
Supervised vs Unsupervised Learning Problems

Machine learning

Problem definition

I Formulate learning problem.

I Obtain data.

I Run algorithm on data.

I Obtain conclusion.

Algorithms vary depending on the learning problem.
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A Supervised and an Unsupervised Learning Problem
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Supervised vs Unsupervised Learning Problems

The clustering problem

I Input: Data D = (x1, . . . , xN),
xt ∈ X , K ∈ N

I Output: Centers x̄c , labels
(y1, . . . , yN), yt ∈ {1, . . . ,K}.

I Objective (example): minimise
intraclass inertia∑

c∈[K ]

∑
t:yt=c

‖xt − x̄c‖2.

The classification problem

I Input: Data D = ((xt , yt))Nt=1,
xt ∈ X , yt ∈ Y = {1, . . . ,K}

I Output: Classification rule:
f : X → Y .

I Objective (example): Minimise
classification error∑

t∈[N]

εyt , f (xt)

Food for thought

Are these the right objectives? What are potential flaws?
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Unsupervised learning problems

Problem characterisation

Find a model describing the data.

Example problems / Description

I Clustering / clusters

I Data compression / compressed data

I Density estimation / probability density function

I Document analysis / document topics

I Network modelling / links between entities

I Preference elicitation / user preferences
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Supervised learning problems

Problem characterisation

Find a function f : X → Y making predictions from partial information

Example problems / Functions

I Classification / map from observations to classes
I Speech recognition
I Image classification

I Regression / Find f : Rn → Rk .
I Risk analysis
I System dynamics

I Sequential prediction / map from past to future observations
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Training and testing

Measuring objectives

I Say x̄i are cluster centers minimising an objective for data D
I Do they also minimise it for data D′?

Holdout sets

I Minimise objective on D and compare with objective on D′.

I D,D′ can be obtained by splitting the original data in two parts.

Example on intraclass variance for kmeans

I What is the expected behaviour in D and D′?

I What actually happens? How can we explain it?
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The importance of the objective function

Remember that the original objective is∑
c∈[K ]

∑
t:yt=c

‖xt − x̄c‖2.

Let’s try and implement an alternative objective∑
c∈[K ]

∑
t:yt=c

1

Nc
‖xt − x̄c‖2.
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The simplest classifier

y = Look-Up(x ,D) // Data D, new point x

1: for (xt , yt) ∈ D do
2: if xt = x then
3: return y = yt .
4: end if
5: return y ∼ Unif (Y ).
6: end for

Definition 1 (The uniform distribution)

If P is the uniform distribution on Y , then

P(A) ≤ P(B)⇔ |A| ≤ |B|, A,B ⊆ Y

Sp: For Unif ({1, . . . ,N}), we have P(k) = 1/N.
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I Identify one or more weaknesses of this classifier.

I How could this classifier be improved?
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The simple multinomial classifier

y = Multinomial(x ,D) // Data D, new point x

1: return y ∼ Mult(p(x)),

pi (k) = | {xt = k ∧ yt = i} /| {xt = k} |

The estimate is the proportion of data with xt = k which have label i .

Definition 2 (Multinomial)

If y ∈ {1, . . . ,K} is multinomially distributed with parameter p ∈ [0, 1]K ,
‖p‖1 = 1, we write y ∼ Mult(p). The probability that y takes the value i
is pi .
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How can we generalise this?

I What about not previously seen x?

I When x is continuous.

I When x = x(1), . . . , x(n) is a long vector of features.

Some algorithms

I Decision stumps

I Decision trees

I Nearest neighbours

I Bayesian networks

I Support vector machines
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