine what the model
is. A complementary situation occurs when the model is known but there
is no closed form solution for the optimal control. In that case, if a cost
can be defined analytically, the problem can be formulated as that of
optimising the cost function with respect to the free parameters. Section
4 focuses on this view of control as a deterministic optimisation problem
and gives two examples: firstly, that of determining the optimal braking
input such that we stop after a given number of meters – secondly, that
of determining the optimal trajectory of a vehicle around a track.

The hardest case occurs when the model is unknown, and neither

4

the optimal control nor the cost function can be formulated analytically.
Section 5 considers this extreme case and compares the different method-
ologies.

Finally, I would like to note that this paper will be expanded and
corrected as necessary. Please feel free to email me with corrections, sug-
gestions and questions, especially about sections which seem particularly
unclear.

2 Modelling the car

We will first try to estimate the acceleration that results from the appli-
cation of the brake or gas pedal at different speeds. We have some given
quantities, but the model is too complex for us to be able to model every-
thing: different parts of the race track might have characteristics that are
easy to throw off any model that we might care to make. Furthermore,
a very detailed model has the disadvantage that it then becomes difficult
to solve. In the end we will wish to calculate appropriate braking values
for various situations using our model, so this an important fact to keep
in mind.

We try to estimate the following model, which ignores all but the
simplest vehicle dynamics. In particular, the variability due to terrain
conditions, road curvature and inclination and other factors, are not taken
into account; building an explicit model for this purpose can be error-
prone. The following equation is our model of the car’s acceleration given
the current speed, the mass, the horse and braking power, some known
physical constants and some free parameters:

du/dt = dtan

„

wbxb +
waxa

max(u, 10)

«

(µ+wµ)(G+
CDu2

m
)−

CR|u|u

m
(2.1)

where xa, xb are the acceleration and braking input respectively, µ is an
a priori given friction coefficient and G is the assumed gravitational ac-
celeration. The vehicle speed is denoted by u, and CD, CR represent the
aerodynamic coefficients for downforce and resistance.

A lot of the system’s state is not taken into account in this equation.
We attempt to model this unknown variability by introducing additional
terms: scalar functions which depend on the state. What the “state”
is a design issue. In some cases, a single scalar value, rather than a
function, will be sufficient. In our application it was decided to use linear
functions that depend on a representation of the track position. This
implementation is described below.

2.1 The parameters

Our purpose is to estimate wa, wb, wµ. These are not scalar quantities,
but parametrised functions of the form w = θT p, where θ is a parameter
vector and p summarises information about the position.

The predominant application we have in mind is racing multiple laps
on a single track. To apply the method in this case, the track is split into n
logical segments and we define p to have the form (1, 0, . . . , 0, 1, 0, . . . , 0)

5

and length n + 1, where n is number of logical segments in which the
track is split. Thus, the first component of each parameter vector will
be globally adjusted for the whole track, and the others will describe
local variations. It is possible to use smoother functions, but we are not
concerned with those.

2.2 The model

Before we derive updates, we explain equation (2.1) in a bit more detail.
The first factor describes the accelerating effect of gas or break pedal
application. The terms xa, xb ∈ [0, 1] measure the amount of gas/break
pedal application. The term wa models the car’s available power. Since
F = P/u, this offers a natural way to model the possible force. The
maximum value of this force is clamped to be that available at a speed
of 10 ms−1. The term wab is the maximum braking force possible. Both
wa, wb are implicitly scaled by the car’s mass.

Since the maximum possible fricative force is given by the second and
third multiplicative terms, we use the dtan function to clamp the magni-
tude possible acceleration to this value. It is defined as:

dtan(x) =

8

>

<

>

:

−1 x < −1

1 x > 1

x otherwise

with derivative

∂ dtan(x)/∂x =

(

1 x ∈ [−1, 1]

0 otherwise

The clamping of the acceleration force is essential. Correctness notwith-
standing, it will be possible to fit many equivalent models to the same
observations 1 if this constraint is not introduced.

Why do we need to model these quantities? Firstly, these might not
be easy to measure a priori. But even if they are, the simplicity of our
model means it can be thrown off by variability in track layout. By using
position-varying functions we can model effects such as the reduction in
acceleration due to climbing an incline without explicitly modelling the
incline itself. This results in firstly a significant reduction in computation
and secondly, and most importantly, the ability to approximately model
unknown, or difficult to compute, physical effects.

The following section outlines methods of estimating those parameters
and derives an inverse control solution for our model.

3 Parameter estimation and inverse con-

trol

We wish to estimate the parameters of our model from observations. Since
our model can make predictions, a good measure of how good our param-

1For a model of the type du/dt = xbwbµ, it is possible to scale down µ N times and scale
up wb by the same amount to obtain an equivalent solution. In that case µ will not have the
physical meaning that we would expect.

6

eters are is how close our predictions are to the observations.
For the above model, we consider the case of measuring the speed

u(t) at different times t. From these measurements we can calculate
du(t)/dt = a = (u(t + ∆t) − u(t1))/∆t, the acceleration. Formally, these
accelerations will be our observations. Our prediction will be our estimate
of acceleration, which we will call â(w). Our purpose is to have â as close
to a as possible. The prediction error can be is written as a − â(w). We
can measure the magnitude of the predicition error over all the observed
data through the mean squared error

f(w) = E[(a − â(w))2]

the expected value of the squared prediction error. Now we can formulate
our parameter estimation problem into a minimisation problem where we
try and minimise the average square error. In order to estimate the ’true’
parameters for our model, we will try to find the parameters that minimise
this function2. To do that, we employ one of the many methods for the
minimisation of functions: stochastic steepest gradient descent, possibly
the simplest online estimation method.

3.1 Minimisation with gradient descent.

Gradient descent methods are among the most commonly used methods
for optimisation tasks. This short tutorial will offer an exposition to
the simplest available gradient methods for statistical estimation. For a
further look into optimisation techniques [4] offers a good overview, with
a healthy amount of mathematical rigour, while [5] additionally refers to
the use of optimisation techniques for statistical estimation.

First, we give some definitions:

Definition 3.1 (Gradient). The gradient of a scalar function f with re-

spect to x = (x1, . . . , xn) is defined as the vector of partial derivatives:

∇xf ≡
∂f

∂x
≡

2

6

4

∂f/∂x1

...

∂f/∂xn

3

7

5

For a function f ∈ R
m the result is a matrix.

∇xf ≡
∂f

∂x
≡

2

6

4

∂f1/∂x1 · · · ∂fm/∂x1

...
. . .

...

∂f1/∂xn · · · ∂fm/∂xn

3

7

5

Gradient descent methods attempt to minimise a function by moving
in the direction of the gradient, i.e. “downwards”. For smooth functions
they are guaranteed to find at least a local minimum. For convex func-
tions, such as quadratic functions, if there exists a minimum it is unique.

2We assume that the true parameters will be close to the parameters that minimise f .

7

Definition 3.2 (Steepest gradient descent). Given a vector xt ∈ R
n, and

f : R
n → R, update parameters in the steepest descent direction:

xt+1 = xt − αt∇f,

where αt is a step size or learning rate parameter.

It might appear difficult to apply such a method in our case, where
our function to minimise is a statistical expectation (the expected squared
prediction error). However, this is far from being true. On the contrary,
it is quite trivial to do so. Remember that the expectation of a random
variable Z is defined as:

Definition 3.3 (Expectation). For a random variable Z with realisation

Z(t) at time t, the following holds:

E[Z] = lim
N→∞

1

N

N
X

t=1

Z(t).

The expectation is also frequently called the mean. For a limited number

of samples N , the quantity 1
N

PN
t=1 Z(t) is called the sample mean.

Hence, the solution is to only take a limited number of samples of
our variable and attempt to minimise the sample mean instead of the
true expectation. Let’s say that f = E[Z], where Z is some stochastic
function that depends on parameters x and that we try to find x such as
to minimise f . We can instead minimise

f̂ = Ê[Z] ∝

N
X

t=1

Z(t).

The derivative of this is simply

∇f̂ ∝

N
X

t=1

∇Z(t).

So we only need to find the gradient with respect to each sample of Z.
However, we need to collect N samples before we can apply our method.
How can we get around that? The simplest way is to use what is called
stochastic gradient descent. Instead of waiting to collect a lot of data and
performing the parameter updates later, we simply perform a parameter
update everytime we have a new Z. If we use a sufficiently small step size,
this will not be a problem.3

Example 3.1 (Mean square estimation). In our particular case, where

the random variable Z is the prediction error, we have Z = ‖a − â‖2 and

thus we try to minimise the cost function

f̂ = Ê[Z] =
X

i

(ai − âi)
2, (3.1)

where, since we are minimising over multiple instances, the index i denotes

index of the predictions of and observations.

3Stochastic gradient descent can be viewed as “gradient descent with errors”. The errors
normally have a mean of zero and do not affect convergence in a bad way. In fact, as far
as first-order gradient methods go, stochastic steepest gradient descent seems to perform the
best in a wide range of applications.

8

3.2 Application of gradient descent.

Let’s consider again our model: we have a function â, a model of the
acceleration and observe values a. We have parameters wb, wa, wµ, which
we can collectively call w for convenience. We want to minimise the sum
of prediction errors, which can be done by moving in the descent direction
for each individual prediction error. The only thing we need to find is the
descent direction of function f for an observed value a and a prediction â
for each of the parameters in w.

To determine the derivative we need the derivative chain rule:

∂f

∂g
=

∂f

∂h

∂h

∂g
.

Using this, we can calculate the gradient of our cost function for each pair
of observations and predictions.

∇w(â − a)2 = ∇(â−a)(â − a)2∇w(â − a)

= ∇(â−a)(â − a)2(∇wâ −∇wa)

= 2(â − a)(∇wâ) (a does not depend on w).

Now we have to continue applying the chain rule until we have terms
that do not contain any gradient operations and that directly relate to
our parameters. So we need to compute ∇wâ.

∇wâ = ∇w dtan

„

wbxb +
waxa

max(u, 10)

«

(µ + wµ)(G +
CDu2

m
) −∇w

CR|u|u

m

= ∇w dtan

„

wbxb +
waxa

max(u, 10)

«

(µ + wµ)(G +
CDu2

m
).

We substitute some terms to simplify the look of this:

∇wâ = ∇w dtan(f)(g)(h)

Now, recall that w = (wb, wa, wµ). We have:

∇wâ =

2

4

∂â/∂wa

∂â/∂wb

∂â/∂wµ

3

5 =

2

6

4

∂ dtan(f)
∂f

∂f
∂wa

gh
∂ dtan(f)

∂f
∂f

∂wb
gh

dtan(f) ∂g
∂wµ

h

3

7

5

=

2

6

4

∂ dtan(f)
∂f

xagh
∂ dtan(f)

∂f
xbgh

dtan(f)h

3

7

5
=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

2

6

4

xagh

xbgh

dtan(f)h

3

7

5
f ∈ [−1, 1]

2

6

4

0

0

dtan(f)h

3

7

5
f /∈ [−1, 1]

Remember that the full gradient is 2(â − a)(∇wâ). The update rule
will be

w(t + 1) = w(t) + 2(a − â)(∇wâ),

9

with each parameter in the vector w updated separately. When one looks
upon the meaning of this update, it is easy to see that the system works
nicely: when our estimated values indicate that the braking/accelerating
force is beyond the limits of the current friction estimate, only the fric-
tion coefficient is updated. In experiments, it was possible to calculate
values for the friction coefficient, motor power and braking force with er-
ror around 5% (see figure 1). In experiments with TORCS [6], it was
found that the error in modelling is smallest when we completely ignore
the addition of the downforce to the reaction force. This suggest that we
need to add additive and/or multiplicative parameters to G and/or CR.

Further to the above, it is also possible to have each one of the compo-
nents of w itself be a function, with parameters θ. In that case we have to
calculate 2(a − â)(∇wâ∇θw). For our problem, we do what was initially
outlined in section 2.1. We have w = θT p, where the elements of p are
in {0, 1}. This causes p to effectively select elements from θ. These are
summed together in the model prediction. Furthermore, the gradient is 0
for all those elements of w which correspond to elements in p which are
0. This makes the implementation very simple.

A step further from this method is to use allow the elements p to take
values in R, and even further than that, to allow w to be a nonlinear
function. We will not attempt to derive updates for other cases, however
the reader should not be afraid to try. The method remains the same. All
that is necessary is to repeatedly calculate the derivatives until a simple
parameter update can be computed.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

modelling error

Figure 1: Ratio of modelling error to actual value of acceleration. The system
was initialised with very poor parameters.

10

3.3 Control using estimates

The difficulties begin when we consider controlling the system. Herein
we will make use of the simplest control method: taking the differential
equation that we use for a model, and solving it to determine the quantity
of interest. In a lot of cases there is an analytic solution.

We consider the following simple model:

du/dt = −(ax + b),

where we have a current speed u(0) need to find x such that we stop after
s meters, x ∈ [0, 1] (if x ∈ R, the problem becomes ill-posed). We have:

u(T) = u(0) −

Z T

0

(ax + b)dt = u(0) − (ax + b)T.

And from this,

s(T) =

Z T

0

u(t)dt =

Z T

0

`

u(0) − (ax + b)t
´

=

Z T

0

u(0) dt −

Z T

0

(ax + b)t dt = u(0)T −
1

2
(ax + b)T 2 (3.2)

.
It must hold that T = u(0)/(ax+b) if we stop at time T . We substitute

this and obtain

s(t) =
u(0)2

ax + b
−

u(0)2

2(ax + b)
=

u(0)2

2(ax + b)
(3.3)

2(ax + b) =
u(0)2

s(t)
(3.4)

x =
1

a

„

u(0)2

2s(t)
− b

«

(3.5)

This is quite a useful equation. Given a desired stopping distance, we
can calculate x, the brake control. Or, we can calculate the minimum
stopping distance by setting x = 1. However this calculation relies on the
assumption that our model is correct. This is never the case. There are
two types of possible errors for our model: errors in parameter estimation
and errors in model selection. Both types can cause problems. We first
consider parameter estimation errors. More specifically we analyse our
solution in the presence of additive errors ǫa, ǫb on a, b.

x′ − x =
1

a + ǫa

„

u(0)2

2s(t)
− (b + ǫb)

«

− x

=
1

a + ǫa

„

u(0)2

2s(t)
− (b + ǫb)

«

−
1

a

„

u(0)2

2s(t)
− b

«

= −

ǫa

„

u(0)2

2s(t)
− b

«

+ ǫb(a + ǫa)

(a + ǫa)a

= −
ǫa

a + ǫa

u(0)2

2s(t)
− b + ǫb

a
(3.6)

11

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

sq
ua

re
d

er
ro

r
m

ag
ni

tu
de

epsilon_a

Figure 2: Squared estimation error dependence on ǫa.

In figure 2 we can see that the squared error of estimation ‖x′ − x‖2

depends linearly on the parameter error for positive errors, but geomet-
ricaly for negative errors. This can be a serious cause of instability for
control and in fact arises in a lot of cases where we must perform inversion
of a function whose parameters we are estimating. Its occurence in such
a simple model is disturbing.

The problem arises mainly because our model makes an implicit as-
sumption which has been ignored: namely that a is positive definite. To
get rid of this problem, we must place constraints on our parameters.

3.4 Estimation of constrained parameters

There are a number of ways to deal with assumptions that force con-
straints on parameters. Within the framework of operations research,
there are three main methods for solving constrained optimisation prob-
lems: projection, penalty terms and boundary methods.

Within a probabilistic framework, constraints are expressed as an prior
probability density or distribution function for the parameters of interest.
We may assume a non-uniform distribution of a parameter over a given set
(or over the whole of the real line). Making such an assumption is usually
called placing a prior distribution over the parameters and is the subject
of Bayesian methods. As shall be seen later on, the three constrained
optimisation methods mentioned above correspond to placing an implicit
prior over the parameters.4

4If there is no prior (meaning that the prior distribution is uniform) all parameter values

12

3.4.1 Projections

Suppose that we want to estimate a quantity a in some set S, where
S represents the possible values that a can take. Imagine we have an
estimation algorithm with parameter x ∈ U ⊇ S. Instead of directly
setting x = E[a], we can define a function g : U → S which projects any
parameter value of x into the constrained set S. This means we will try
to estimate g(x) = E[a].

Example 3.2 (Mean estimation of an unknown parameter). Possibly the

simplest case is to calculate the expected value E[A] = a of some random

variable A with realisations (A1, A2, . . . , AN). One can say that these

realisations represent noisy measurements of a. Then the sample mean

gives us

Ê[A] ≡ E[A|A1, . . . , AN] =

N
X

i=1

Ai/N.

This is elementary, but imagine we have the constraint that a > 0 and
that, additionalyl, the measurements can take any value, i.e. A ∈ R. One
way to solve this problem is to estimate x ∈ R and use a projection g
to put obtain a value in the constrained set. Two different examples of
suitable projections follow.

Example 3.3 (Square root estimation of a strictly positive parameter).
We have a > 0, with realisations Ai ∈ R. We need to estimate x ∈ R :
g(x) = Ê[A] where g : R → R

+ defines the following projection:

g(x) = x2.

This is called a square root method because the parameter x corresponds

to the square root of the value that we need to estimate.

Example 3.4 (Logarithmic estimation of a strictly positive parameter).
We have a > 0, with realisations Ai ∈ R. We need to estimate x ∈ R :
g(x) = Ê[A] where g : R → R

+ defines the following projection:

g(x) = ex

This is called a logarithmic because the parameter x corresponds to the

logarithm of the value that we need to estimate.

In order to apply either method we will find x∗ : E[‖A − g(x∗)‖2] ≤
E[‖A− g(x)‖2 ∀x ∈ R. To do that we simply minimise the sample square
error between the realisations Ai and g. Thus, our problem becomes the
problem of minimising f(x) =

P

i ‖Ai − g(x)‖2. For each sample Ai, we
have:

∂f

∂x
= 2(Ai − g)(−

∂g

∂x
).

are equally likely and we are doing a “maximum likelihood” estimate. On the other hand,
an estimate that uses both a prior and the data is called a maximum a posteriori (MAP)
estimate.

13

Method Mean squared estimation error Squared error variance
Linear 0.0989 0.0184

Square root 0.0879 0.0110
Logarithmic 0.0768 0.0092

Table 1: Estimation errors for a = 0.5

Method Mean squared estimation error Squared error variance
Linear 0.0986 0.0192

Square root 0.0812 0.0139
Logarithmic 0.0718 0.0113

Table 2: Estimation errors for a uniforly distributed in [0.01, 1.1]

In the first case, ∂g
∂x

= 2x and in the second case ∂g
∂x

= xe(x) so we
have:

∂f

∂x
= −2(A − g) for g(x) = x, (3.7)

∂f

∂x
= −4(Ai − g)x for the square root method, (3.8)

∂f

∂x
= −2(Ai − g)ex for the logarithmic one. (3.9)

We now perform a small experiment to test the performance of those
methods. We need to estimate a > 0 from 10 random measurements Ai

which are drawn from a normal distribution with mean a and variance 1.
We run 1000 experiments, for which we estimate a with the three above
methods. The linear method sometimes estimated a negative value for a.
The tables summarise the results.

As can be seen from tables 1 to 3 on this page, the projection methods
not only are free from the possibility of violating the imposed constraints,
but can also exhibit better average performance. Whether or not they do
depends upon whether the distribution from which a is drawn agrees with
that implicitly defined by the method.

3.4.2 Penalty and barrier methods

Penalty and barrier methods are conceptually similar. In some sense, they
both penalise solutions that are beyond, or merely close to, a boundary

Method Mean squared estimation error Squared error variance
Linear 0.0986 0.0192

Square root 0.0977 0.024996
Logarithmic 0.11544 0.10461

Table 3: Estimation errors for a > 0 drawn from f(a) = exp(−a).

14

that defines the constraints. Although related in this way, the optimisa-
tion problem is formulated differently in each case. Herein we consider
only the penalty formulation with gradient descent.

Our problem in general is to minimise f(x), with constraints g(x) < 0.
We may formulate the problem as the minimisation of the cost function:

C(x) = ‖f(x) − E[A]‖2 + ǫB
`

g(x)
´

,

where h(·) is monotonic increasing, bounded from below, and c > 0. Con-
trary to the other methods, there is nothing to prevent x from assuming
invalid values. The two main methods in this framework are:

1. Penalty methods penalise solutions that are not feasible. In that
case, h should be 0 for all x such that g(x) < 0. In that case, one
should start with a small ǫ and increase it to infinity.

2. Barrier method penalise feasible solutions that are close to the bound-
ary of the feasible region. In such methods, h is only defined for x
such that g(x) < 0 and h(x) → ∞ as g(x) → 0. With such methods,
one should with a large ǫ and decrease it to 0.

Usually B(y) , ‖y‖2. It is of course possible to use other functions
than the euclidean norm. These can be better understood in the proba-
bilistic framework, described below.

Another important method is that of Lagrange multipliers.

3.4.3 Lagrange multipliers

Consisder the equality constrained minimisation: Minimise f(x) subject
to h(x) = 0. We define the Lagrangian

L(x, λ) = f(x) + λ′h(x). (3.10)

and the augmented Lagrangian

Lc(x, λ) = f(x) + λ′h(x) +
c

2
B (h(x)) . (3.11)

Under some conditions, there exist λ∗ and c0 such that for any c > c0,
there exists γ, ǫ > 0 such that

Lc(x, λ∗) ≥ Lc(x
∗, λ∗) +

γ

2
‖x − x∗‖2, ∀x : ‖x − x∗‖ < ǫ.

Thus, i λ ≈ λ∗, a good approximation to x∗ by unconstrained minimiza-
tion of Lc can be found.

Of course, we can also achieve the same effect by taking c very large,
even if λ is not close to λ∗. In fact, we could just take λ = 0, and obtain
the original penalty method.

However, one approximate approach is the following:
The schedule for updating c, ǫ can be different. In general, it is suffi-

cient that the following conditions hold

0 < ck < ck+1, ck → ∞

0 ≤ ǫk, ǫk → 0.

15

Algorithm 1 Approximate Lagrange multiplier method

for k = 0, 1, . . . , do

Find xk : ‖∇xLck(xk, λk)‖ ≤ ǫk

λk+1 = λk + ckh(xk)
ck+1 = βck.
ǫk+1 = α/(k + 1).

end for

Inequality constraints can be handled by this method by converting
them to equality constraints through the use of slack variables. Thus, the
contraint h(x) ≤ 0 can be converted to hi(x) + z2

i = 0 for all i. It is
possible to perform a closed form miminisation over the slack variables.

3.5 Bayesian methods

Here we make use of a probabilistic framework. We assume a prior dis-

tribution p(x) for our parameters. We then create a model of the form
p(A|x) and attempt to find the most probable parameters by maximising

p(x|A) ∝ p(A|x)p(x). (3.12)

Let us first consider the case where p(x) is uniform, i.e. all possi-
ble values of x have equal probability. That means we have to find x
that maximises p(A|x) = p(A1, A2, . . . |x). Firstly, we assume that the
measurements are independent and we have:

p(A|x) =
Y

i

p(Ai|x).

So we need to calculate the density for each individual measurement Ai,
and find parameters that maximise the product. For the particular case
where p(Ai|x) ∝ exp(−‖Ai − x‖2), we have:

p(A|x) =
1

Z

Y

i

exp(−‖Ai − x‖2) =
1

Z
exp(−

X

‖Ai − x‖2),

where Z is a normalisation constant. Now, let’s turn this into a minimi-
sation problem. First of all, an x that minimises f(x), will also minimise
g(f(x)) for any monotic increasing function g. In this case, we can use
the log function to obtain:

log p(A|x) ∝ −
X

‖Ai − x‖2.

Now, we reverse signs to turn the maximisation problem into minimisation
one, and.. it turns out we are minimising

P

i ‖Ai − x‖2, which is exactly
the same as before. So, how is that useful?

Firstly, nothing limits us to using a Gaussian for the densities p(Ai|x).
We may use different densities in order to specify our beliefs about how
the observations are related to the unknown parameters x.

16

3.5.1 The prior as a penalty term

Secondly, we can make use of the density p(x). Observe the following:

p(x|A) ∝ p(A|x)p(x) ∝
1

Z

Y

i

exp(−‖Ai−x‖2) =
1

Z
exp(−

X

‖Ai−x‖2)p(x).

If we now let p(x) = exp(−λh(x)), we have:

p(x|A) ∝ exp(−
X

‖Ai − x‖2) exp(−λh(x))

and finally

− log p(x|A) ∝
X

‖Ai − x‖2 + λh(x).

Here h is a penalty term, i.e. a function that is monotically increasing and
bounded from below by 0, and λ > 0. If we choose h to represent some
sort of constraints, then e−λh(x) will represent the prior probability of
the parameters being x. For values that violate the constraints, h(x) > 0,
meaning that this probability drops for such values. The probability drops
faster the larger λ is and the more we violate the constraints.

Thus, adding a penalty term view to constraints is equivalent to spec-
ifying a prior distribution for the parameters, i.e. the optimisation and
probabilistic viewpoints are mathematically equivalent.

3.5.2 The prior as a projection

We now consider the case where x is a function g of some parameters θ.
We write

p(x|θ) = fP(x − g(θ)),

where P is the density of a zero-mean distribution. We consider first the
case where it is equal to the delta function, i.e.

p(x|θ) = δ(x − g(θ)),

with p(x) having singular density at x = g(θ). This means that the rela-
tionship between θ and x is determined solely by the deterministic function
g, the projection. Now, let us go back to determining the distribution of
x given our data. We have

p(x|A) ∝ p(A|x)p(x) = p(A|x)

Z

p(x|θ)p(θ)dθ.

For our choice of distribution, we have:

p(x) =

Z

δ(x − g(θ))p(θ)dθ.

We set θ = g−1(t) = h(t) to obtain

p(x) =

Z

δ(x − t)p(h(t))
dh(t)

dt
dt

Let’s say we have a uniform p(θ):

17

p(x) ∝

Z

δ(x − t)
dh(t)

dt
dt = g(θ0)

dh(t)

dt

˛

˛

˛

˛

t=g(θ0)

Also, equivalently,

p(x) ∝

Z

δ(x − g)
1
dg
dθ

dg = g(θ0)

„

dg

dθ

«−1˛

˛

˛

˛

θ=θ0

where g(θ0) = x.
Further on, we are going to delve deeper into equivalences. As it turns

out, estimation, control and minimisation are all intrinsically related, in
the sense that they are different views of the same problem. The prob-
abilist framework is a good, general formal way to represent our beliefs
about reality and to represent knowledge. Although the differences be-
tween the different views are only conceptual, in some cases some problems
are easier to tackle than others in different frameworks.

4 Control and optimisation

In this section we shall describe how to control a known system ∂y/∂t =
f(v, y), where y is the system’s state and v is some controlling input. In
the discrete case the system can be defined as: dy = f(v, y)dt, i.e.

yt+dt ≈ yt + f(vt, yt)dt

The classic control problem consists of choosing the control v such that
we are close to some desired state. However this view has a few problems,
such as defining closeness, and the need to impose additional constraints,
such as constraints on time taken and energy consumed. Sometimes even
defining the desired state might be difficult. More generally, however,
we can view control problems as the set of problems whereby we select
controls v such that some particular cost is minimised. This means that
we can use optimisation techniques to solve control problems. For the
case when it is possible to define a desired state, the cost will be simply
some measure of the distance from the current to the desired state5. We
will now take the braking control cases again as an example.

4.1 Braking example

Previously, we wanted to select a value of braking input such that we stop
after s meters. In our previous exaple we could calculate this directly.
Alternatively, however, we can formulate it as an optimisation problem
by saying that we wish to find a control v such that E[(s−ŝ)] is minimised,
where ŝ is the actual stopping distance when we apply the control v.

According to (3.3) our model predicts a stopping distance of s′ =
u2

2(ax+b)
. We will minimise the sample error mean:

C =
X

i

Ci =
X

i

„

si −
u2

i

2(axi + b)

«2

.

5Which is why a lot of control problems can be formulated as shortest-path problems.

18

The question is, what should xi be? It could be many things: A fixed
value, a different, independent value for every different desired si, or some
kind of smooth function depending on si. In all of those cases, it can be
said that xi will be a function of si and possibly other variables. In the
following we shall be writing ∇xi to indicate the gradient of xi with some
parameters. (If there are no other parameters, then ∇xi = 1.)

By taking the derivative

∇Ci = −u2
i

„

si −
u2

i

2(axi+b)

«

∇xi

1
axi+b

∇xi

= u2
i

„

si −
u2

i

2(axi+b)

«

a
(axi+b)2

∇xi.

Now it is possible to apply gradient methods to optimise for some
x that will minimise the average squared error between the desired and
actual stopping distance. Probably the most convenient representation is
one close to the inverse solution (3.5), such as for example, the following
2-parameter model:

x =
θ1

a

„

u2

2s
+ θ2 − b

«

.

4.2 Trajectory optimisation

Trajectory optimisation is the problem of finding the trajectory of a par-
ticular car through the racing course so that the total time is minimised.
It is a constrained variational optimisation [7] problem and intuitively has
a solution which should depend on the traction of different parts of the
track, the track’s inclination, the acceleration and braking power of the
car and inherent delay between changes in control input due to driver
reaction times and inertia of components. In this case however we will be
concentrating on minimising a surroagte cost, the squared lateral acceler-
ation of a car driving with constant speed on the trajectory. This is much
simpler to optimise, since it does not take into account neither the car’s
nor the track’s characteristics. In practice, it gives a good trajectory for
cars with a very high horsepower.

4.2.1 Trajectory representation

Because the trajectory is in fact a complete function, the problem is a vari-
ational optimisation problem. For this reason we are approximating the
trajectory with a discretization that parametrises it with a finite number
of control points around the track.

We split the trajectory in i = 1, . . . , n segments in the track, with each
point being defined as a convex combination of the left and right border
of the track p(i) = l(i)w(i) + r(i)(1 − w(i)). The values l(i), r(i) ∈ R

2

represent the coordinates of the left and right points of the current track
segment, while the parameter w(i) ∈ R represents how close to the left
edge of the track the trajectory should be. We also say that the tangent
vector is

u(i) =
p(i + 1) − p(i)

‖p(i + 1) − p(i)‖
,

19

a(i+1)

u(i+1)
p(i+2)

a(i−1)

u(i−1)
a(i)

p(i) u(i)

p(i+1)

p(i−1)

p(i−2)

Figure 3: Trajectory discretisation

which is a unit vector that describes the direction of movent, while the
lateral acceleration is

a(i) =
u(i) − u(i − 1)

‖p(i) − p(i − 1)‖
,

i.e. it’s the amount by which the speed vector changes between points i
and i− 1, if we assume that it changes instantaneously at each point p(i).
Thus the lateral acceleration vector describes the amount by which the
tangent vector changes direction. This discretisation is shown schemati-
cally in Figure 3

4.2.2 The cost function

Because we have chosen to look at tangent vectors, we can try and min-
imise is the average square of the lateral acceleration. This is a quite
natural quantity to minimise and has the advantage that it does not rely
on knowledge of the car.

C =
n

X

i

‖a(i)‖2.

4.2.3 The gradient

In order to use gradient descent to minimise this cost, we first need to
calculate the derivative

∇w(i)C =
n

X

i

∇w(i)‖a(i)‖2 =
n

X

j

∇w(i)p∇pu∇ua(j)∇a(j)C

20

This is not as complex as it seems. The term w(i) appears only in the
expressions containing p(i), which in turn appears only in u(i) and u(i−1).
Thus, it also appears in a(i − 1), a(i), a(i + 1). This means that the full
gradient is only

∇w(i)C =

i+1
X

j=i−1

∇w(i)p(i)∇p(i)a(j)∇a(j)C

We will take the elements one by one.

∇w(i)p(i) = l(i) − r(i);

Let d = p(i) − p(i − 1). Then,

∇p(i)u(i) = ∇p(i)d ∇d
d

‖d‖

=

»

1 0
0 1

– »

‖d‖ + dx/‖d‖ dxdy/‖d‖
dxdy/‖d‖ ‖d‖ + dy/‖d‖

–

1

‖d‖2

Then
∇u(i)a(i) = I,

the identity matrix. Finally,

∇a(i)C = 2a(i).

So, the cost derivative (dropping the is for simplification)

∂a(i)

∂w(i)

∂C

∂a(i)
= (l − r)

1

‖d‖2

»

‖d‖ + dx/‖d‖ dxdy/‖d‖
dxdy/‖d‖ ‖d‖ + dy/‖d‖

–

2a

=
2

‖d‖2

ˆ

lx − rx ly − ry

˜

»

‖d‖ + dx/‖d‖ dxdy/‖d‖
dxdy/‖d‖ ‖d‖ + dy/‖d‖

– »

ax

ay

–

=
2

‖d‖2

»

(lx − rx)(‖d‖ + dx/‖d‖ + dxdy/‖d‖)
(ly − ry)(dxdy/‖d‖ + ‖d‖ + dy/‖d‖)

–′ »

ax

ay

–

= ax(lx − rx)(‖d‖ + dx/‖d‖ + dxdy/‖d‖)

+ ay(ly − ry)(‖d‖ + dy/‖d‖ + dxdy/‖d‖).

The other terms are similarly derived. Note that this cost function
suffers from the problem that it does not take into account the constraint
that w(i) ∈ [0, 1]. There are, as we previously saw, three ways to fix that.
Through a projection, a penalty, or a barrier. In this case we’re going
to be using a combination of a barrier term and a projection so that we
always have a viable solution. The penalty term is

Cp = max(0, c(w(i) − (b))2, c(w(i) − (1 − b))2),

where c > 0 and b ∈ (0, 0.5) determines at which point from the boundary
the penalty term is applied.

21

4.2.4 Results

A gradient descent method was used, with an incremental Gauss-Newton
method (using a λ of 0.9). The step size was initialised at a0 = 0.01 and
the following step-size reduction rule was used

ak+1 =

(

ak if∇C(wk+1)dk ≤ 0,

βak otherwise.

with β = 0.9. While not strictly necessary, the above modifications are
essentials for fast convergence. This can be provided by to some extent
by applying either method on its own. The method was applied on a
track consisting of 132 discrete segments, and thus an equal number of
parameters. The resulting trajectory is shown below:

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

-150 -100 -50 0 50 100 150 200 250 300 350

Figure 4: Optimal trajectory calculated by minimising the mean square lateral
acceleration that must be applied on an object moving with constant speed on
this trajectory.

For larger tracks, or tracks that are split into more segments, it will be
advantageous to use a method whereby the positioning for each segment
is determined by many parameters and where each parameter affects the
positioning for many segments, with the aim being to have a small total
number of parameters. A possible model would be

w(i) =
m

X

j

Kijx(j),

where there is a total of m parameters and K is some fixed matrix. For
the case reviewed before, m = n and K is the identity matrix. Possible

22

options for the K matrix are a random sparse matrix, or a kernel with
some spatial signficance.6

4.3 Improving the trajectory cost function

We now consider the case where the cost is the total time on the track

C =

n
X

i=1

τ(i), subject to ‖a‖∞ < 1. (4.1)

We have now dropped the constraint that ‖u(i)‖ = 1 and introduced an
inequality constraint on the acceleration instead. The time spent in each
segment of the track is

τ(i) ,
‖p(i + 1) − p(i)‖

‖u(i)‖
. (4.2)

Since this depends on the speed u, we have

C(w) = min
u:‖a‖∞<1

n
X

i=1

‖p(i + 1) − p(i)‖

‖u(i)‖
. (4.3)

Of course, the maximum speed is such that it equals the inverse of the
acceleration.

This cost function can no longer be minimised with classic gradient
descent methods directly because it involves a further minimisation. In
fact, the general form is

C(w) = min
u∈U

J(u, w), ‖w‖∞ ∈ [0, 1]. (4.4)

However, in the expression ∂C
∂w

= ∂C
∂J

∂J
∂w

, the term ∂C
∂J

is in fact a varia-
tional derivative [7] which complicates things somewhat. One possibility
would be to minimise a strict lower or upper bound on J . However, the
simplest method is to optimise simultaneously over w, u directly. This
requires only the the calculation of ∂J/∂w, ∂J/∂u.

4.3.1 Problem statement

Let u denote the velocity, v , ‖u‖ the scalar speed, d , u/v the direction
vector at each point, i.e. the curve tangent, p the point, and si , pi+1−pi

the difference between consecutive points. We furthermore have di =
si/‖si‖. We now need to minimise

J(u, w) =
X

i

‖si‖

vi
.

subject to
‖w‖∞ ∈ [0, 1], ‖a‖∞ ≤ 1.

6A simple such kernel arises naturally by associating each parameter x(j) with a position
in the track and then have the kernel related to the track-based distance between the jth
parameter and the ith track segment. For example, if lx(j) is the distance from the startline
of parameter x(j) and lw(i) is the distance from the startline of segment i, then a suitable
kernel would be Kij = exp(−β|lw(i) − lx(j)|).

23

4.3.2 Handling the inequality constraints

We need to convert these inequality constraints to equality constraints.
One possibility is to use additional slack variables zi and reformulate the
problem as an inequality constrained problem [4, Sec. 4.2]: Minimise
J(u, w) subject to gi(u, w) − z2

i = 0, where gi(u, w) = ai(u, w) − 1.
Then we can write the augmented Langragian with a quadratic penalty

Lc(u, w, λ) = J(u, w) +
X

i

min
zi

n

λi

`

gi(u, w) + z2
i

´

+
c

2

˛

˛gi(u, w) + z2
i

˛

˛

2
o

.

(4.5)
The interesting thing is that the minimisation over z can be done in closed
form. This is because, by setting x = z2, we have a constrained quadratic
minimisation problem in zi. For this reason,

g+
i (u, w, λ, c) = max

gi(u, w),−
λj

c

ff

= gi(u, w) + x∗. (4.6)

since if the unconstrained minimum is x̂ < 0, then x∗ = max{0, x̂}. We
can now substitute this in the augmented Lagrangian (4.5) to obtain

Lc(u, w, λ) = J(u, w) +
X

i

λig
+
i (u, w) +

c

2

`

g+
i (u, w)

´2
(4.7)

= J(u, w) +
1

2c

X

i

(max {0, λi + cgi(w, u)})2 − λ2
i (4.8)

4.3.3 Calculating the derivatives

The acceleration can be written as

‖ai‖ =
‖ui+1 − ui‖

ti
=

‖ui‖‖ui+1 − ui‖

si
.

And then

∇wJ =
X

i

∇w
‖si‖

vi
=

X

i

vi∇w‖si‖ − ‖si‖∇wvi

v2
i

.

For the second term, we have ∇wu = 0. The first term is ∇w‖si‖ =
s′i∇wsi

‖si‖
, where w ∈ R

m, si ∈ R
n, ∇wsi ∈ R

n×m, and we obtain

∇wJ =
X

i

s′i∇wsi

‖si‖vi
(4.9)

The derivative with respect to speed is

∇vJ =
X

i

∇v
‖si‖

vi
=

X

i

vi∇v‖si‖ − ‖si‖∇vvi

v2
i

. (4.10)

Equations (4.9) and (4.10) can now be used as the basis of a gradient
method gradient methods.

24

5 Stochastic control

Similarly to the previous section, we are solving an optimisation prob-
lem. However, this time we are hampered by a lack of knowledge. We
need to both optimise the control parameters according to our estimates,
and to improve our estimates. In the stochastic control case we are in-
terested in both model-based and model-free approaches. In model-free
approaches, one is merely interested in inferring the best control input
from the system’s observable state. In model-based approaches, we infer
the best control input from the system’s observable state and from our
estimated model.

The major problem with stochastic control is that initially the model
is inaccurate. This leads to a need to balance the behaviour of the con-
troller between two modes: (a) an exploration mode, where the system is
controlled in order to improve our model and (b) an exploitation mode,
where the system is controlled in order to minimise our cost function as-
suming our current model is correct . The exploration is usually achieved
by inducing some sort of stochasticity in the system, through the control
inputs, although in some cases the inherent stochasticity of the environ-
ment is sufficient.

A good overview of the classical theory of optimal control is given
in Stengel [8], while Bertsekas [3] focuses more on modern approximations
of the classic Dynamic programming approach [2]. In control problems it
is also frequently the case that not only the model can be unknown, but
also the cost function and its derivatives. A gradient-based technique for
solving this kind of problem is given by Baxter and Bartlett [1] in the
context of policy-gradient methods in reinforcement learning [9].

The remainder of this section is organised as follows: Section 5.1 will
examine the case where the model of the system is not known, but where
the cost function is known. This occurs for example when we are at-
tempting to determine the braking force that we should apply in order
to become stationary at a particular location in as little time as possi-
ble. Section 5.2 considers the case where the model is known, but the
cost function is not. The simplest example of such a problem is that of a
gambler who is betting money simultaneously on a number of one-armed
bandits and whose objective is to win as much money as possible (or lose
as little money as possible) without knowing a priori what is the payoff of
each bandit. Finally, Section 5.3 will examine the case where there exists
uncertainty both about the system and the model is known about the
system apart from perhaps some a priori knowledge about its structure.

5.1 Control with an unknown model, but known

cost

Consider the following system

du/dt = xθ1 − uθ2 (5.1)

ds/dt = u, (5.2)

where u and s are the speed and position relatively to the target respec-
tively of some object, controlled by some input x ∈ [−1, 1], defined as

25

some function of the speed and position, for example

x = tanh(w1s + w2u + w3‖u‖u). (5.3)

The goal is to find a function x such we stop at the target position in
the minimum time possible. This corresponds to solving the following
constrained optimisation problem:

f(x) = ‖T‖2, (5.4)

under the conditions that s(T) = 0, u(T) = 0. In a perfectly known
system we could simply try and solve for an x that minimises f , however
this cannot be done now. We could, however, reformulate this as an
unconstrained minimisation problem:

f(x) = ‖T‖2 + c‖s(T)‖2 + λ‖u(T)‖2. (5.5)

The free parameter c > 0 adjusts the balance between stopping in mini-
mum time and stopping as close to the target as possible, while we gen-
erally take λ → ∞. Due to uncertainty, however, these values are merely
expectations, so we write:

f(x) = E[‖T‖2] + cE[‖s(T)‖2] + λE[‖u(T)‖2]. (5.6)

In order to be able to calculate this cost, we must perform a number of
approximations. Firstly, we shall discretise our system

ut+δ = ut + δ(xtθ1 − utθ2) (5.7)

st+δ = st + δut, (5.8)

xt = tanh(w1st + w2ut + w3‖ut‖ut). (5.9)

The next step is to calculate the cost.

5.2 Control with a known model, but unknown

cost

5.3 Control with unknown model and cost

A Notation

E[·] denotes the expectation operator. E[X|Y] denotes the expectation
of random variable X given variable Y . We will use this notation for
our calculated expectation of X given some measurements Y . Frequently
this is written in shorthand as Ê[X]. When we are sampling X under a
distribution π we will alternatively use E[X|π] or Eπ[X], depending on
context.

A function f : X → Y will be written as y = f(x), x ∈ X, y ∈ Y , with
derivative evaluated at x0 with respect to any variable z being written as

∂f

∂z

˛

˛

˛

˛

x=x0

≡
∂f(x0)

∂z
≡ ∇zf(x0).

26

B Spline curve acceleration estimation

B.1 In one dimension

Let the trajectory be described by a twice differentiable spline curve y(x),
with y : R → R. Let s(t) , (x(t), y(x)) be a column vector describing the
position at time t. The corresponding velocity along this spline will be

u , ∇ts = (∇tx,∇ty) (B.1)

Let v be the scalar speed. Then, v2 = ‖u‖2, so

v2 = (∇tx)2 + (∇ty)2 . (B.2)

Since ∇ty = ∇tx∇xy,

v2 = (∇tx)2
ˆ

1 + (∇xy)2
˜

. (B.3)

If v(t) = c for some neighbourhood around x then

∇tx =
c

q

1 + (∇xy)2
. (B.4)

Note that since y(x) is twice differentiable, ∇xy,∇2
x2y should exist (and

be known). All that is left is to calculate the acceleration.

a , ∇tu = ∇t (∇tx,∇tx∇xy) =
`

∇2
t2x,∇2

t2x · ∇xy + ∇tx · ∇2
x2y

´

,
(B.5)

where we used the fact that ∇txy = ∇t∇xy = 0 as ∇xy is not a function
of t. Finally, we must project the acceleration vector a to components that
are collinear with and perpendicular to the velocity vector u = (ux, uy).
Let a = (ax, ay). Then the collinear and perpendicular components to the
tangent velocity part will be

ap =
1

v
(ayux − axuy), ac =

1

v
(axux + ayuy). (B.6)

Substituting, we obtain the following simple expression for the perpendic-
ular acceleration

ap =
1

v
(∇tx)2 ∇2

x2y. (B.7)

Finally, by substituting (B.4) for ∇tx, we obtain

ap =
v∇2

x2y

1 + (∇xy)2
(B.8)

As an aside, for a constant speed, the speed gradient, given below, equals
0:

∇tv =
∇tx∇

2
t2x + ∇ty∇

2
t2y

q

(∇tx)2 + (∇ty)2
. (B.9)

27

B.2 Multi-dimensional splines

Let x(z) be a spline, curve, defined on points xi with intervals hi ,

‖xi+1−xi‖. Additionally, let Hn ,
Pn

i=1 hi and reparametrise with a local
parameter w(z) = (z−Hi−1)/hi, so that w(z) ∈ [0, 1) and s(w(z)) = x(z).
Then the velocity vector u at z is

u(z) , ∇tx(z) = ∇tz · ∇zw(z) · ∇ws(w(z)), (B.10)

with ∇zw(z) = 1/hi.
Subsequently, the acceleration will be

a(z) , ∇zu(z) = ∇z [∇ts(w(z)) · ∇zw(z)]

= ∇z∇ws(w(z)) · ∇zw(z), = ∇2
w2s(w(z)) · (∇zw(z))2 , (B.11)

as ∇2
z2w(z) = 0.

However, there is a problem with the reparametrization since there
may exist z, z′ such that ‖u(z)‖ 6= ‖u(z′)‖. Thus, we must use a vector
which will have a guaranteed constant speed, the tangent vector: τ(z) =

u(z)
‖u(z)‖

. We now need the derivative of the tangent vector, the curvature:

c(z) , ∇zτ(z) = ∇zu(z)∇uτ(z) = a(z)∇uτ(z). (B.12)

Finally,

∇uτ(z) =
‖u(z)‖ − 2‖u(z)‖2

‖u(z)‖2
. (B.13)

(Note: for some reason this does not work very well)
A simpler method for s : R → R

n is to simply project the acceleration
on the normal to the velocity. This results in

c = [ay(z)τx(z) − ax(z)τy(z)]
(−τy(z), τx(z))

‖τ(z)‖2
(B.14)

C Invariant cost function

The cost functions in sections 4.3 and 4.3 have a few major weaknesses.
Firstly, that when a the problem is re-parametrised with a greater or
smaller number of control points, there is a jump in the cost due to the
fact that we assume the vehicle is moving in a straight line. Secondly, that
we do not take into account the characteristics of the car when designing
the trajectory.

Without further ado, let us examine the case where a vehicle which
can attain maximum acceleration g is moving in a circle of radius r.

C.1 Movement on a circle of fixed radius

Our vehicle moves is at the point p with speed u = (ux, uy), where x, y are
colinear with the tangent and co-tagent vectors. When necessary, we shall

28

specifically refer to the time, i.e. ux(t). As a reminder, the centripetal
acceleration is

ay ,
dux

dt
=

v2

r
. (C.1)

In addition, a vehicle with power P > 0, irrespective of the gearing, must
satisfy:

ax ,
dux

dt
≤

P

u
. (C.2)

Finally, the vehicle’s movement must obey the following condition at all
times:

‚

‚

‚

‚

du

dt

‚

‚

‚

‚

≤ g. (C.3)

The above conditions ignore all aerodynamic effects.
This leads to the condition:

du

dt
≤

r

g2 −
u4

x

r2
.

We can turn the inequality to an equality, but thendifferential equation
has no closed form solution, as can be seen:

g2 − u4
x/r2)−1/2dux = dt.

Z ux(T)

ux(0)

(g2 − u4
x/r2)−1/2dux =

Z T

0

dt = T.

However, we can always write that

ux(t + h) = ux(t) +

Z h

0

r

g2 −
u4

x(t + τ)

r2
dτ

≤ ux(t) + h

r

g2 −
u4

x(t)

r2

We can also obtain a lower bound, which will be however trivial.

C.2 Dynamic programming time calculation

When moving in piecewise spline curves we can perform a simple dynamic
programming computation to estimate the traversal time.

Let P be the car’s horsepower and m its mass. Finally, let vmin be
the first gear maximum power speed. Then the forward acceleration when
moving at speed v is bounded by

aP (v) = min

g,
P

m max{vmin, v}

ff

.

Let c(x) be the curvature at length x. Then the maximum forward accel-
eration at point x, when moving with speed v, is bounded by

aC(x, v) =
p

g2 − v4c2, with g > v2c(x).

Finally, the maximum speed at x is bounded by

vC(x) =

r

g

c(x)
.

29

Algorithm 2 Time estimation: forward pass

1: Input ∆t, v0, x1, c, P,m, g.
2: for i = 1, . . . , do

3: ci = c(xi)
4: ai = min{aP (vi−1), aC(xi, vi−1)}
5: vi = min(vc(xi), vi−1 + ai∆t)
6: xi+1 = xi + vi∆t

7: t = t + ∆t

8: end for

9: Return t, {ci}, {xi}, {vi}

The algorithm performs a time-based discretisation and returns a
space-based discretisation, consisting of a list of curvatures c, path lengths
x and maximum speeds v. Note that Step 6 can be replaced with a
quadratic estimate of x for better accuracy:

xi+1 = v′∆t +
∆t

2
(vi − v′), v′ = min{vi−1, vc(xi)}.

For the backward pass, we need to bound the speed taking into account
how much the vehicle is allowed to brake. To do this, we shall start from
the last point xK and see how much we are allowed to increase our speed
when going backwards to xK−1. The only constraint here is g, but we
could add the influence of wind resistance easily.

Algorithm 3 Time estimation: backward pass

1: Input ∆t, g, {ci}, {xi}, {vi}.
2: for i = K,K − 1, . . . , 2 do

3: δ = max{0, g2 − u4
i
|ci|2}.

4: v′ = vi +
√

δ∆t.
5: vi−1 = min{v′, vi−1}
6: end for

7: t =
∑K−1

i=1

xi+1−xi

ui

8: Return t.

Both algorithms can easily be applied to a looped track, by replicating
the track three times. The trajectory of the first replicate can be used for
start (especially if we have a specific starting position), while the second
replicate can be used for all other laps.

References

[1] Jonathan Baxter and Peter L. Bartlett. Reinforcement
learning in POMDP’s via direct gradient ascent. In Proc.

17th International Conf. on Machine Learning, pages 41–
48. Morgan Kaufmann, San Francisco, CA, 2000. URL
citeseer.nj.nec.com/baxter00reinforcement.html.

30

[2] Richard Ernest Bellman. Dynamic Programming. Princeton Univer-
sity Press, 1957. Republished by Dover in 2004.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 2001.

[4] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, March 2004. ISBN 0521833787. URL
http://www.stanford.edu/ boyd/cvxbook/.

[6] Eric Espié, Christophe Guionneau, Bernhard Wymann, Christos Dim-
itrakakis, Charalampos Alexopoulos, Patrice Espié, Eliam, Olaf Sass-
nick, Thierry Thomas, Eugen Treise, Andrew Sumner, Christophe Ma-
cours, Rémi Coulom, Andrea Alfieri, Asdas Asda, Patrick Wisselo,
Bernhard Kaindl, Gernot Galli, Henrik Enqvist, Per Oyvind Karslen,
Matthias Saou, Neil Winton, Butch K/Cendra, Vincent Moyet, Jens
Thiele, Paul Bain, and Jean-Christophe Durieu. TORCS, the open
racing car simulator, 2006–2008. http://www.torcs.org.

[7] Izrail Moiseevich Gelfand and Sergei Vasilevich Fomin. Calculus of

Variations. Dover, 2000.

[8] Robert F. Stengel. Optimal Control and Estimation. Dover, second
edition, 1994.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, 1998.

31

