< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 November 10, 2015

1 / 17

Classification

- Input: Data $\mathcal{D} = \{(x_t, y_t) \mid t = 1, \dots, N\}.$
- ▶ Observations: x_t ∈ X, with X arbitrary.
- Labels: $y_t \in \mathcal{Y} = \{1, \ldots, K\}.$

Classification

- Input: Data $\mathcal{D} = \{(x_t, y_t) \mid t = 1, \dots, N\}.$
- Observations: $x_t \in \mathcal{X}$, with \mathcal{X} arbitrary.

• Labels:
$$y_t \in \mathcal{Y} = \{1, \dots, K\}$$
.

Example 1				
Age	Sex	Smoking	Cancer	
27	F	Yes	0	
44	М	No	0	
55	F	Yes	0	
60	F	No	0	
30	М	Yes	0	
41	М	Yes	1	
47	F	No	0	
62	F	Yes	0	
64	М	No	1	

(日) (同) (三) (三)

November 10, 2015

3

1 / 17

Classification

- Input: Data $\mathcal{D} = \{(x_t, y_t) \mid t = 1, \dots, N\}.$
- ▶ Observations: x_t ∈ X, with X arbitrary.

• Labels:
$$y_t \in \mathcal{Y} = \{1, \ldots, K\}.$$

The input \mathcal{X} is composed of features/attributes \mathcal{A}_i

- $\mathcal{X} = \mathcal{A}_1 \times \ldots \times \mathcal{A}_P$, with \mathcal{A}_i :
 - Boolean, i.e. $A_i = \{0, 1\}.$
 - Categorical $A_i = \{ \mathtt{cat}, \mathtt{dog} \}$
 - Real, i.e. $\mathcal{A}_i = \mathbb{R}$.

Example 1				
Age	Sex	Smoking	Cancer	
27	F	Yes	0	
44	Μ	No	0	
55	F	Yes	0	
60	F	No	0	
30	М	Yes	0	
41	М	Yes	1	
47	F	No	0	
62	F	Yes	0	
64	М	No	1	

November 10, 2015

1 / 17

Classification

- Input: Data $\mathcal{D} = \{(x_t, y_t) \mid t = 1, \dots, N\}.$
- ▶ Observations: x_t ∈ X, with X arbitrary.

• Labels:
$$y_t \in \mathcal{Y} = \{1, \dots, K\}$$
.

The input \mathcal{X} is composed of features/attributes \mathcal{A}_i

- $\mathcal{X} = \mathcal{A}_1 \times \ldots \times \mathcal{A}_P$, with \mathcal{A}_i :
 - Boolean, i.e. $A_i = \{0, 1\}.$
 - Categorical $A_i = \{ \mathtt{cat}, \mathtt{dog} \}$
 - Real, i.e. $\mathcal{A}_i = \mathbb{R}$.

Example 1				
Age	Sex	Smoking	Cancer	
27	F	Yes	0	
44	М	No	0	
55	F	Yes	0	
60	F	No	0	
30	М	Yes	0	
41	М	Yes	1	
47	F	No	0	
62	F	Yes	0	
64	М	No	1	

We want to find a relation between the observed attributes and the variable we want to predict.

A simple classification rule

if Smoking then if Male then if Age > 40 then Cancer else Healthy end if else Healthy end if else if Age > 60 and Male then Cancer else Healthy end if end if

Sex a	nd	
cance	r	We use probabilities to quantify our uncertainty.
sex	cancer	
F	0	
М	0	
F	1	
F	0	
F	0	
F	0	
М	0	
F	0	
М	0	
F	0	
М	0	
М	0	
F	0	
М	1	
М	1	< ロ > < 合 > < 言 > <

Sex and cancer sex cancer F 0 Μ 0 F 1 F 0 F 0 F 0 Μ 0 F 0 Μ 0 F 0 Μ 0 Μ 0 F 0 Μ 1 Μ 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of $\ensuremath{\mathcal{D}}$

$$\hat{\mathbb{P}}(y_t = i) = \frac{|\{y_t = i \mid t \in 1, \dots, N\}|}{N}$$

- 34

・ロン ・四 ・ ・ ヨン ・ ヨン

Sex and cancer sex cancer F 0 Μ 0 F 1 F 0 F 0 F 0 Μ 0 F 0 Μ 0 F 0 Μ 0 Μ 0 F 0 Μ 1 Μ 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of $\ensuremath{\mathcal{D}}$

$$\hat{\mathbb{P}}(y_t = i) = \frac{|\{y_t = i \mid t \in 1, \dots, N\}|}{N}$$
$$y_t = i \mid x_t^{\text{sex}} = i) = \frac{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}}{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}}$$

$$\hat{P}(y_t = i \mid x_t^{\text{sex}} = j) = \frac{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}{|\{x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}$$

3

3 / 17

イロト イヨト イヨト イヨト

November 10, 2015

cancer sex cancer F 0 Μ 0 F 1 F 0 F 0 F 0 Μ 0 F 0 Μ 0 F 0 Μ 0 Μ 0 F 0 Μ 1 Μ 1

Sex and

We use probabilities to quantify our uncertainty.

Probabilities as proportions of $\ensuremath{\mathcal{D}}$

$$\hat{\mathbb{P}}(y_t = i) = \frac{|\{y_t = i \mid t \in 1, \dots, N\}|}{N}$$

.....

- 3

3 / 17

$$\hat{\mathbb{P}}(y_t = i \mid x_t^{\text{sex}} = j) = \frac{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}{|\{x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}$$

(日) (同) (三) (三)

November 10, 2015

What is wrong with this type of estimation?

Sex and cancer sex cancer F 0 Μ 0 F 1 F 0 F 0 F 0 Μ 0 F 0 Μ 0 F 0 Μ 0 Μ 0 F 0 Μ 1 Μ 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of $\ensuremath{\mathcal{D}}$

$$\hat{\mathbb{P}}(y_t = i) = \frac{|\{y_t = i \mid t \in 1, \dots, N\}|}{N}$$

$$\hat{\mathbb{P}}(y_t = i \mid x_t^{\text{sex}} = j) = \frac{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}{|\{x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

November 10, 2015

- 3

3 / 17

What is wrong with this type of estimation?

How confident should we be?

Sex and cancer sex cancer F 0 Μ 0 F 1 F 0 F 0 F 0 Μ 0 F 0 Μ 0 F 0 Μ 0 Μ 0 F 0 1 Μ Μ 1

We use probabilities to quantify our uncertainty.

Probabilities as proportions of $\ensuremath{\mathcal{D}}$

$$\hat{\mathbb{P}}(y_t = i) = \frac{|\{y_t = i \mid t \in 1, \dots, N\}|}{N}$$

$$\hat{\mathbb{P}}(y_t = i \mid x_t^{\text{sex}} = j) = \frac{|\{y_t = i \land x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}{|\{x_t^{\text{sex}} = j \mid t \in 1, \dots, N\}|}$$

(日) (同) (三) (三)

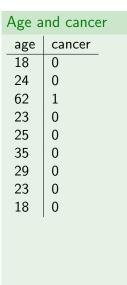
November 10, 2015

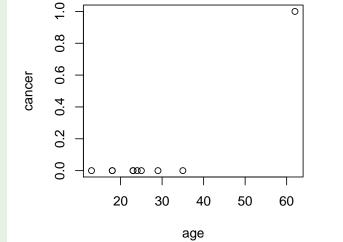
3

3 / 17

What is wrong with this type of estimation?

- How confident should we be?
- Are there examples where it would fail??

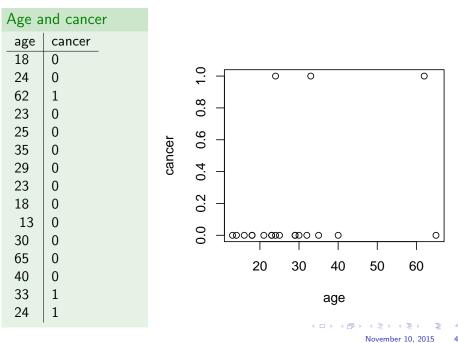




November 10, 2015 4 / 17

3

<ロ> (日) (日) (日) (日) (日)



A sm	all datase	et
sex		
F	0	0
Μ	0	0
F	1	1
F	0	0
F	0	0
F	0	0
М	1	0
F	0	0
М	1	0
F	0	0
М	0	0
М	0	0
F	0	0
М	1	1
М	0	1

Mixed attributes				
sex	smoker	age	cancer	
F	0	18	0	
Μ	0	24	0	
F	1	62	1	
F	0	23	0	
F	0	25	0	
F	0	35	0	
Μ	1	29	0	
F	0	23	0	
Μ	1	18	0	
F	0	13	0	
Μ	0	30	0	
Μ	0	65	0	
F	0	40	0	
Μ	1	33	1	
Μ	0	24	1	

- Which is the "best" decision tree? Classification error vs depth/width.
- Given a criterion for what is "best", what is a good algorithm to construct it?

イロト イポト イヨト イヨト

- 3

6 / 17

November 10, 2015

- > An algorithm for constructing trees for binary features.
- At each step k, ID3 chooses one feature to make a decision on.

イロト イポト イヨト イヨト

- 31

7 / 17

November 10, 2015

- It chooses the most "informative" feature at each step.
- It stops when no more features can be added because
 - the classification error is zero.
 - no more features are left
 - no more informative features are left

Definition 2 (Entropy of a binary variable)

The entropy of a distribution with proportions p_+ , p_- is

$$\mathbb{H}(p) = -p_+ \log_2 p_+ - p_- \log_2 p_-$$

(2.2)

8 / 17

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで November 10, 2015

Definition 2 (Entropy of a binary variable)

The entropy of a distribution with proportions p_+ , p_- is

$$\mathbb{H}(p) = -p_{+} \log_2 p_{+} - p_{-} \log_2 p_{-}$$
(2.1)

$$= -p_{+} \log_2 p_{+} - (1 - p_{+}) \log_2 (1 - p_{+})$$
 (2.2)

November 10, 2015

8 / 17

ID3

Definition 2 (Entropy of a binary variable)

The entropy of a distribution with proportions p_+ , p_- is

$$\mathbb{H}(p) = -p_+ \log_2 p_+ - p_- \log_2 p_- \tag{2.1}$$

$$= -p_+ \log_2 p_+ - (1 - p_+) \log_2(1 - p_+)$$
 (2.2)

November 10, 2015

8 / 17

Total probability

Any probability
$$\mathbb P$$
 on $\{1,\ldots,K\}$ satisfies $\sum_{x=1}^K \mathbb P(x) = 1$.

Definition 2 (Entropy of a binary variable)

The entropy of a distribution with proportions p_+, p_- is

$$\mathbb{H}(p) = -p_+ \log_2 p_+ - p_- \log_2 p_- \tag{2.1}$$

$$= -p_{+} \log_2 p_{+} - (1 - p_{+}) \log_2 (1 - p_{+})$$
 (2.2)

Total probability

Any probability
$$\mathbb{P}$$
 on $\{1, \ldots, K\}$ satisfies $\sum_{x=1}^{K} \mathbb{P}(x) = 1$.

Definition 3 (Entropy of a discrete variable)

The entropy of a distribution \mathbb{P} on alphabet $\{1, \ldots, K\}$

$$\mathbb{H}(\mathbb{P}) = -\sum_{x=1}^{K} \log \mathbb{P}(x) \mathbb{P}(x) = -\mathbb{E}_{P} \log \mathbb{P}(x).$$

Definition 2 (Entropy of a discrete variable)

The entropy of a distribution \mathbb{P} on alphabet $\{1, \ldots, K\}$

$$\mathbb{H}(\mathbb{P}) = -\sum_{x=1}^{K} \log \mathbb{P}(x) \mathbb{P}(x) = -\mathbb{E}_{P} \log \mathbb{P}(x).$$

When \mathbb{P} is defined for many variables and we want to measure the entropy of some of them, it is convenient to use instead:

$$\mathbb{H}(x) = -\sum_{x=1}^{K} \log \mathbb{P}(x) \mathbb{P}(x) = -\mathbb{E}_{P} \log \mathbb{P}(x),$$

November 10, 2015

8 / 17

TD3

Conditional entropy*

What is the most informative attribute? One idea is to look at the expected reduction in entropy if we condition on that attribute. Example on board

Conditional entropy*

What is the most informative attribute? One idea is to look at the expected reduction in entropy if we condition on that attribute.

Definition 3 (Conditional entropy)

The entropy of r.v. $y \in \{1, \ldots, K\}$ conditioned on r.v. $x \in \{1, \ldots, M\}$,

$$\mathbb{H}(y \mid x) = \sum_{i=1}^{M} \mathbb{P}(x=i) \mathbb{H}(y \mid x=i)$$
(2.1)
= $\sum_{i=1}^{M} \mathbb{P}(x=i) \sum_{j=1}^{K} \log \mathbb{P}(y=j \mid x=i) \mathbb{P}(y=j \mid x=i)$ (2.2)

November 10, 2015

9 / 17

Conditional entropy*

- The entropy of y without knowing x is $\mathbb{H}(y) = \sum_{i=1}^{K} \log[\mathbb{P}(y=j)] \mathbb{P}(y=k).$
- The entropy of y when knowing x = i is $\mathbb{H}(y \mid x = i) = \sum_{i=1}^{K} \log[\mathbb{P}(y = j \mid x = i)] \mathbb{P}(y = j).$
- ▶ Since we don't know what value x we take, we average over the possible values: $\mathbb{H}(y \mid x) = \sum_{i=1}^{M} \log \mathbb{H}(y \mid x = i) \mathbb{P}(x = i)$.

November 10, 2015

10 / 17

Information gain*

Definition 4 (Information gain)

The information gain of variable y given x is the *expected* reduction in entropy when x becomes known.

$$\mathbb{G}(y \mid x) = \mathbb{H}(y) - \mathbb{H}(y \mid x)$$

November 10, 2015 11 / 17

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Information gain*

Definition 4 (Information gain)

The information gain of variable y given x is the *expected* reduction in entropy when x becomes known.

$$\mathbb{G}(y \mid x) = \mathbb{H}(y) - \mathbb{H}(y \mid x)$$

For ID3, we use the empirical distribution of x, y from \mathcal{D} (the observed proportions) as \mathbb{P} .

Shorthand notation for classification

Since we're only interested in the entropy of labels y, we write

- $\mathbb{H}(\mathcal{D})$ for the entropy of y wrt the empirical distribution.
- $\mathbb{H}(\mathcal{D}_{a=v})$ when attribute *a* takes the value *v*.
- $\mathbb{G}(\mathcal{D}, a)$ for the information gain conditioned on a.

Make new node.

if $\exists i : y = i \forall (x, y) \in \mathcal{D}$, or $\mathcal{A} = \emptyset //$ nothing to do then Set label to $\arg \max_i | \{y = i, (x, y) \in \mathcal{D} \mid |\} //$ use maximum class

end if

```
\begin{array}{l} a^{*} \leftarrow \arg \max_{a \in \mathcal{A}} \mathbb{G}(\mathcal{D}, a). \\ \text{for } v \in \mathcal{V}_{a^{*}} \text{ do} \\ \text{Make a new branch } v \\ \text{if } \mathcal{D}_{a^{*}=v} \neq \emptyset \text{ then} \\ \text{ID3}(\mathcal{D}_{a^{*}=v}, \mathcal{A} - \{a^{*}\}) \\ \text{end if} \\ \text{end for} \end{array}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Make new node.

if $\exists i: y = i \forall (x, y) \in \mathcal{D}$, or $\mathcal{A} = \emptyset //$ nothing to do then Set label to $\arg \max_i |\{y = i, (x, y) \in \mathcal{D} \mid i\} //$ use maximum class

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの November 10, 2015

12 / 17

end if

```
a^* \leftarrow \arg \max_{a \in A} \mathbb{G}(\mathcal{D}, a).
for v \in \mathcal{V}_{a^*} do
    Make a new branch v
    if \mathcal{D}_{a^*=v} \neq \emptyset then
        ID3(\mathcal{D}_{a^*=v}, \mathcal{A} - \{a^*\})
    end if
end for
```

Make new node.

if $\exists i: y = i \forall (x, y) \in \mathcal{D}$, or $\mathcal{A} = \emptyset //$ nothing to do then Set label to $\arg \max_i | \{y = i, (x, y) \in \mathcal{D} \mid i\} //$ use maximum class

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの November 10, 2015

12 / 17

end if

 $a^* \leftarrow \arg \max_{a \in A} \mathbb{G}(\mathcal{D}, a).$ for $v \in \mathcal{V}_{a^*}$ do Make a new branch vif $\mathcal{D}_{a^*=v} \neq \emptyset$ then $ID3(\mathcal{D}_{a^*=v}, \mathcal{A} - \{a^*\})$ end if end for

Make new node.

if $\exists i: y = i \forall (x, y) \in \mathcal{D}$, or $\mathcal{A} = \emptyset //$ nothing to do then Set label to $\arg \max_i | \{y = i, (x, y) \in \mathcal{D} \mid i\} //$ use maximum class

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの November 10, 2015

12 / 17

end if

```
a^* \leftarrow \arg \max_{a \in A} \mathbb{G}(\mathcal{D}, a).
for v \in \mathcal{V}_{a^*} do
    Make a new branch v
    if \mathcal{D}_{a^*=v} \neq \emptyset then
        ID3(\mathcal{D}_{a^*=v}, \mathcal{A} - \{a^*\})
    end if
end for
```

Make new node.

if $\exists i: y = i \forall (x, y) \in \mathcal{D}$, or $\mathcal{A} = \emptyset //$ nothing to do then Set label to $\arg \max_i | \{y = i, (x, y) \in \mathcal{D} \mid i\} //$ use maximum class

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの November 10, 2015

12 / 17

end if

 $a^* \leftarrow \arg \max_{a \in A} \mathbb{G}(\mathcal{D}, a).$ for $v \in \mathcal{V}_{a^*}$ do Make a new branch vif $\mathcal{D}_{a^*=v} \neq \emptyset$ then $ID3(\mathcal{D}_{a^*=v}, \mathcal{A} - \{a^*\})$ end if end for

TD3

D

Smoking	Sex	Cancer
Yes	Male	Yes
No	Male	No
Yes	Female	No
No	Female	No

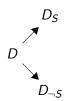
November 10, 2015 13 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

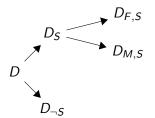
Smoking	Sex	Cancer
Yes	Male	Yes
No	Male	No
Yes	Female	No
No	Female	No

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ November 10, 2015

13 / 17



Smoking	Sex	Cancer
Yes	Male	Yes
No	Male	No
Yes	Female	No
No	Female	No



November 10, 2015 13 / 17

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

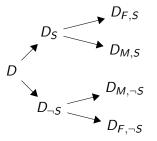
Smoking	Sex	Cancer
Yes	Male	Yes
No	Male	No
Yes	Female	No
No	Female	No

<ロ> (日) (日) (日) (日) (日)

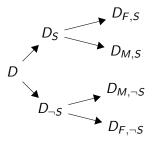
November 10, 2015

3

13 / 17



Smoking	Sex	Cancer
Yes	Male	Yes
No	Male	No
Yes	Female	No
No	Female	No



D

<ロ> (日) (日) (日) (日) (日)

November 10, 2015

3

13 / 17

ID3

ID3 example

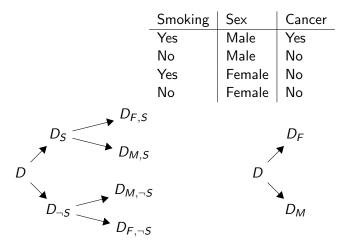


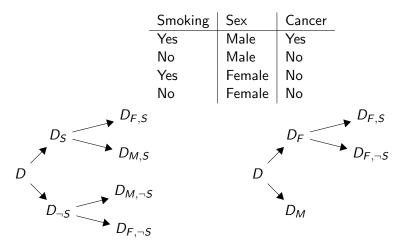
Image: A matrix

э.

November 10, 2015

3

ID3 example



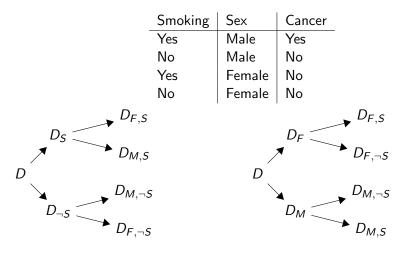
< □ > < ---->

▶ < ≣ ▶ < ≣ ▶ November 10, 2015

13 / 17

ID3

ID3 example



< □ > < ---->

November 10, 2015

13 / 17

ID3

After ID3 ends, are all training examples classified correctly?

- After ID3 ends, are all training examples classified correctly?
- Does the order in which we add features matter for the training classification error?

イロト イポト イヨト イヨト

November 10, 2015

- 3

- After ID3 ends, are all training examples classified correctly?
- Does the order in which we add features matter for the training classification error?

(日) (周) (三) (三)

November 10, 2015

14 / 17

Does the order matter for the testing classification error?

- After ID3 ends, are all training examples classified correctly?
- Does the order in which we add features matter for the training classification error?

(日) (周) (三) (三)

November 10, 2015

- Does the order matter for the testing classification error?
- Does the order matter if we make the tree shorter?

- After ID3 ends, are all training examples classified correctly?
- Does the order in which we add features matter for the training classification error?

(日) (周) (三) (三)

November 10, 2015

- Does the order matter for the testing classification error?
- Does the order matter if we make the tree shorter?
- If examples are inconsistent, how can we achieve perfect classification? *Hint: use data augmentation*

Generalising decision trees

- We can think of more general versions of ID3.
- Can work with non-binary features.
- Use other criteria to split (e.g. the expected reduction in classification error)

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥
November 10, 2015

15 / 17

Can also do regression.

The C4.5 algorithm

Identical to ID3 apart from dealing with numeric variables.

< □ > < □ > < □ > < ≡ > < ≡ > ≡
 November 10, 2015

16 / 17

Numeric attribute splitting

- For each attribute a
- Look at all possible splitting points x
- Calculate \mathbb{G} for each combination a, x.
- Use that!

Expected reduction in classification error*

The classification error for a given subset D_i of the data D is the proportion of labels not equal to the most frequent label:

Example 5

•	
Name	Smoking
Silvie	Yes
Yiannis	Yes
Marie	No
Claudia	Yes
Jonas	Yes
Andrei	No
Keisuke	Yes
Yamada	Yes
Lee	No

November 10, 2015

Expected reduction in classification error*

The classification error for a given subset \mathcal{D}_i of the data \mathcal{D} is the proportion of labels not equal to the most frequent label:

Example 5

Name	Smoking
Silvie	Yes
Yiannis	Yes
Marie	No
Claudia	Yes
Jonas	Yes
Andrei	No
Keisuke	Yes
Yamada	Yes
Lee	No

Question: What is the classification error of the best fixed decision for the highlighted subset? イロト イポト イヨト イヨト E SQA November 10, 2015

Expected reduction in classification error*

The classification error for a given subset D_i of the data D is the proportion of labels not equal to the most frequent label: Question: What is the classification error for the best fixed decision for the highlighted subset over the remaining dataset?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

November 10, 2015 17 / 17

Expected reduction in classification error*

The classification error for a given subset \mathcal{D}_i of the data \mathcal{D} is the proportion of labels not equal to the most frequent label:

Definition 5 (Classification error (of a fixed decision rule) for a set D_i)

$$\epsilon(\mathcal{D}_i) \triangleq \frac{|\{y \neq y^*(\mathcal{D}_i) \mid (x, y) \in \mathcal{D}_i|\}}{|\mathcal{D}_i|}, \qquad (3.1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙ November 10, 2015

$$y^{*}(\mathcal{D}_{i}) \triangleq \underset{k \in Y}{\operatorname{arg\,max}} | \{ y = k \mid (x, y) \in \mathcal{D}_{i} \} |$$
(3.2)