
k nearest neighbours

The dirty secret of machine learning

Christos Dimitrakakis

December 1, 2015

1 Introduction

One of the simplest methods in machine learning is k-nearest neighbours. It
relies on the intuition that similar data have similar labels. Usually this as-
sumption must hold for any machine learning algorithm to work. However, we
have to define what we mean by similarity. The difficulty is that frequently
it is very hard to formulate the right notion of similarity for a given data-set.
Nearest neighbour algorithms take a notion of similarity as given, and do not
attempt to discover it automatically. Nevertheless, in the right hands, they can
be quite effective. An external method for discovering a good similarity can be
easily coupled with them.

In this setting, similarity will be translated to closeness. Consequently, all
that a nearest neighbour algorithm needs to be able to classify is a set of labelled
data, and a specific notion of distance.

Intuition behind nearest neighbour

• We are given a set of training data DT = (xt, yt)
T
t=1.

• We are asked to classify a new data point x.

• We assume that nearby points have similar labels.

• So the label of the new point is probably the same as that of the closest
training points.

Questions

• How do we identify “closeness”?

• What if the neighbours of a point have different labels?

1

The nearest neighbour algorithm
The nearest neighbour algorithm is probably the simplest classification method.

We are given a set of training data DT = {(x1, y1), . . . , (xT , yT)} and are asked
to classify a new point x. The idea is to find the closest point (x∗, y∗) in the
training data and use its label. First, however, we need to define a way to mea-
sure the distance between x and any point xt in the training set. This is done
by specifying a function d(x∗,x). The choice of function is mainly application-
dependent.

Nearest neighbour

Input Data DT , distance d, new point x.
Find (x∗, y∗) ∈ DT such that

d(x∗,x) ≤ d(x′,x) ∀(x′, y′) ∈ DT .

Return y∗.

Mathematically, a distance has the following properties.

Definition 1.1 (Distance d : X × X → R). A distance, or metric d(x,x′)
satisfies

• d(x,x′) = 0 if and only if x = x′ (identity)

• d(x,x′) = d(x′,x) (symmetry)

• d(x1,x3) ≤ d(x1,x2) + d(x2,x3) (triangle inequality)

• It follows that d(x,x′) ≥ 0 (positivity)

1.1 Distances

While the choice of distance is generally application-dependent, two common
distances are the following.

Example 1.1 (The Euclidean metric). When X = Rn then we can define the
Euclidean metric d : Rn ×Rn → R, with

d(x,x′) = ‖x− x′‖2 =

√√√√ n∑
i=1

|x(i)− x′(i)|2

The Euclidean distance is the familiar notion of distance we use in everyday
life. It usually makes sense when the data consists of vectors of real numbers,
since then we can define operations such as subtraction, absolute value and
square.

2

Example 1.2 (The Manhattan metric). For any X = X1 × . . . × Xn we can
define the Hamming metric d : Xn ×Xn → R, to be

d(x,x′) = ‖x− x′‖2 =

n∑
i=1

|x(i)− x′(i)|.

This can be also seen as the grid, or taxi-cab distance between the two points.

Example 1.3 (The Hamming metric). For any X = X1× . . .×Xn we can define
the Hamming metric d : Xn ×Xn → R, to be

d(x,x′) =

n∑
i=1

I {x(i) 6= x′(i)} ,

that is the number of features where the two points x,x′ differ. Note that
I {} is an indicator function taking the value 1 when its argument is true and
0 otherwise. So, this formalises the notion of counting the number of features
that are different.

Note that in this case, we only need to be able to compare two features to
see if they are equal. Hence, this distance is applicable to any setting.

Note that both of these distances are invariant and symmetric: shifting
points, or changing the order of attributes does not make any difference in the
distances calculated. This means that if we think that certain regions contain
outliers, or that some attributes are more important than others, we should use
another type of distance.

Exercise 1 (Implement a function returning the Euclidean distance).
1 EuclideanDistance <- function(x, y)

{

3 distance <- ..?? ## calculate distance

return (distance)

5 }

One way to implement the Euclidean distance is through use of the dist()

and rbind() functions. The dist() function returns the matrix of distances
between the rows of a matrix. For a matrix X, we obtain the matrix A =
dist(X) with

ai,j = d(xi,xj)

where xi, xj are the i and j-th rows of X respectively.
Use the rbind() function to place x,x′ in two rows of the same matrix.

Exercise 2 (Implement a function returning the Hamming distance).
1 Hamming <- function(x, y)

3

{

3 distance <- ..?? ## calculate distance

return (distance)

5 }

Solution. The dist() function only works for numeric arguments. Hence, you
must implement a for loop

1 HammingDistance <- function(x, y) {

distance <- 0

3 for (i in 1:n) {

if (x[i] != y[i]) {

5 distance <- distance + 1

}

7 }

return (distance)

9 }

2 The k-nearest neighbour algorithm

The idea of nearest neighbour is to classify a point by simply counting the
number of times each label is predicted by its k closest neighbours.

k-nearest neighbour

1: Input Data DT , distance d, number of neighbours k, new point x
2: Find the k closest neighbours of x

S(x) = {x∗1, . . . ,x∗k},

with corresponding labels y∗1 , . . . , y
∗
k.

3: Count the number of neighbours labelled y:

ny(x) =

k∑
t=1

I {y∗t = i} ,

where I {A} = 1 whenever A is true and 0 otherwise.
4: Return y∗ = arg maxy ny(x), the label agreeing with most neighbours.

4

Classification with nearest neighbour with the class package.
The following exercise illustrates classification with the nearest neighbour

algorithm. There are many packages in R which implement nearest neighbours
in one form or another. We are going to use the class package. The invocation
of the method is given below.

1 test.prediction <- class::knn(train.features ,

test.features ,

3 train.labels ,

k = num.neighbours)

We would like to measure the number of errors in the prediction. For this reason,
we define a simple function to measure the average number of errors given a set
of labels and predictions.

A function to calculate the classification error

2 ClassificationError <- function(labels , prediction)

{

4 return (mean(labels != prediction))

}

We can put all of that together in a simple exercise, where we change the
number of neighbours of our algorithm to see the effect in the training and
testing set.

Exercise 3. The purpose of this exercise is to investigate the performance
of nearest neighbour algorithms when the number of neighbours and features
change.

• Get the script knnExample.R

• Run it. How does the classification error change?

• Increase the amount of training data by changing the nTraining variable.
What happens?

• When is the training set error close to the testing error and why?

• Repeat the experiment for 10 and 100 features. Are the results the same?
Why?

Speeding up nearest neighbour
One problem concerning nearest neighbour is that the larger the training

set, the longer we have to spend searching for neighbours.

Example 2.1. In particular, consider what is the complexity of finding the k
nearest neighbours in the following setup.

5

• A training dataset with T examples

• A testing set with M examples.

• Naively, it takes T comparisons to find the closest neighbour of any one
example.

• How can we find the k nearest neighbours?

• Method A: Calculate the distance to all T points, then sort. This takes
O(T log T) time and O(T) space.

• Method B: Use a tree structure to store points and distances. Can take
O(k log T).

3 Variants and extensions of nearest neighbours.

Specifying uncertainty
One problem with k nearest neighbour is that overfitting is hard to detect.

In particular, we are usually more uncertain the more neighbours we use; but
our training error also becomes (usually) higher the more neighbours we use.
Perhaps there are some ways to get around that problem.

• Should the output depend only on the labels of the nearest neighbours?

• Could we make it so the output depends on how close the neighbours are?

• What if it depended on all the training examples?

• Could we use boot-strapping to get a better idea of the uncertainty of our
predictions?

The following is a variant of nearest neighbour, whereby the importance of
different examples is weighted according to their distance from the new point.

Distance sensitive k-nearest neighbour

1: Input Data DT , distance d, number of neighbours k, new point x,
decreasing function f .

2: Find the k closest neighbours of x

S(x) = {x∗1, . . . ,x∗k},

with corresponding labels y∗1 , . . . , y
∗
k

3: Calculate the weight of labelled y:

wy(x) =

k∑
t=1

I {y∗t = i} f [d(x∗t , x)] .

4: Return y∗ = arg maxy wy(x), the label with the most weight.

6

The idea is to reduce the influence of far-away neighbours. Common choices
for f(d) include f(d) = 1/d, and f(d) = e−αd, where α ≥ 0 is a constant.

However, there is no reason to actually limit ourselves to the k closest points,
if we are going to weigh points by distance. We could simply look at all points
instead! For simplicity, in the following we omit the distance and refer to the
kernel, or similarity, function f directly.

Kernel classifier

1: Input Data DT , distance d, number of neighbours k, new point x,
kernel f

2: Calculate the weight of labelled y:

wy(x) =

T∑
t=1

I {y∗t = i} f(x∗t , x).

3: Return y∗ = arg maxy wy(x), the label with the most weight.

Here is a comparison between KNN a Gaussian Kernel on the validation set,
using 100 training examples.

0 20 40 60 80 100

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Index

kn
n.

ho
ld

ou
t.e

rr
or

KNN
kernel

Kernel vs KNN with 100 training examples on clusterTraining2.txt

0.312
●

0.314
●

7

4 Self-paced exercises.

In this exercise, we shall investigate how to select hyper-parameters using deci-
sion trees and nearest neighbours.

Respond privately to this exercise on piazza.com, class FDD 2 using the
tag hw3

Exercise 4. The purpose of this exercise is to investigate the performance of
nearest neighbour and decision trees using holdouts or cross validation.

• Using holdouts or cross-validation [but the same method for both classi-
fiers] on the 2d-clustering training set, select the best parameters for the
nearest neighbour and the decision tree. For the nearest neighbour these
include:

1. The number of neighbours k.

2. The distance function ρ.

For the decision trees, these include:

1. Minsplit (or alternatively, the complexity parameter).

2. The method used to add new features (information, classification,
etc)

http://www.cse.chalmers.se/~chrdimi/downloads/fouille/clusterTraining2.

txt

• Then validate those parameters, by training them in the complete training
set and measuring their performance in a separate test set. http://www.
cse.chalmers.se/~chrdimi/downloads/fouille/clusterTesting2.txt

• How certain are you that their differences in testing are real? Quantify
your uncertainty using bootstrapping.

• What are, in your opinion, the advantages and disadvantages of nearest
neighbour over decision trees?

Make sure you train, validate and test both methods on the exact same data.

8

piazza.com
http://www.cse.chalmers.se/~chrdimi/downloads/fouille/clusterTraining2.txt
http://www.cse.chalmers.se/~chrdimi/downloads/fouille/clusterTraining2.txt
http://www.cse.chalmers.se/~chrdimi/downloads/fouille/clusterTesting2.txt
http://www.cse.chalmers.se/~chrdimi/downloads/fouille/clusterTesting2.txt

	Introduction
	Distances

	The k-nearest neighbour algorithm
	Variants and extensions of nearest neighbours.
	Self-paced exercises.

