
Decision trees

Classification

I Input: Data
D = {(xt , yt) | t = 1, . . . ,N}.

I Observations: xt ∈ X , with X
arbitrary.

I Labels: yt ∈ Y = {1, . . . ,K}.

The input X is composed of
features/attributes Ai

X = A1 × . . .×AP , with Ai :

I Boolean, i.e. Ai = {0, 1}.
I Categorical Ai = {cat, dog}
I Real, i.e. Ai = R.

Example 1

Age Sex Smoking Cancer

27 F Yes 0
44 M No 0
55 F Yes 0
60 F No 0
30 M Yes 0
41 M Yes 1
47 F No 0
62 F Yes 0
64 M No 1

We want to find a relation between
the observed attributes and the
variable we want to predict.
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Decision trees

A simple classification rule
if Smoking then
if Male then

if Age > 40 then
Cancer

else
Healthy

end if
else

Healthy
end if

else
if Age > 60 and Male then

Cancer
else

Healthy
end if

end if
November 10, 2015 2 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Sex and
cancer

sex cancer

F 0
M 0
F 1
F 0
F 0
F 0
M 0
F 0
M 0
F 0
M 0
M 0
F 0
M 1
M 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of D

P̂(yt = i) =
| {yt = i | t ∈ 1, . . . ,N} |

N

P̂(yt = i | xsext = j) =
| {yt = i ∧ xsext = j | t ∈ 1, . . . ,N} |
| {xsext = j | t ∈ 1, . . . ,N} |

What is wrong with this type of estimation?

I How confident should we be?

I Are there examples where it would fail??

November 10, 2015 3 / 17



Decision trees

Age and cancer

age cancer

18 0
24 0
62 1
23 0
25 0
35 0
29 0
23 0
18 0

13 0
30 0
65 0
40 0
33 1
24 1
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Decision trees

A small dataset
sex smoker cancer

F 0 0
M 0 0
F 1 1
F 0 0
F 0 0
F 0 0
M 1 0
F 0 0
M 1 0
F 0 0
M 0 0
M 0 0
F 0 0
M 1 1
M 0 1
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Decision trees

Mixed attributes
sex smoker age cancer

F 0 18 0
M 0 24 0
F 1 62 1
F 0 23 0
F 0 25 0
F 0 35 0
M 1 29 0
F 0 23 0
M 1 18 0
F 0 13 0
M 0 30 0
M 0 65 0
F 0 40 0
M 1 33 1
M 0 24 1

I Which is the “best” decision
tree? Classification error vs
depth/width.

I Given a criterion for what is
“best”, what is a good
algorithm to construct it?

November 10, 2015 6 / 17



ID3

ID3

I An algorithm for constructing trees for binary features.

I At each step k , ID3 chooses one feature to make a decision on.

I It chooses the most “informative” feature at each step.
I It stops when no more features can be added because

I the classification error is zero.
I no more features are left
I no more informative features are left

November 10, 2015 7 / 17



ID3

Entropy as a measure of uncertainty

Definition 2 (Entropy of a binary variable)

The entropy of a distribution with proportions p+, p− is

H(p) = −p+ log2 p+ − p− log2 p−

(2.1)

= −p+ log2 p+ − (1− p+) log2(1− p+)

(2.2)
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Total probability

Any probability P on {1, . . . ,K} satisfies
∑K

x=1 P(x) = 1.

Definition 3 (Entropy of a discrete variable)

The entropy of a distribution P on alphabet {1, . . . ,K}

H(P) = −
K∑

x=1

logP(x)P(x) = −EP logP(x).

When P is defined for many variables and we want to measure the
entropy of some of them, it is convenient to use instead:

H(x) = −
K∑

x=1

logP(x)P(x) = −EP logP(x),
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ID3

Conditional entropy*

What is the most informative attribute? One idea is to look at the
expected reduction in entropy if we condition on that attribute.
Example on board
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ID3

Conditional entropy*

What is the most informative attribute? One idea is to look at the
expected reduction in entropy if we condition on that attribute.

Definition 3 (Conditional entropy)

The entropy of r.v. y ∈ {1, . . . ,K} conditioned on r.v. x ∈ {1, . . . ,M},

H(y | x) =
M∑
i=1

P(x = i)H(y | x = i) (2.1)

=
M∑
i=1

P(x = i)
K∑
j=1

logP(y = j | x = i)P(y = j | x = i) (2.2)
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ID3

Conditional entropy*

I The entropy of y without knowing x is
H(y) =

∑K
j=1 log[P(y = j)]P(y = k).

I The entropy of y when knowing x = i is
H(y | x = i) =

∑K
j=1 log[P(y = j | x = i)]P(y = j).

I Since we don’t know what value x we take, we average over the
possible values: H(y | x) =

∑M
i=1 logH(y | x = i)P(x = i).

November 10, 2015 10 / 17



ID3

Information gain*

Definition 4 (Information gain)

The information gain of variable y given x is the expected reduction in
entropy when x becomes known.

G(y | x) = H(y)−H(y | x)

For ID3, we use the empirical distribution of x , y from D (the observed
proportions) as P.

Shorthand notation for classification

Since we’re only interested in the entropy of labels y , we write

I H(D) for the entropy of y wrt the empirical distribution.

I H(Da=v ) when attribute a takes the value v .

I G(D, a) for the information gain conditioned on a.
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ID3

ID3(D,A)

Make new node.
if ∃i : y = i∀(x , y) ∈ D, or A = ∅ // nothing to do then

Set label to argmaxi | {y = i , (x , y) ∈ D | |} // use maximum

class

end if
a∗ ← argmaxa∈AG(D, a).
for v ∈ Va∗ do

Make a new branch v
if Da∗=v 6= ∅ then
ID3(Da∗=v ,A− {a∗})

end if
end for
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ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

D

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

D

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

D

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

ID3 example

Smoking Sex Cancer

Yes Male Yes
No Male No
Yes Female No
No Female No

D

DS

D¬S

DF ,S

DM,S

DF ,¬S

DM,¬S

D

DF

DM

DF ,S

DF ,¬S

DM,S

DM,¬S

November 10, 2015 13 / 17



ID3

Questions about ID3

I After ID3 ends, are all training examples classified correctly?

I Does the order in which we add features matter for the training
classification error?

I Does the order matter for the testing classification error?

I Does the order matter if we make the tree shorter?

I If examples are inconsistent, how can we achieve perfect
classification? Hint: use data augmentation
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General decision trees

Generalising decision trees

I We can think of more general versions of ID3.

I Can work with non-binary features.

I Use other criteria to split (e.g. the expected reduction in classification
error)

I Can also do regression.

November 10, 2015 15 / 17



General decision trees

The C4.5 algorithm

Identical to ID3 apart from dealing with numeric variables.

Numeric attribute splitting

I For each attribute a

I Look at all possible splitting points x

I Calculate G for each combination a, x .

I Use that!
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General decision trees

Expected reduction in classification error*

The classification error for a given subset Di of the data D is the
proportion of labels not equal to the most frequent label:

Example 5

Name Smoking

Silvie Yes
Yiannis Yes
Marie No

Claudia Yes
Jonas Yes
Andrei No
Keisuke Yes
Yamada Yes

Lee No

Definition 6 (Classification error (of a fixed decision rule) for a set Di)

ε(Di ) ,
| {y 6= y∗(Di ) | (x , y) ∈ Di |}

|Di |
, (3.1)

y∗(Di ) , argmax
k∈Y

| {y = k | (x , y) ∈ Di} | (3.2)

November 10, 2015 17 / 17



General decision trees

Expected reduction in classification error*

The classification error for a given subset Di of the data D is the
proportion of labels not equal to the most frequent label:

Example 5

Name Smoking

Silvie Yes
Yiannis Yes
Marie No

Claudia Yes
Jonas Yes
Andrei No
Keisuke Yes
Yamada Yes

Lee No

Question:What is the classification error of the best fixed decision for the
highlighted subset?

Definition 6 (Classification error (of a fixed decision rule) for a set Di)

ε(Di ) ,
| {y 6= y∗(Di ) | (x , y) ∈ Di |}

|Di |
, (3.1)

y∗(Di ) , argmax
k∈Y

| {y = k | (x , y) ∈ Di} | (3.2)

November 10, 2015 17 / 17



General decision trees

Expected reduction in classification error*

The classification error for a given subset Di of the data D is the
proportion of labels not equal to the most frequent label: Question:
What is the classification error for the best fixed decision for the
highlighted subset over the remaining dataset?

Definition 5 (Classification error (of a fixed decision rule) for a set Di)
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