Machine learning

Problem definition

- Formulate learning problem.
- Obtain data.
- Run algorithm on data.
- Obtain conclusion.

Algorithms vary depending on the learning problem.

イロト 不得 トイヨト イヨト 二日

November 17, 2015

A Supervised and an Unsupervised Learning Problem

Image: A math a math

Supervised vs Unsupervised Learning Problems

The clustering problem

- ▶ Input: Data $\mathcal{D} = (x_1, \dots, x_N)$, $x_t \in X$, $K \in \mathbb{N}$
- Output: Centers \bar{x}_c , labels $(y_1, \ldots, y_N), y_t \in \{1, \ldots, K\}.$
- Objective (example): minimise intraclass inertia

$$\sum_{c\in[K]}\sum_{t:y_t=c}\|x_t-\bar{x}_c\|^2.$$

The classification problem

- ► Input: Data $\mathcal{D} = ((x_t, y_t))_{t=1}^N$, $x_t \in X, y_t \in Y = \{1, \dots, K\}$
- Output: Classification rule: $f: X \to Y$.
- Objective (example): Minimise classification error

$$\sum_{t\in[N]}\epsilon y_t, f(x_t)$$

イロト 不得下 イヨト イヨト 二日

November 17, 2015

3 / 11

Food for thought

Are these the right objectives? What are potential flaws?

Unsupervised learning problems

Problem characterisation

Find a model describing the data.

Example problems / Description

- Clustering / clusters
- Data compression / compressed data
- Density estimation / probability density function

イロト 不得 トイヨト イヨト 二日

November 17, 2015

- Document analysis / document topics
- Network modelling / links between entities
- Preference elicitation / user preferences

Supervised learning problems

Problem characterisation

Find a function $f: X \to Y$ making predictions from partial information

Example problems / Functions

- Classification / map from observations to classes
 - Speech recognition
 - Image classification
- Regression / Find $f : \mathbb{R}^n \to \mathbb{R}^k$.
 - Risk analysis
 - System dynamics

Sequential prediction / map from past to future observations

November 17, 2015

Training and testing

Measuring objectives

- Say \bar{x}_i are cluster centers minimising an objective for data \mathcal{D}
- Do they also minimise it for data \mathcal{D}' ?

Holdout sets

- Minimise objective on \mathcal{D} and compare with objective on \mathcal{D}' .
- $\mathcal{D}, \mathcal{D}'$ can be obtained by splitting the original data in two parts.

Example on intraclass variance for kmeans

- What is the expected behaviour in \mathcal{D} and \mathcal{D}' ?
- What actually happens? How can we explain it?

イロト 不得 とくき とくき とうき

The importance of the objective function

Remember that the original objective is

$$\sum_{c\in[K]}\sum_{t:y_t=c}\|x_t-\bar{x}_c\|^2.$$

Let's try and implement an alternative objective

$$\sum_{c\in[\mathcal{K}]}\sum_{t:y_t=c}\frac{1}{N_c}\|x_t-\bar{x}_c\|^2.$$

November 17, 2015

The simplest classifier

$y = \text{Look-Up}(x, \mathcal{D}) // \text{ Data } \mathcal{D}$, new point x

- 1: for $(x_t, y_t) \in \mathcal{D}$ do
- 2: **if** $x_t = x$ **then**
- 3: return $y = y_t$.
- 4: end if
- 5: **return** $y \sim Unif(Y)$.
- 6: end for

Definition 1 (The uniform distribution)

If $\mathbb P$ is the uniform distribution on Y, then

$$\mathbb{P}(A) \leq \mathbb{P}(B) \Leftrightarrow |A| \leq |B|, \qquad A, B \subseteq Y$$

Sp: For $Unif(\{1, \ldots, N\})$, we have $\mathbb{P}(k) = 1/N$.

★ ■ ▶ ★ ■ ▶ ■ ∽ Q ペ
November 17, 2015 8 / 11

- Identify one or more weaknesses of this classifier.
- How could this classifier be improved?

The simple multinomial classifier

 $y = \texttt{Multinomial}(x, \mathcal{D}) \ // \ \mathsf{Data} \ \mathcal{D}$, new point x

1: return $y \sim Mult(p(x))$,

$$p_i(k) = |\{x_t = k \land y_t = i\} / |\{x_t = k\}|$$

The estimate is the proportion of data with $x_t = k$ which have label *i*.

Definition 2 (Multinomial)

If $y \in \{1, ..., K\}$ is multinomially distributed with parameter $p \in [0, 1]^K$, $||p||_1 = 1$, we write $y \sim Mult(p)$. The probability that y takes the value i is p_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

How can we generalise this?

- What about not previously seen x?
- When x is continuous.
- When $x = x(1), \ldots, x(n)$ is a long vector of features.

How can we generalise this?

- What about not previously seen x?
- When x is continuous.
- When $x = x(1), \ldots, x(n)$ is a long vector of features.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの November 17, 2015

11 / 11

Some algorithms

- Decision stumps
- Decision trees
- Nearest neighbours
- Bayesian networks
- Support vector machines